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[1] Harmonic pumping tests performed in an unconfined
aquifer are responsible for a non-linear and phase shifted
behavior of the self-potential response recorded at the
ground surface with respect to the change in the pressure
heads of the aquifer. The observed non-linearity of the
transfer function can be reproduced with a petrophysical
model in which the permeability, the capillary pressure
curve, and the streaming potential coupling coefficient are
modelled inside a unified framework approach based on the
van Genuchten parametrization including a hysteretic
behaviour with the water saturation. The field equations
for the hydraulic heads and the self-potential signals are
solved with a finite-element code, which is used to compute
the time variation of the self-potential variations over time
for two numerical experiments accounting or not for
hysteresis. Only the model with hysteresis can reproduce
the field observations. Citation: Revil, A., C. Gevaudan, N. Lu,
and A. Maineult (2008), Hysteresis of the self-potential response
associated with harmonic pumping tests, Geophys. Res. Lett., 35,
L16402, doi:10.1029/2008 GL035025.

1. Introduction

[2] The self-potential method is a passive method
consisting in measuring the electrical potential response,
at the ground surface of the Earth or in boreholes, associated
with natural polarization mechanisms occurring into the
ground. Two major contributions are redox phenomena
[Naudet et al., 2004; Maineult et al., 2006] and streaming
potential associated with ground water flow [Crespy et al.,
2008]. Recent works [Rizzo et al., 2004; Straface et al.,
2007] have demonstrated the usefulness of the self-potential
method to monitor pumping and recovery tests. These
works have presented a comprehensive formulation of the
streaming potential response associated with ground water
flow. In addition, Naudet et al. [2004] and Rizzo et al.
[2004] showed how separate the redox and streaming
contributions to analyze them separately. These works were
however restricted to water-saturated rocks. Recently, the
streaming potential theory has been extended as a function
of the saturation of the water phase including hysteresis and
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the non-linearity of the relationship between the streaming
potential and the pressure of the water phase [Linde et al.,
2007; Revil et al., 2007].

[3] Maineult et al. [2008] performed harmonic pumping
tests during which the self-potential response was measured
at the ground surface and in boreholes with non-polarizing
electrodes. They observed a non-linear self-potential
response at the ground surface that was phase shifted with
respect to the harmonic variations of the hydraulic heads. At
the opposite, the self-potential variations with time recorded
below the water table were harmonic. If this behavior can be
related to the properties of the capillary fringe, these
observations could be the basis of a novel, non-intrusive
method to evaluate the capillary pressure curve and relative
permeability [Maineult et al., 2008]. Measurements of the
self-potential response made during pumping tests made
and in a low-frequency band could allow characterizing
non-intrusively the dynamic capillary pressure curve and
the dynamic relative permeability function at different
velocities of the water front.

[4] In the present letter, we use, for the first time, the
theory developed by Revil et al. [2007] and Linde et al.
[2007] to explain the field observations made by Maineult et
al. [2008]. We are especially interested to connect the
parameters controlling the capillary pressure curve and
relative permeability to the non-linearity of the self-potential
response associated with harmonic fluctuations of the
hydraulic head near the well.

2. Background Theory

[s] The flow of water through the porous media in
unsaturated conditions is given by the Richards equation
[Richards, 1931]:

IS,y K(S,)
ot Pug

¢ V(Pe(Sy)) = K(Sw)z| = O, (1)

where ¢ is the porosity, S,, is the water saturation (S,, = 1
corresponds to full saturation), ¢ is the time (s), K is the
hydraulic conductivity (m s™"), p,, is the mass density of the
pore water (kg m ), g is the acceleration of the gravity
(m s ?), P, is the capillary pressure (Pa), % is a vertical
orienteld unit vector, and Q,, is a hydraulic source or sink term
(kgs™ ).

[6] The hydraulic conductivity K is related to the
permeability at saturation k& by: (S,,) = kk. (S,)pw 2/Mws
where £, (dimensionless) is the relative permeability of the
porous material and 7),, is the dynamic viscosity of the
pore water (in Pa s). In order to solve the Richards equation,
both the capillary pressure curves P.(S,,) and the relative
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Figure 1. Sketch of the sandbox used for the numerical simulations. (a) Geometry of the system with the position of the
sandbox at the reference (initial) time of the numerical experiment. (b) Saturation versus depth in the sandbox.

permeability curves k,.(S,,) are required. We use the van
Genuchten model [van Genuchten, 1980]:

o=t (som )", @)

k= \/5[1 - (1 —Se‘/'")m]z, (3)

where S, = (S,, — S,,,)/(1 — §,,,) and S,,,. are the effective
and residual water saturation, respectively, and o (Pa™ '), m
(dimensionless), and n (dimensionless) are the van Gen-
uchten parameters. Other parametrizations of the capillary
pressure and relative permeability curves are possible and
can be related to the pore size distribution of the porous
material. However, we point out that all the conclusions
obtained below are strictly independent of the choice of the
capillary pressure or relative permeability parametrizations
used for the calculations.

[7] The flow of the pore water drags also the excess of
electrical charge contained in the diffuse part of the electri-
cal double layer. This creates the source current density jg
(in A m~?). The total electrical current density is given by
j=— oV +js, where o is the electrical conductivity of
the material (S m~") and @ is the electrical (self-) potential
(in V). In unsaturated conditions, js can be expressed as a
function of the saturation by jg (S,,) = Qpu/S,, [Revil et al.,
2007; Linde et al., 2007], where Oy is the excess charge
density of the pore water at saturation. Jardani et al. [2007]
showed that the charge density Q) can be determined from
the intrinsic permeability of the material at saturation
accordin; tologio Oy=—9.2 — 0.82 log;o k (Qyis expressed
in C m— and & in m?).

[8] If surface conductivity of the grain can be neglected,
the electrical conductivity of the partially saturated porous
material is given by the second Archie law: o (S,,) = 04 Siy
[e.g., Revil, 1999], o, is the electrical conductivity of the
saturated porous material and # is called the second Archie
exponent. The continuity equation is V - j = 0. Using these
equations, the electrical potential is obtained by solving a

Poisson equation with a source term determined from the
solution of the Richards equation [see Boleéve et al., 2007].

3. Forward Modeling

[9] The equations described in section 2 are solved with
Comsol Multiphysics 3.3. We consider a fictitious sandbox
with a rectangular shape, a height and width of 1 m and a
length of 2 m. We simulate numerically a harmonic pump-
ing test and we compute the self-potential response by
solving the partial differential equations described in Sec-
tion 2. The harmonic pumping test is made from a vertical
insulating pipe with a diameter of 4 cm. This pipe is located
at the middle of the sandbox and reaches a depth of 40 cm.
The simulated sandbox is assumed to be filled with the
same sand than used by Linde et al. [2007] for their
drainage experiment. At the beginning of the simulation,
the water table is located at a depth of 40 cm, therefore at
the same level than the outlet of the pipe (Figure 1?. We
use the following Pagameters: $=034,k=79 x 1072 m?,
0 =0.012Sm ', 0,=048 Cm > n=1.6(p, = 1000 kg
m > and 7, = 1.14 x 107> Pa s). The side and bottom
boundaries of the tank are impervious. We consider a free
water table. We impose an harmonic variation of the
pressure head at the bottom of the pipe. Consequently, the
head pressure is successively positive and negative simu-
lating water injection and pumping phases. The pressure
head varies between the 0.5 and —0.5 m, between time 0
and (127) minutes. Inside the sandbox, the piezometric level
varies freely. In the initial reference state, there is no flow,
so the total current density is zero. The side boundaries and
top and bottom boundaries are insulating.

[10] We make two simulations. In Experiment 1, the
values of o and m are kept as constants with independent
of the saturation (no hysteresis). We use o = 5.25 Pa ! and
m = 0.78. In Experiment 2, we consider that o and m follow
a sinusoidal temporal variation in phase with the pressure
head variation. Thus, the value of « and n varies respec-
tively between a maximum of 7 Pa~' for a and 0.83 for m
during injection phases and a minimum of 3.5 Pa~' for «
and 0.67 for m during pumping phases. The resulting shape
of the relative permeability curve versus saturation is shown
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Figure 2. Variation of the relative permeability for the
Experiment 2.

in Figure 2. This arbitrary parametrization is made to
simulate the hysteresis occurring during the saturation/
desaturation processes.

[11] A snapshot of the water saturation during injection
and pumping is shown in Figure 3. The efficiency of
injecting water is higher than the efficiency in removing
water from the tank. Therefore, the water level in the tank
increases over time. It reaches a steady-state value after ~20
cycles). A snapshot of the resulting self-potential response is
shown in Figure 4. Two self-potential stations are followed
over time: Point 1 (located at the top surface of the tank) and
Point 2 (located below the outlet of the capillary). The self-
potential responses recorded at Points 1 and 2 are shown in
Figure 5 for Experiments 1 and 2, respectively. The trend in
the self-potential response at the top of the tank is due to the
evolution with time of the saturation in the vadose zone. At
the opposite, there is no trend below the water table. Once this
trend is removed, the self-potential response is harmonic
everywhere in the tank in Experiment 1. However, the self-
potential response exhibits a phase-shifted non-linear behavior
at the top surface of the tank in Experiment 2 that is consistent
with the field observations of Maineult et al. [2008].

[12] Another observation resulting from the numerical
experiment that is also consistent with the field data of
Maineult et al. [2008] is the observed phase shift between
the self-potential signals measured at the ground surface and
the variations of the pressure heads of the aquifer. At the
opposite, the self-potential signals measured below the
water table are always in phase with the variations of
the heads (the reversal of the polarity is due to the fact that
the streaming potential coupling coefficient is negative).
Therefore, all the field observations made by Maineult et al.
[2008] can be reproduced by the numerical model.

4. Inverse Modeling

[13] The inverse modelling is performed by minimizing
the following data misfit function w,; with the Simplex
algorithm [Caceci and Cacheris, 1984]),

Va = [[Wa(G(m) — o )], 4)

where ||v|l, = (v/ v)""? denotes the Euclidian (L,) norm, G

(m) corresponds to the forward model, m is the vector of the
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van Genuchten parameters entering equations (2) and (3)
(using the hysteretic behaviour discussed for Experiment 2),
@4 1s a vector corresponding to the self potential data at the
ground surface and in boreholes, and W, = diag {l/¢, ...,
1/ey} is a square diagonal weighting matrix (the diagonal
elements are the reciprocal of the standard deviation o;
squared &; = o7 while the other components are set to zero if
the noise on the data is uncorrelated). In the present case, we
apply this strategy to our synthetic data of Experiments 1
and 2 (using &; = 1). The a prior values of the parameters
(and m and the functional used to mimic hysteresis) are
chosen randomly inside the range o, prior € [1—10] Pa~!
and m, prior € [0.10—0.90]. For Experiment 1, the result of
the inversion yields =5+ 1 Pa ' and m = 0.85 + 0.05. For
Experiment 2, the inverted results allow to compute the
capillary pressure and relative permeability curves. The R?
for the correlation between these curves and the curves used
for the model is 0.95. Therefore, we are able to recover
successfully the values of the van Genuchten parameters.

5. Concluding Statements

[14] The self-potential method can be used to probe non-
intrusively, and possibly in real time, the parameters char-
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Figure 3. Simulation of the saturation in the sandbox at
two different times (Experiment 1). (a) At the time where
the water table reaches its lowest position. (b) At the time
where the water table reaches its highest position. The
position of the water table is shown by the plain line. The
arrows represent the direction and strength of the Darcy
velocity.
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Figure 5. (a) Time variation of the self-potential response for Experiment 1 (hysteresis not accounted for) at Point 1
located at the top surface of the tank. (b) At Point 2 (located at the outlet of the pipe), we observe that the time variation of
both the hydraulic head and the self-potential are harmonic. Once corrected for the trend, the self-potential response
recorded by Point 1 is also harmonic (not shown here). (c) Time variation of the self-potential response of Experiment 2 at
Point 1. (d) At Point 2, we observe that the time variation of both the hydraulic head and the self-potential are still
harmonic. However, the self-potential response of Point 1 exhibits a non-linear, phase-shifted, behavior.
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acterizing the capillary pressure and relative permeability
curves for an unconfined aquifer. Because the frequency of
the harmonic pumping tests can be changed, it is also
possible to analyze non-intrusively the influence of the
velocity of the water front upon the capillary pressure and
relative permeability curves. An extension of the present
model to oil and gas reservoirs is also possible. The self-
potential approach offers therefore a non-intrusive method
to access the parameters describing the capillary pressure
and the relative permeability curves of the vadose zone at
the level of the capillary fringe.
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