N

N

A mean field model of the decrease of the specific surface
area of dry snow during isothermal metamorphism

Loic Legagneux, Florent Domine

» To cite this version:

Loic Legagneux, Florent Domine. A mean field model of the decrease of the specific surface area of
dry snow during isothermal metamorphism. Journal of Geophysical Research, 2005, 110 (F04011), 1
a 12 p. 10.1029/2004JF000181 . insu-00374624

HAL Id: insu-00374624
https://insu.hal.science/insu-00374624
Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://insu.hal.science/insu-00374624
https://hal.archives-ouvertes.fr

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, F04011, doi:10.1029/2004JF000181, 2005

A mean field model of the decrease of the specific surface area
of dry snow during isothermal metamorphism

Loic Legagneux and Florent Domine
Laboratoire de Glaciologie et Géophysique de I’Environnement, CNRS, St Martin d’Heres, France

Received 11 June 2004; revised 13 April 2005; accepted 26 August 2005; published 18 November 2005.

[1] The surface area of snow that is accessible to gases is an essential parameter for
quantifying the exchange of trace gases between the snowpack and the atmosphere and is
called the specific surface area (SSA). Snow SSA decreases during metamorphism, but
this is not described in current snow models owing to the complexity of the physics and
geometry of snow. In this paper, we test whether it is possible to model snow SSA
changes during isothermal metamorphism without accounting for all the complexity of the
three-dimensional (3-D) structure of real snow. We have developed a mean field model of
snow metamorphism under isothermal conditions, grounded in the theoretical framework
of transient Ostwald ripening and representing snow as a distribution of spherical
particles. Analytical expressions of the growth rates of these spheres are obtained, and the
evolution of two measurable parameters that characterize snow geometry, the SSA

and the distribution of radii of curvature (DRC), are simulated and compared to
experimental data obtained by X-ray tomography. The qualitative effects of temperature,
snow density, and the condensation coefficient on the rate of SSA decrease are examined.
The model predicts very well the rate of evolution of the particle size distribution, which
validates our physical description of isothermal metamorphism. In particular, we find
that vapor phase diffusion is rate limiting. However, the calculation of the SSA from the
DRC appears delicate and evidences too crude approximations in our description

of the 3-D geometry of snow. Finally, it is stressed that the initial DRC can greatly
influence the rate of SSA decrease, while experimental measurements of the rate of SSA
decrease suggest that all snow types evolve in a similar way. It is thus proposed that most

natural fresh snows have similar DRCs.

Citation: Legagneux, L., and F. Domine (2005), A mean field model of the decrease of the specific surface area of dry snow during
isothermal metamorphism, J. Geophys. Res., 110, F04011, doi:10.1029/2004JF000181.

1. Introduction

[2] Many scientific fields such as avalanche forecasting,
remote sensing, meteorology, climatology or atmospheric
chemistry are directly concerned by the structural and
microphysical properties of the snow cover [Colbeck,
1991]. Snowpacks are porous materials and their physical
properties such as mechanical strength [Durand et al.,
1999], optical absorption and emissivity [Grenfell and
Warren, 1999; Schwander et al., 1999; Mdtzer, 2002], heat
and mass transport [Sturm, 1989; Arons and Colbeck, 1995;
Albert, 1996], species transport [Albert, 1995], and air-snow
interactions [Dominé and Shepson, 2002] are therefore
intimately related to their structural features. Snow proper-
ties have to be quantified accurately, but snow undergoes
continuous morphological changes [De Quervain, 1958;
Colbeck, 1982, 1997; Sokratov, 2001; Dominé et al.,
2002; Cabanes et al., 2002], essentially because of the high
saturating vapor pressure of ice as compared to other
materials at ambient temperature that allows important
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water vapor fluxes to take place. The mechanical and
thermodynamical processes involved in these changes in
shape, size and structure are regrouped under the term
“metamorphism” [Maeno and Ebinuma, 1983]. Snow
metamorphism needs to be understood to predict the evo-
lution of snow properties.

[3] Metamorphism is the response of a three-dimensional
dynamic material, snow, to external thermodynamical con-
straints such as heat fluxes and temperature gradients, and
mechanical constraints such as accumulation and wind. A
detailed model of metamorphism intended to predict the
evolution of all snow properties must be grounded on a
proper description of both the geometry of snow and of the
physical processes responsible for metamorphism. This
ideal model is at present not attainable because of the
variety and the complexity of both the physical processes
[De Quervain, 1958; Colbeck, 1973, 1980, 1982, 1983a,
1983b; Akitaya, 1974; Raymond and Tusima, 1979;
Marbouty, 1980; Brun, 1989; Sturm and Benson, 1997]
and the complex 3-D structural features of snow [Colbeck,
1986, 1991; Fierz and Baunach, 2000]. Therefore the
current models concentrate on a given aspect of snow
metamorphism and on a given set of snow properties. They
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try to reproduce satisfactorily this set of features from
suitable approximations [Brun et al., 1989, 1992; Brown
et al., 1994; Bullard, 1997; Dang et al., 1997; Baunach et
al., 2001; Flin et al., 2003; Jordan, 1991]. These mandatory
choices are responsible for a lack of information on those
properties of snow that do not coincide with the priorities of
the model.

[4] The specific surface area of snow (SSA), for example,
is the surface area of ice accessible to gases per unit mass of
snow [Legagneux et al., 2002]. Recent field studies have
shown that it decreases from more than 1500 cm? g~ ' to
less than 100 cm?® g~ ' over a season, because of metamor-
phism [Cabanes et al., 2002, 2003; Legagneux et al., 2002].
Trace gases exchanges and phase transitions occur along
this surface area. Obviously, this geometrical parameter is of
prime importance for the quantification of the air-snow
interactions in seasonal snowpacks [Dominé et al., 2002]
and also for the determination of the rate of metamorphism
[Sokratov, 2001]. However, no model of snow physics has
ever been devoted to snow SSA. More generally, the
difficulty of describing the 3-D properties of snow crystals
has not yet been overcome because they are difficult to
measure and to include in models. For example, none of the
aforementioned models does account for the distribution of
radii of curvature (DRC), with one exception [Flin et al.,
2003]. However, the DRC is probably important to model
metamorphism, since a large and a small grain do not
behave like a pair of grains of intermediate size.

[s] At present, the most complete description of snow
geometry and of its evolution during metamorphism has
been reported by Flin et al. [2003], who proposed a 3-D
reconstruction of the structure of snow based on tomo-
graphic data. The interest of their model lies in the exact
description of the microstructure of snow that yields
evolutions of snow SSA and DRC at various time
intervals. This accurate geometrical description has in
compensation both practical and theoretical drawbacks:
(1) the great computational time and complexity on a 3-D
mesh, (2) a subsequently limited description of the
physics of metamorphism that, for example, does not
include vapor phase diffusion, (3) the need to obtain
synchrotron beam time to acquire the necessary high-
resolution tomographic data, and (4) long and difficult
data analysis to obtain 3-D images. Computing limitations
until now have prevented a thorough exploitation of an
exact description of snow geometry in models of snow
metamorphism. Moreover, models of snow metamorphism
that predict snow SSA may be intended to be coupled to
atmospheric chemistry models [Dominé and Shepson,
2002], and there is thus a need to find a fairly simple
manner to model snow SSA, even if acceptable approx-
imations have to be made.

[6] In a previous study [Legagneux et al., 2004], we
reported experiments that showed empirically that the
decrease in SSA of snow under isothermal conditions was
surprisingly well fitted by simple mathematical functions of
the form SSA=B — A Ln(t + AT), where t is time and A, B,
and At are adjustable parameters. We further demonstrated
[Legagneux et al., 2004] that this equation could in fact be
derived from the theory of Ostwald ripening. This theory
[Lifshitz and Slyozov, 1961; Wagner, 1961] originally de-
scribed the coarsening (i.e., increase in size) of solid
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particles in a liquid phase. Its driving force is the minimi-
zation of the energy of the system by reduction of the
interfacial area. Coarsening occurs by dissolution of small
particles, diffusion in the liquid phase and growth of large
particles. The isothermal metamorphism of dry snow shows
many physical similarities with Ostwald ripening: large
grains grow at the expense of small grains and transfer of
matter is by transport through air, which can be regarded as
the “solvent” phase. Surely snow metamorphism is more
complex than Ostwald ripening since snow particles may be
in touch and interact directly through other processes
[Maeno and Ebinuma, 1983] such as the transfer of matter
in the solid state at grain boundaries [Colbeck, 1997, 1998,
2001]. However, the fact that our observations indicate that
seasonal snow follows Ostwald ripening law is a strong
indication that those other processes can, to a first approx-
imation and at least in seasonal snowpacks, be neglected in
a quantitative description of snow grain coarsening and SSA
reduction.

[7] In this paper, we therefore pursue our demonstration
of this idea by producing a mean field model of the
isothermal metamorphism of snow, based on the physics
of Ostwald ripening. We describe snow as a distribution of
spherical particles. This may seem as a crude approxima-
tion, but we test here its validity and limitations in detail.
Our intention is to see whether the evolution of the SSA and
the DRC of snow under isothermal conditions can be
reproduced satisfactorily with such an elementary geomet-
rical model, or if a more detailed description of the
structural features is necessary.

2. Model

[8] This model relies on the physical processes involved
in the theories of Ostwald ripening and we first recall them
briefly.

2.1. Ostwald Ripening

[¢] Ostwald ripening describes the coarsening of a
distribution of particles by exchange of matter through
a liquid phase. Lifshitz and Slyozov [1961] and Wagner
[1961] first addressed this problem quantitatively. Their
treatment, known as the LSW theory, relies on the
following hypotheses. (1) The driving force is the min-
imization of the total interfacial energy; large particles
thus grow at the expense of small particles. (2) The
diffusive transport of matter through the liquid phase is in
steady state. (3) The particles are spherical, disconnected
and the solid volume fraction tends to zero so that the
diffusion field around any particle is not disturbed by the
others and can be considered spherical. (4) The surface
processes of incorporation of molecules into the particles
are those of a rough interface; that is, any molecule that
hits the surface of the particle becomes incorporated into
the lattice.

[10] Lifshitz and Slyozov [1961] assumed that the
diffusion step was rate limiting, whereas Wagner [1961]
assumed that the surface processes were rate limiting. In
both cases, they demonstrated that the system evolved
toward a steady state regime. This steady state is char-
acterized by (1) a particle size distribution (PSD) which is
stationary when normalized to the mean grain radius and
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(2) the mean grain radius, R, that follows a simple law
of evolution (1):

R — Ry =Kt (1)

where Ry is the initial mean grain radius at time t = 0, n is
the growth exponent and K is the growth rate. Wagner’s
hypothesis yielded n = 2, against n = 3 for that of Lifshitz
and Slyozov. An analytical expression of K could be
derived in both cases. Finally, the shape of the steady state
PSD is entirely defined by the three parameters Ry, n, and
K.

[11] Many studies extended the field of application of the
LSW theory to the case of nonzero fractions of solid
[Brailsford and Wynblatt, 1979; Marqusee and Ross,
1984; Akaiwa and Voorhees, 1994] or to nonspherical
particles [De Hoff, 1984, 1991]. They obtained the same
rate equation (1) and reached the same general conclusions
concerning the characteristics of the steady state and espe-
cially the value of n. They also showed that the stationary
PSD and the growth rate K depended on the fraction of solid
and on the shape of the particles. Legagneux et al. [2004]
indicated that an equivalent expression could be derived
from (1) that gives the specific surface area SSA of a
distribution of ice particles:

1

T n
SSAﬁ—SSA0<r+T) (2)
where SSA, is the initial SSA at time t = 0 and T is given by
1 3f !
= (—2 3
! K (pice SSAO) ( )

In this last expression, pjc is the density of ice and fis a
form factor assumed constant that accounts for nonspherical
shapes.

2.2. Physics

[12] The theoretical assumptions grounding our model
and detailed in this section are the following: (1) the
evolution is isothermal, (2) matter transfer takes place in
the gas phase and (3) it follows the equations of steady state
diffusion, (4) the condensation coefficient is set equal to 1,
and (5) thermal conductivity is infinite. As discussed in a
previous paper [Legagneux et al., 2004], the physics of
snow metamorphism are very similar to those of Ostwald
ripening, replacing the liquid phase by air and the solute
concentration by the partial pressure of water. In fact,
isothermal metamorphism is driven by the minimization
of the surface area of the ice-air interface [Colbeck, 1980].
The vapor fluxes are therefore driven by the pressure
gradients induced by the heterogeneities of curvature
according to Kelvin’s law:

4)

2vV;: 1
Pout(T, R¢) = Pyur(T, 00) exp{ I;’Tl R—J

Py.«(T, Re) and Py, (T, c0) are the saturating vapor pressures
of'ice over a surface of radius of curvature R, and over a flat
surface respectively. +y is the interfacial energy of the ice-air
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interface assumed independent of the crystallographic
orientation, V; is the molar volume of ice, T is temperature
and R = 8.31 I mol ' K™' is the gas constant.

[13] It is now widely accepted that the transfer of matter
in the snowpack occurs mainly through the gas phase
[Colbeck, 1982]. The fluxes of water vapor can be decom-
posed into two steps: (1) the grains undergo sublimation/
condensation cycles, and (2) the water molecules diffuse in
the gas phase from one grain to another. The steady state
approximation applies to the diffusion field, so that it
verifies Laplace’s equation (5):

AP =0 (5)

This is again consistent with the physics of Ostwald
ripening. Vapor diffusion and surface kinetics are modeled
by Fick’s (6) and Knudsen’s (7) laws, respectively:

D
Jo=—--5vpP 6
f 2V (6)

Ps 7Psat(T7Rc)

Jo=—
ST T aRRTM,,

(7)

Jq is the molar flux of water vapor that diffuses in
response to a pressure gradient VP, D, is the diffusion
coefficient of water molecules in air. J; is the molar flux
of water vapor that is incorporated into the crystal, My, is
the molar mass of water, Py is the partial pressure of
water at the crystal surface, and o is the condensation
coefficient that represents the ratio of molecules effec-
tively incorporated into the ice matrix to these that
impinge on the surface of the grain.

[14] The value of « is essential to quantify the kinetics of
the surface processes that rule the incorporation of water
vapor molecules into bulk snow. It strongly depends on the
nature of the ice-air interface and on the growth mechanism.
If the interface is rough, as assumed in Ostwald ripening
theories, a = 1. Following Nelson and Knight [1998], ice
crystals probably grow mostly by layer nucleation. Analyt-
ical expressions of « exist for stepped growth on flat faces
by layer nucleation. In the snowpack, however, some grains
are facetted, some are rounded and others are partially
facetted and partially rounded [Colbeck, 1982; Dominé et
al., 2003]. Moreover, other mechanisms such as growth
from spiral steps cannot be totally excluded [Colbeck,
1983b; Dominé et al., 2003]. Consequently, no general
expression of « is presently available that would
apply during growth and sublimation, for both facetted
and rounded grains, in a large range of temperatures and
supersaturations. Awaiting more information, we use here
a=1.

[15] Finally, growth or sublimation generate latent heat
fluxes that must be evacuated to avoid surface warming
or cooling. They cannot be neglected for growth in air
where the heat fluxes must be evacuated through the gas
phase. Brown et al. [1994] did not neglect them in the
snowpack either, but they also considered that heat was
removed through the gas phase. We choose to neglect
them, considering (1) that the isothermal evolution is very
slow and thus the heat fluxes are very small and (2) above
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Figure 1. Description of snow as a distribution of

spherical particles of radius R, placed at the center of
spherical cavities of radius R,y Reay 18 proportional to R..
Grain radii range from 1 pm up to 1 cm. The width of each
size class is proportional to its mean grain radius.

all that the ice lattice in the snowpack evacuates heat
efficiently.

2.3. Geometry

[16] The geometrical simplifications grounding our model
and detailed in this section are the following: (1) PSDs are
replaced by functions suitable for snow, (2) mean field
description of the environment of a single grain, (3) the
model deals with spherical disconnected particles, (4) the
width of the particle size intervals is proportional to
the particle size, and (5) concave structures are neglected.

[17] The general framework of Ostwald ripening appears
to describe well most aspects of the physics of snow
metamorphism, but it does not describe the geometry of
snow. In particular, the PSD that characterizes a distribution
of spherical particles obviously does not apply to the 3-D
network encountered in snow. Some PSDs can be defined in
snow from stereological measurements [Perla et al., 1986],
but they clearly suffer from large approximations on crystals
shapes and orientations. Moreover, we may wonder what
the definition of the grain radius really is in the case of fresh
snow. The DRC gives the very same information as the PSD
for a distribution of spherical particles. However, the DRC
unlike the PSD can also be defined and determined exper-
imentally for snow, for example from 3-D tomography
[Brzoska et al., 1999; Lundy et al., 2002]. In what follows,
we will therefore consider the DRC of snow, and use it as
the equivalent of the PSD in our use of the theory of
Ostwald ripening.

[18] The general problem of the 3-D representation of a
real material has two usual solutions. One of them is to pick
up a representative sample of the studied medium and the
second one consists in averaging the properties of the
studied medium.

[19] The first option has been used frequently to model
Ostwald ripening because spherical nonconnected particles
are fully represented by their radius and the coordinates of
their center [Marqusee and Ross, 1984; Voorhees and
Glicksmann, 1984a, 1984b; Marder, 1985; Akaiwa and
Voorhees, 1994]. In fact, the spherical shape allows solving
the equations of diffusion through simplifying approxima-
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tions. The spatial resolution and statistical soundness of the
model are then limited by the computer performance and the
computational time.

[20] The second option imposes the same averaged envi-
ronment to all grains and yields the growth rate of a given
grain independently from its true immediate environment,
implicitly assuming that statistically unlikely events are not
amplified [Brailsford and Wynblatt, 1979; Stevens and
Davies, 2002].

[21] Describing in detail the 3-D geometry of snow, as
done by Flin et al. [2003], belongs at first sight to the first
category of solutions. In the case of snow, however,
a continuous matrix must be represented. Grains are
interconnected and nonspherical, which prevents the use
of simplifying approximations to solve the equations of
diffusion. Moreover, the size of the structures encountered
in snow ranges from a few microns to a few millimeters
[Dominé et al., 2003] and this imposes to compute the
equations over a 3-D mesh with a high resolution. As a
consequence and in order to reduce the computational time,
Flin et al. [2003] at present do not solve the equations of
diffusion. They actually calculate the growth rates from
mean field calculations where diffusion and surface kinetics
are not accounted for.

[22] The model presented here is a mean field model
derived from that of Brailsford and Wynblatt [1979].
Figure 1 illustrates the geometrical hypothesis. Snow is
described as a distribution of spheres of various radii. Any
distribution can be accommodated. The size width of a
given class of grains is proportional to the grain radius to
minimize the computational time. The particle size distri-
bution accounts for grain sizes between 1 pm and 1 cm in
agreement with snow crystals observations by scanning
electron microscopy (SEM) that scarcely detected smaller
or larger structures [Legagneux et al., 2003; Dominé et al.,
2003]. In the model, each ice sphere is surrounded by a
spherical cavity of air that represents the mean environment
of the grain. The radius of the cavity R, is proportional to
the grain radius R, and adjusted in such a way that the
equivalent density of the system grain cavity equals the
experimental snow density:

1

Pice ’
Rcav - Rc 8
(103dsnow> ( )

where pjce = 917 kg m > and dgy IS SNOW density. The

model simulates the evolution of this distribution of
spherical particles and the results are expressed as DRCs.
[23] We are aware that spherical grains in spherical
cavities cannot represent concave structures such as holes
or necks that exist in snow. Holes can probably be neglected
since these structures are quite rare and should disappear
quickly according to Kelvin’s law. This is consistent with
our observations of snow by SEM [Dominé et al., 2003]. On
the other hand, necks are numerous and develop during
metamorphism. Modeling necks requires at least a cylindri-
cal diffusion field for which no analytical solution exists.
Necks are topological features that cannot be defined
independently from the touching grains that create them.
Their evolution is intricately associated to that of the
convexities that bound it. Accounting for necks is thus
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Figure 2. Curvature distribution of snow at given times
during isothermal experiment at —2°C (data from Flin et al.
[2004]). Concave structures (negative curvature) are less
numerous than convex structures (positive curvature). One
Voxel = 9.82 pm.

fundamentally incompatible with the principle of our model,
namely separating the grain from its direct topological
environment. It cannot be reconciled with the drastic
simplification of a spherical symmetry. Estimating the effect
of neglecting concavities will be the first goal of the model
validation.

2.4. Growth Rates

[24] The huge interest of a spherical model is the possi-
bility of calculating analytically the growth rate of a single
grain. We define P,,, the partial pressure of water in the
immediate vicinity of the cavity wall. The pressure field in
the cavity is deduced from equations (5) and (8):

Pachav - PsRc Rc

P(r) =
(r) Rcav - Rc Rcav

(PS - PaV) (9)

with P(r) and Py the pressures at distance r from the grain’s
center and at the surface of the grain. The diffusive flux
toward the grain is then derived from (6) and (9). The flux
of molecules eventually incorporated into the crystal is
given by (4) and (7). The equality between these fluxes
finally yields the growth rate (10) by eliminating Py:

v,
P,,V—PX,,,(T)(I 12 L)

dR. My RTR, (10)
dt  pi. /2TMRTy N ( . R, ) R. »T
o1 Reav) Dy

Equation (10) can be interpreted as the ratio of the maximal
flux of molecules, given by the Knudsen law, to a sum of
terms that impede this flux. It is very close to that obtained
by Nelson and Baker [1996] for the growth rate of ice
crystals in the atmosphere, with three differences. (1) The
supersaturations in isothermal snow are driven by Kelvin’s
law instead of thermal gradients. (2) The separation between
grains is much higher in clouds than in deposited snow so
that the corresponding cavity radius is infinite. (3) Heat
removal in clouds is essentially via the gas phase and this
adds a term of thermal impedance to the denominator.
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[25] The growth rate of a given grain depends on the
pressure imposed besides the cavity wall, P,,. The choice of
P., is an important feature of this model. It arises from the
condition of mass conservation. P,, is taken as identical for
all grains. It is set at any time in such a way that the sum of
the individual gains and losses of mass on the overall
distribution equals zero:

dRci _
£ () -

1

()

The label “i” identifies the class of grains of radius Rg;, N;
is the number of grains of radius R.; and S; is the surface
area of a given grain of radius R;. Combining (10) and (11)
yields P,:

D NiSi;
> NS,

Py, = (12)

A; and B; are constant functions of R, whose exact
expressions have no particular interest in what follows. As
the grains grow or shrink, the shape of the DRC evolves, the
N; change and consequently P,, changes. The growth rate of
any grain is determined at any time by the average pressure
P.., and therefore by the shape of the overall DRC.

2.5. Procedure

[26] The possibility of solving analytically the system of
equations results in very short computational times. The
following steps are repeated at each iteration: (1) The
average pressure P, is calculated from the DRC. (2) The gain
or loss of mass is deduced from equation (9) in each class of
grain size. (3) The DRC is modified to account for this mass
change and for growing/shrinking grains that pass in the
uppetr/lower class.

3. Results and Discussion

[27] This spherical mean field model allows calculating
analytically the growth rate of a grain of any size, indepen-
dently from its immediate environment. The condition of
matter conservation yields the determination of the average
pressure of water vapor P,, which drives the growth. This
already suggests that the shape of the DRC may greatly
impact the growth rates. Before we discuss this more
precisely, the validity of the model must be tested on real
data to ensure that the geometrical approximations are not
invalidating.

3.1. Validation

[28] The concave microstructures act as sinks of water
vapor and should qualitatively lower the average vapor
pressure P,,. They are not accounted for in the model but
their proportion can be evaluated from 3-D tomographic
observations of snow. Figure 2 reproduces the data from
Flin et al. [2004] of the curvature distribution of a natural
fresh snow sample from the French Alps, after 12, 66, 455,
and 2011 hours of isothermal evolution at —2°C. Concave
structures are obviously much less numerous than convex
ones at any time and the evolution of their distribution does
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Figure 3. Simulated DRCs from this model (solid line) and experimental DRCs (diamonds) from Flin
et al. [2004] in semilog coordinates after 12, 66, 455 and 2011 hours of evolution at —2°C. The
simulation is initialized with the DRC measured at t = 12 hours.

not show any clear trend. We estimate from this set of data
that more than 85% of the structures have a positive
curvature. Neglecting the concave structures therefore mod-
erately affects P,, and consequently leads to a probably
modest underestimation of the water vapor fluxes.

[20] The same set of data is again used to test the validity
of the model by checking its ability to reproduce the
evolution of the experimental DRC. We used as input data
in our model the distribution of spherical particles with the
very same DRC that was measured by Flin et al. [2004] at
time t; = 12 hours, using only the convex part. The
evolution of this initial set of data was simulated and the
curvature distributions obtained after 66, 455, and 2011
hours were compared to the corresponding experimental
curves (Figure 3). The agreement is remarkably good owing
to the drastic simplification of the geometrical description.
Even after 2011 hours, no significant bias is observable
between the simulated and observed curves.

[30] However, this agreement could be only apparently
good. Large structures are not numerous at the beginning of
the experiment and large errors in their population could go
unnoticed when plotted in a linear scale. Since these large
structures become predominant as the evolution goes on,

small differences in their populations at short times would
produce large errors in the curvature distributions at long
times [Snyder et al., 2000]. Figure 4 thus shows the same
curves in logarithmic scale to ensure that the populations of
very large grains are also well reproduced at any time. The
good agreement is confirmed for any grain size. If system-
atic errors are actually introduced by the geometrical mean
field approximation or by the physical assumptions on
metamorphism, their effect is not visible on the DRC after
2011 hours evolution, which induced drastic morphological
changes, as detailed by Flin et al. [2003].

[31] No other experimental data set is available to confirm
these findings, because of the difficulty to obtain high-
resolution tomographic data. It seems unlikely, however,
that such an agreement could be fortuitous. We rather
interpret it as evidence that the description of the physics
is suitable to predict the evolution of the DRC and the water
vapor fluxes between the snow structures. In particular, this
implicitly means that the somewhat arbitrary choice of the
condensation coefficient o = 1, yields correct values of the
growth rate. According to our simulations, the surface
processes are not rate limiting under these conditions. The
water vapor fluxes are satisfactorily described by gas phase
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Figure 4. Same as Figure 3 in log-log coordinates. The normalized frequencies can be compared for

large and small grains (see text).

diffusion driven by the DRC and independently from the
actual 3-D geometry which is not reproduced.

3.2. Transient Regime

[32] It has been emphasized in section 2.3 that the shape
of the DRC determines P,,, thus the growth rate of an
individual grain and finally the evolution of the DRC itself.
According to Ostwald ripening theories, the normalized
DRC should finally reach the stationary shape that charac-
terizes the steady state regime. We recall that equation (2)
gives analytically the rate of SSA decrease during the steady
state regime, which is not possible within the transient
regime. It is therefore important to test how long is required
to reach steady state. In this section, we try to evaluate the
duration of the transient regime.

[33] The evolution of the SSA of any real DRC, SSA .,
differs from the evolution of the SSA of the steady state
DRC, SSAgg, until the end of the transient regime. The two
curves of evolution merge at the end of the transient regime
and this yields its duration. In the steady state, SSA ..
evolves just like SSAgg and follows equation (2). SSA ca
can be obtained from experimental or simulated data and the
asymptotical trend at long times of evolution can be fitted to
equation (2), to determine the parameters SSAy, n and T.
SSAgg is then obtained from equation (2). This method was
applied to the initial DRC of Flin et al. [2004].

[34] The evolution of their DRC was simulated for
extremely long times and the curves of SSA,., and SSAgg
were derived as explained above (Figure 5). The transient
regime is clearly visible and it lasts more than 1 million

days according to these simulations, and the SSA is then
about 10 cm? g~', lower than any value measured in
seasonal snowpacks [Jordan, 1991; Dominé et al., 2002].
This comforts the assertion from Legagneux et al. [2004]
that steady state theories of Ostwald ripening cannot be used
to model the SSA decrease of isothermal snow over realistic
time scales.

3.3. Effect of the DRC on the Rate of SSA Decrease

[35] Natural fresh snows show variable crystal shapes and
supposedly variable DRCs that should approach differently
the steady state. As discussed above, the rate of SSA
decrease depends on the DRC. This rate of decrease was
studied experimentally by Legagneux et al. [2003] under
isothermal conditions. They showed that it followed a
simple logarithmic equation:

SSA =B — A4 Ln(t + Ar) (13)
where A, B and At are adjustable parameters. B was then
shown to be close to the initial SSA when t = 0. They
obtained an empirical linear relationship between A and B
for a given temperature and they suggested that this might
be enough to predict reasonably well the evolution of the
SSA from the only determination of its initial value. This
suggests that the effect of the DRC on the rate of evolution
of the SSA is probably limited, or on the contrary that all
natural snows have similar DRCs. We thus made simula-
tions to evaluate the sensitivity of the model to the initial
DRC. For convenience, we used lognormal test functions
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Figure 5. Simulated curve of SSA decrease with the initial
DRC from Flin et al. [2004] (solid line) and best fit with
equation (2) that describes a steady state evolution (dashed
line).

because they yield realistic DRCs and are easily handled,
but tests performed with other functions lead to the very
same conclusions.

[36] Lognormal initial DRCs of different widths where
generated. The width increases with the geometric stan-
dard deviation of the lognormal distribution, sigma. The
sigma values 1.1; 1.4; 1.6 and 1.8 where investigated
(Figure 6). The position of the maximum of the lognor-
mal distribution can also be changed. It was adjusted so
that all distributions had the same initial SSA: SSA, =
1600 cm? g~' and all simulations were run under the
same conditions. All simulations therefore lead to the
same steady state DRC since parameters SSAg, n and T
are identical. The corresponding asymptotic trend of SSA
decrease was fitted to equation (3) with constrained
values of SSA, = 1600 cm’ g7l and n = 3, since
diffusion is rate limiting. Figure 7 shows the SSA
evolutions in semilogarithmic coordinates where the
steady state curve is represented by filled circles. All
curves follow different paths until they join at very long
coarsening times. As shown on Figure 8, the shapes of
DRCs cannot be distinguished at very long coarsening
times, since all the DRCs become identical to the steady
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Figure 6. Lognormal DRCs of different widths but with
the same initial SSA = 1600 cm” g~ .

Figure 7. Simulation of the SSA decrease for the initial
DRCs plotted in Figure 6. Circles show best fit of the
asymptotical evolution with equation (2) that describes a
steady state evolution.

state DRC. Figure 8 presents DRCs after 10 million days,
because the superposition is almost perfect, but the result
is essentially the same after 5000 days.

[37] Depending on the DRC, the transient regime lasts
from a about 30 days up to a few years. Broad DRCs cause
high curvature and vapor pressure gradients and the small
grains sublimate quickly. This explains why their SSA
initially decreases rapidly. On the contrary, the large grains
do not transform quickly and in any case they do not shrink.
That part of the DRC will therefore remain different from
that of the steady state DRC until all other grains have
grown sufficiently.

[38] As long as the steady state has not been reached,
Figure 7 shows that very large variations can be observed
between the SSA evolutions. After 5 days, the SSAs
range from 800 up to 1200 cm® g~ ', after 20 days from
570 up to 770 cm® g~ ' and after 100 days, from 370 up
to 450 cm? g~ '. This represents respectively 40, 30, and
8% of variability between the simulated curves. The
immediate consequence is that, if natural snows have
highly variable DRCs as assumed here in our simulations,
the knowledge of the initial SSA alone does not yield an
accurate prediction of its isothermal evolution for dura-
tions equal or less than about 100 days. Unfortunately,
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Figure 8. DRCs obtained from the initial lognormal DRCs
of Figure 6, after 10 million days of simulated evolution. All
DRCs are essentially identical.
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this is precisely the time scale of interest for studies of
seasonal snow packs and especially for atmospheric
applications.

[39] According to our simulations, the effect of the DRC
on the rate of SSA decrease is real. It has been evaluated
with a restricted set of initial DRCs of lognormal shape and
showed a significant variability at short times. This vari-
ability in the rate of SSA decrease remains however
moderate, owing to the large differences imposed between
the initial DRCs. On the other hand, the SSA decrease of
natural snow samples [Legagneux et al., 2003, 2004]
suggested that its rate could be predicted by considering
the initial SSA alone. This suggests that the DRC of natural
snow is not all that variable. If the DRC of most natural
snows can be approximated by a single DRC, we may
speculate that this model could estimate satisfactorily the
rate of SSA decrease under various conditions of tempera-
ture and density, from the simple determination of the initial
SSA. However, as we shall see in the next section, another
fundamental difficulty is introduced by the description of
snow as a distribution of spheres, which prevents us from
reaching this goal.

3.4. SSA and Geometry

[40] The DRC is essential to model accurately the de-
crease of the SSA. The experimental DRCs from Flin et al.
[2004] are again the only ones available to us but fortu-
nately, they also calculated the decrease of the SSA from
their tomographic data. We can then compare their exper-
imental SSA decrease with those derived from our simu-
lations. The SSA is calculated as the ratio of the total
surface area to the total mass of the distribution of grains.
The simulated and experimental curves of SSA decrease are
given in Figure 9. A large gap separates the two curves from
the beginning until the end of the experiment. Since the
evolution of the shape of the DRC is adequately reproduced,
this means that the mass is largely overestimated in our
model. The reason obviously lies in the spherical approx-
imation. The spherical shape essentially guarantees the
maximum inner volume for a given surface area. However,
snow, especially fresh snow, does not consist of dis-
connected spheres and a shape factor should be introduced
to correct the SSA.
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[41] The question is, “How should this shape factor be
determined?”. If the DRCs of all snow types are similar
enough, a calibration could be done once and for all on the
basis of tomographic observations, to assign a shape factor
to each given snow type. However, it is probably not so
straightforward. In fact, the grains round off during meta-
morphism and get closer to the spherical shape, so that the
shape factor must vary with time. In fact, the simulations
consistently underestimate the SSA by a factor of 4 at the
beginning of the experiment and by a factor of 3 after 2011
hours, indicating a change in the shape factor. Indeed, the
mass is probably more overestimated for structures of high
radius of curvature, such as facets that are frequently seen in
fresh snow, than for structures of lower radii of curvature
seen after isothermal metamorphism has taken place
[Legagneux et al., 2003; Dominé et al., 2003].

[42] The variety of shapes of natural snow crystals and
their evolution along with metamorphism make it necessary
to introduce a shape factor in the determination of the SSA
from the DRC. The geometrical description of snow in our
model is therefore too simplified to predict accurately the
evolution of the rate of SSA decrease during isothermal
metamorphism. However, the physics of isothermal meta-
morphism seem to be properly described, so that the
qualitative effect of parameters such as the temperature T,
the snow density dg,ow Or the condensation coefficient o can
be investigated.

3.5. Effect of T, dg,ows and o on the Rate of SSA
Decrease

[43] The effects of temperature, snow density and of the
condensation coefficient have been tested on fictitious
DRCs generated with a lognormal profile. All adjustable
parameters of our model of snow metamorphism were set to
a fixed level and a single parameter among T, dg,w and «
was allowed to vary within a reasonable range of values.
The temperature range studied is from 233 K to 271 K, the
snow density from 0.01 to 0.4 and the condensation
coefficient from 107> to 1. The curves of SSA decrease
are presented in Figures 10, 11, and 12, respectively.
3.5.1. Effect of Temperature

[44] The effect of temperature T is visible in log-log
coordinates as a translation of the curve along the time axis

1000
lll!ll....i s .
Bilite,,
"o + 23315K RITSEY
“£100 4 * 243.15K il-tes,
o fae-ten
‘%" - 25315 K l:::::
(7] + 263.15K "e -
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10 |: 1 1 ||||||: 1 L4 1 1113
103 1 108 108
Time days

Figure 10. Simulated effect of temperature on the
evolution of the SSA, in log-log coordinates.
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(Figure 10). This means that the value of n is constant and
equal to 3 and that T decreases with T. The dependence of T
with T according to these simulations is exponential, as can
be deduced from equation (10). Indeed, since P,, depends
on Pg,, and since P, has an exponential T dependence, we
expect the growth rate to depend exponentially on T.
However, an analytical expression of the T-dependence of
the growth rate cannot be obtained, because it depends on
the DRC.

3.5.2. Effect of the Snow Density

[45] The effect of the density of snow on the SSA
decrease is visible on Figure 11. However, the magnitude
of this effect is less important than that of the temperature.
On the other hand, the dependence of T with dg,y 1S not
exponential but follows a power law. When the density
increases, the sinks and sources of water vapor get closer to
each other, which reduces the diffusion length and increases
the rate of transfer of water vapor.

[46] This trend is probably correct at the scale of the
overall particle distribution but should be considered with
much care within a given class of grains, since a density
increase has probably more impact on the environment of
large grains than on that of small grains. An alternative and
perhaps more realistic definition of the cavity size could be
reached, stating that the distance of a grain to its sink or
source of vapor, i.e., the diffusion length, should not depend
on its radius of curvature. This diffusion length would still
result from the equality between the experimental snow
density and the resulting density of the overall DRC.
3.5.3. Effect of the Condensation Coefficient

[47] The effect of o is more complex, as can be seen on
Figure 12. No effect is detectable for values of o between
1072 and 1 and the slope of the asymptotic curve corre-
sponds to n = 3. This slope further changes with decreasing
values of o between 10~2 and 10~*. The parameter n finally
stabilizes at 2 for o values below 10~* while T increases.
This can be readily understood as a competition between the
surface processes and the diffusion. For o close to 1, the
diffusion of vapor is the rate limiting process. Therefore n
asymptotically tends toward 3 and the exact value of o does
not impact the rate of SSA decrease. Conversely, for very
low values of o, the processes of incorporation of molecules
from the surface into the bulk control the overall water
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vapor fluxes. In that case, n = 2, in agreement with the
results of Wagner [1961]. When surface processes are rate
limiting, a slight change in « has clearly a strong impact on
the rate of SSA decrease. For intermediate values of «,
diffusion and surface kinetics both contribute to limit the
rate of SSA decrease since none of them is significantly
faster than the other one. As we can see from Figure 12, the
impact of surface processes should not be detected in the
snowpack unless the condensation coefficient is lower than
0.01. Even for values of o between 1072 and 10~*, the
effect of diffusion can be felt and we thus suggest that
diffusion cannot be neglected, as assumed by Flin et al.
[2003].

[48] The effect of these parameters on the rate of SSA
decrease is not fortuitous and results directly from the
expression of the growth rate of a single grain (10). This
model yields the dependence of the rate of SSA decrease
with T and dg,o for a given DRC, but again, the geomet-
rical approximations prevent the prediction of this rate, even
if the DRC is precisely known. There is thus no point at
present in trying to obtain a precise expression of T.

4. Conclusions

[49] Our objective was to test to what extent a mean field
model based on the theoretical framework of Ostwald
ripening could predict the evolution of the DRC and the
SSA of snow under isothermal conditions. The evolution of
the DRC is very well reproduced once the initial DRC is
known, which validates the description of the physical
processes responsible for metamorphism according to Ost-
wald ripening. In particular, the assumption that the con-
densation coefficient is equal to unity in the snowpack
yields satisfactory results, which demonstrates that diffusion
is rate limiting. Conversely, under isothermal conditions, the
surface processes are not rate limiting. The topological
effect of the immediate environment does not appear
essential to calculate the overall rate of evolution either,
and the mean field approximation is justified. Other pro-
cesses [Maeno and Ebinuma, 1983] such as matter transport
by surface or volume diffusion can also be neglected in this
treatment of the sintering of seasonal snow. Furthermore, it
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Figure 12. Simulated effect of the condensation coeffi-
cient “alpha” on the evolution of the SSA, in log-log
coordinates. The slope is 1/3 for high values of alpha and
1/2 for low values of alpha.
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also allows the evaluation of the dependence of the rate of
SSA decrease on basic parameters such as temperature and
density. This dependence is directly related to equation (10)
that describes the growth rate of a single grain, though an
analytical expression remains hidden by the collective
behavior of the distribution of grains.

[s0] However, some important work is still needed to
predict accurately the rate of SSA decrease in isothermal
snow. Two aspects should be considered. The first one
ensues from the experimental data of Legagneux et al.
[2004], who showed experimentally that the rate of decrease
of snow SSA could be predicted from the initial SSA alone.
Since the present work indicates that the DRC will have a
strong impact on the rate of SSA decrease, we must come to
the conclusion that most snow DRCs are similar. The shape
of the DRC should thus be recorded for different snow
samples from various snow types to conclude on the
existence of a characteristic shape. This would significantly
facilitate the description of the structure of snow and its
inclusion in models of metamorphism to predict the evolu-
tion of SSA. The second one regards the description of the
morphology of snow, and its relation with the mass of ice
associated with each curvature. This will probably require a
great deal of work, but if there are strong constraints on
snow crystal shapes, as suggested above, it may turn out
that fairly simple relationships can be found between mass
and curvature. From this study and the observation of snow
crystals, it can already be stressed that the shape factor will
depend on the radius of curvature and evolve with time.

[s1] It is a long way to reach this goal, but a more direct
application is also permitted by the rapidity of this model.
Flin et al. [2003] cannot solve for the diffusion field on their
3-D mesh. However, our simulations show that a mean field
model adequately reproduces the evolution of the DRC,
from which we conclude that the effect of the immediate
environment on the average water fluxes toward a grain of a
given size is weak. Our mean field model can thus be used
to calculate the water vapor fluxes toward the grains. The
average effect of the diffusion field can be simulated
reasonably well for a low computational cost and the
morphological changes followed directly from their 3-D
representation.

[52] Finally, even though this work is only a first step
toward a difficult goal, we see a possibility that the
evolution of snow microphysics can be modeled in a
sufficiently simple way that it can be included in coupled
snow-atmosphere models. Introducing temperature gra-
dients is a necessary step to reach that goal. It is quite
straightforward to replace Kelvin’s equation by Clapeyron’s
equation in the determination of the saturating vapor pres-
sure, but major challenges arise. (1) The condensation
coefficient can no more be set equal to 1; snow grains
grown under temperature gradient metamorphism are facet-
ted which evidences a contribution of surface processes to
the growth rate. (2) Such geometrical features also dramat-
ically amplify the importance and the variability of the
shape factor. (3) Heat conduction through ice has to be
modeled in conjunction with water vapor transfer through
air since heat fluxes induced par phase transitions are
considerably enhanced under temperature gradient meta-
morphism. (4) Finally, as evidenced by Yosida et al. [1955]
and Colbeck [1983b], vapor transfer becomes more direc-
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tional, more localized from one grain to another by the so-
called hand-to-hand mechanism and therefore more depen-
dent on the immediate environment as the temperature
gradients increase, which seems hardly reconcilable with
this isotropic mean field model. Nevertheless, relying on
our observations of snow metamorphism in natural con-
ditions [Cabanes et al., 2002, 2003] we are confident that
the present model should adapt fairly well to conditions of
moderate temperature gradients.
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