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Abstract 

 

Ambient measurements (gas + particle phases) of 16 polycyclic aromatic hydrocarbons, 17 

nitrated PAHs (NPAHs) and 8 oxygenated PAHs (OPAHs) were carried out during the winter 

2002-2003 and the summer 2003 in two French alpine valleys on various types of sites (traffic, sub-

urban, altitude and rural). Atmospheric concentrations of these classes of compounds are of interest 

because they include potential mutagens and carcinogens. During both summer and winter 

campaigns, OPAH concentration levels were of the same order of magnitude as PAH ones while 

NPAH concentrations were one to two orders of magnitude lower. Total particulate PAH, OPAH 

and NPAH concentrations were higher in the Chamonix valley than in the Maurienne valley. A 

heavier pollutant accumulation process in the Chamonix valley and geomorphology promoting their 

dispersion seem to explain such differences. Despite reaching lower atmospheric concentrations, 

NPAHs seemed to account up to 20% of carcinogenic potency of particulates collected at the sites 

away from pollution sources. The formation of secondary compounds such as NPAHs increases 

significantly the carcinogenic risk at the sites away from pollution sources. Study with 2-

nitrofluoranthene/1-nitropyrene ratio showed that NPAH gas phase formation was hindered in 

winter, and when relative contribution from primary sources was higher. Nevertheless, in winter 

under specific conditions, evidence of secondary NPAH formations was observed at sub-urban and 

traffic sites (snowfalls) and rural site (accumulation of pollutants and snowfalls). For all sampling 

sites, the day-time OH initiated reaction seemed to be the dominant gas phase formation pathway 

over the NO3
 initiated reaction. The fraction of PAHs, OPAHs and NPAHs associated with the 

particle phase was strongly depending on their vapour pressure and the ambient conditions.  
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1. Introduction and objectives 

 

Alpine valleys represent some of the most important crossroads for international heavy-duty 

traffic in Europe but impact of this traffic on air quality is not well-known due to a lack of data in 

these complex systems. The results presented here were obtained during the research program 

POVA (POllution des Vallées Alpines). This study benefits of an exceptional context due to the 

closure of the “Tunnel du Mont Blanc” (TMB) in the Chamonix valley (Cv) for nearly 3 years after 

a large accident that took place in March 1999. Consequently, most heavy duty traffic in the area 

was diverted toward the “Tunnel du Fréjus”, in the Maurienne valley (Mv). The general objective of 

this research program was the comparative study of atmospheric pollution in these two French 

Alpines valleys before and after the reopening of the TMB to heavy-duty traffic (July 2002). The 

program included several field campaigns, as well as 3D modelling of atmospheric emission and 

transport of pollutants (Brulfert et al., 2005). In this context, our specific objective was to obtain 

relative data on the exposure levels of the population to polycyclic aromatic hydrocarbons (PAHs) 

and their oxidation products, namely oxygenated and nitrated PAHs (OPAHs and NPAHs 

respectively), and to evaluate the influences of the combustion sources on the concentrations of 

these products. 

PAHs are released in the atmosphere as by-products from the incomplete combustion or 

pyrolysis of organic matter and fossil fuel. They are extensively studied because of their potentially 

carcinogenic and/or mutagenic properties (IARC, 1987). PAH derivatives (NPAHs and OPAHs) 

have been recognised as direct-acting mutagens and carcinogens resulting more toxic than their 
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parent PAHs which require an enzymatic activation (Durant et al., 1996; Durant et al., 1998; 

Hannigan et al., 1998; Lewtas et al., 1990; Pedersen et al., 2004; Pedersen et al., 2005; Schuetzle, 

1983). NPAHs and OPAHs are either formed directly during combustion processes or in the 

atmosphere by both gas and heterogeneous phase reactions of PAHs induced by atmospheric 

oxidants (OH, NO3, O3) (Arey et al., 1986; Atkinson et al., 1989; Atkinson et al., 1990; Barbas et 

al., 1996; Environmental Health Criteria (EHC) 229, 2003; Helmig and Harger, 1994; Perraudin et 

al., 2007; Sasaki et al., 1997). Despite their high potential toxicity, atmospheric sources (primary or 

secondary) and concentrations of these PAH derivatives are well not documented.  

As part of the POVA research program, two intensive field campaigns were performed in winter 

2002-2003 and summer 2003. The purposes of these measurements were to characterise and to 

compare the occurrence of the NPAHs and OPAHs in both gas and particulate phases for various 

types of sites (rural, traffic, suburban and altitude) in pollution-sensitive valleys and to estimate the 

respective contributions of their different sources (primary and/or secondary) and their different 

atmospheric formation pathways. 

 

2. Experimental sections 

 

2.1. Sampling campaigns and sites 

 

As part of the POVA research program, two 15-day campaigns were performed after the 

reopening of the TMB to the international traffic. A winter campaign took place in 2003, from 

January 15th to 22nd in the Cv and from January 24th to 31st in the Mv. A second campaign took 

place the following summer, from June 25th to July 2nd in the Mv and from July 04th to 11th in the 

Cv. In each valley, four sites with different characteristics were instrumented in order to study the 

evolution of PAH, OPAH and NPAH concentrations and reactivity (Table 1 and Fig. 1). In addition, 

these sampling sites were instrumented with various aerosol and/or gas samplers, including 
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continuous monitoring of NOx, O3, CO, PM10, aerosol gravimetric measurement and size 

distribution, aerosol collection for chemical analysis, sampling for speciation of volatile organic 

compounds and meteorological data. Not all measurements were performed at every site (Table 1). 

The locations of the PAH sampling sites (C1 to C4 for the Cv and M1 to M4 for the Mv) are 

presented on Fig. 1. 

 

2.2. Sample collection 

 

Two types of high volume samplers (DA-80 and cascade impactor) were used to collect PAHs 

and their derivatives. Table 1 presents the repartition of the samplers according to the sampling 

sites. At sites C2 and M1 both samplers were installed in parallel. 

Both ambient air particulate (on quartz filter, Schleicher & Schuell,∅=150 mm) and gas (on 

PUFs polyurethane foams, Tisch Environmental, 79 mm long) phases were sampled using modified 

high volume samplers equipped with PM10 head (Model Digitel DA-80, Hegnau, Switzerland, 30 

m3 h-1). Continuous 12 h samplings were performed, starting at 08:00 and 20:00 local time. 

Airborne particulates were also collected using high volume cascade impactors (Graseby Andersen, 

35 m3 h-1). Daily 24 h samples were collected every day starting at 8:00 local time. The particles 

collected using this sampler were separated into seven size ranges: Dp<0.39 µm (stage 7 or back up 

filter), 0.39-0.69 µm (stage 6), 0.69-1.3 µm (stage 5), 1.3-2.1 µm (stage 4), 2.1-4.2 µm (stage 3), 

4.2-10.2 µm (stage 2) and 10.2-50 µm (stage 1). Samples were collected on six separated fritted 

quartz fiber filters (Tisch Environmental, 142×149 mm), with a back up quartz fiber filter 

(Whatman QM-A, 203×254 mm). 

Overall, 50 and 62 PUFs together with 57 and 62 total filters and twice 28 impactor samples 

were collected during the winter and summer campaigns, respectively. Field blanks (i.e., exposed 
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PUFs and filters without any air filtration) were collected weekly for each sampler and sampling 

site during both sampling campaigns. 

Prior to sampling, all quartz fiber filters were burnt at 500°C for 12 h to remove any organic 

compounds that might be present on the filters. PUFs were pre-washed with dichloromethane using 

pressurised liquid extraction. After collection, filters were stored at -18°C in individual glass Petri 

dishes (pre-washed). PUFs were stored with their glass holder at -18°C. All samples were wrapped 

in aluminium foil and sealed in opaque poly bags. 

 

2.3. Sample extraction and analysis 

 

The complete PAH, NPAH and OPAH analytical procedures and quality assurance are presented 

in detail elsewhere (Albinet et al., 2006; Albinet et al., 2007b). HPLC-grade quality solvents were 

used and purchased from Carlo Erba SDS (Peypin, France). 

Filters and PUFs were extracted with dichloromethane using pressurized liquid extraction. 

Consecutive impactor stages from the winter campaigns were extracted together (1 and 2, 3 and 4, 

etc) while those from the summer campaign were extracted individually, except for stages 1 and 2. 

All extracts were divided into two equal fractions, the former to determine PAHs, and the latter for 

NPAHs and OPAHs. Both fractions were evaporated under a nitrogen stream (Zymark Turbovap II) 

down to a volume of 500 µl and adjusted to 1 ml with acetonitrile (PAHs) or dichloromethane 

(NPAHs and OPAHs). 16 PAHs were quantified using HPLC with fluorescence/UV detection. 

NPAH and OPAH concentrations were determined simultaneously using gas chromatography-mass 

spectrometry with negative ion chemical ionization (GC/NICI-MS) and selective ion monitoring 

mode (SIM). Analyses were performed using a Perkin-Elmer Clarus 500 gas chromatograph 

coupled to a Perkin-Elmer Turbomass Gold mass spectrometer. The column used was a 5% phenyl-

substituted methylpolysiloxane (DB-5MS, 30 m × 0.25 mm I.D., 0.25 µm film thickness, J&W 
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Scientific, USA). The method included a liquid chromatography purification procedure on solid 

phase extraction (SPE) cartridges (alumina and silica). A total of 17 NPAHs and 8 OPAHs were 

quantified (see Table S1 available in the online version). Analytical limits of detection defined as 

the lowest concentration of the compound than can be detected (S/N=3) were used to calculate the 

methodology limits of detection for each individual compound. Individual NPAH detection limits in 

a typical air sample of 360 m3 ranged between 0.01 and 0.07 pg m-3. OPAH detection limits for an 

air sample of 360 m3 ranged between 0.01 and 2.6 pg m-3. 

In this paper, only results on OPAH and NPAH concentrations are discussed. Results on PAH 

are also take into account because they are the parent compounds of the NPAHs and OPAHs and 

they are considered as a base for the discussion. 

 

3. Results and discussion 

 

3.1. Concentrations of OPAHs and NPAHs 

 

Table S1 (available in the online version) presents the average total (filter + PUF) OPAH and 

NPAH concentrations measured at each instrumented site. For the cascade impactor samples, 

concentrations concern only the particulate phase and were determined by summing the 

concentrations of all the impactor stages. Table S1 also presents, if available, the average 

temperature, CO, NO, NOx, O3, PM10, and benzo[a]pyrene concentrations.  

In general, the differences between the concentrations determined with the parallel sampling 

systems used were considered as negligible with regard to the variability in the analysis of 

particulate PAHs, OPAHs and NPAHs. Nevertheless, individual NPAH concentrations determined 

for the DA-80 samples during the winter period were about 3 to 4 times lower than those 

determined for the cascade impactor samples, for all NPAHs. The use of heating of the PM10 

sampling head in this season would seem to explain such differences (Albinet et al., 2007a). 
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During both summer and winter campaigns, OPAH concentration levels were of the same order of 

magnitude as PAHs, while NPAH were one to two orders of magnitude lower. During both, winter 

and summer campaigns, 9-fluorenone, 9,10-anthraquinone, and 1-naphthaldehyde were, for all 

types of sampling sites, the most abundant OPAHs quantitatively measured, accounting for about 

20 to 70%, 10 to 60% and 10 to 40% of the total OPAH concentrations, respectively. During the 

winter period, benzanthrone was also a major compound. It was predominant at site C1 (where only 

the particulate phase was sampled), accounting for about 30% of the total OPAH concentration. 

2+3-Nitrofluoranthene, 2-nitropyrene, 9-nitroanthracene and 1-nitronaphthalene were the major 

NPAHs in both the Cv and the Mv. Their proportion varied according to the sampling seasons. 9-

Nitroanthracene and 2-nitropyrene were predominant in winter, whereas 2+3-nitrofluoranthene and 

1-nitronaphthalene were prevalent in summer. 

The OPAH concentration levels observed at the urban, sub-urban and rural sampling sites in both 

valleys were in the same range than those reported in previous studies for large agglomerations and 

similar sampling seasons (winter or summer) like Paris (Leoz-Garziandia et al., 2000) and 

Marseilles (France) (Albinet et al., 2007b); Disburg (Germany) (König et al., 1983), Portland 

(Ligocki and Pankow, 1989), Salt Lake City (Hawthorne et al., 1992), Houston (Wilson et al., 

1995) and Boston (USA) (Allen et al., 1997); Alger (Algeria) (Yassaa et al., 2001) and Santiago 

(Chile) (Maria del Rosario Sienra, 2006).  

Atmospheric concentrations of NPAHs such as 1-, 2-nitropyrene, 2+3-nitrofluoranthene were, for 

all the sampling sites except the altitude site C3, of the same order of magnitude as those reported 

for the cities and areas of Marseille (France) (Albinet et al., 2007b), Naples, Milan (Italy) and São 

Paulo (Brazil) (Ciccioli et al., 1995; Ciccioli et al., 1996), Athens (Greece) (Marino et al., 2000), 

Barcelona (Spain) (Bayona et al., 1994), Birmigham (England) (Dimashki et al., 2000) and for 

similar sampling seasons. Nevertheless, in the winter period, individual NPAH concentrations are 2 
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to 50 times higher than those reported by Bamford and Baker (2003) in Baltimore for urban and 

suburban sites. 

 

3.2. Concentrations of PAHs, OPAHs and NPAHs: comparison of both valleys 

 

Average Σ PAHp, Σ OPAHp and Σ NPAHp, defined as the sum of the concentrations of PAHs, 

OPAHs and NPAHs mainly present in the particulate phase (see Table S1 available in the online 

version, and section 3.6), are presented on Fig. 2. These sums comprise 10 PAHs (from 

benz[a]anthracene to coronene), 6 OPAHs (from 9-phenanthrenecarboxaldehyde to 

benz[a]anthracene-7,12-dione) and 11 NPAHs (from 2+3-nitrofluoranthene to 6-

nitrobenzo[a]pyrene), respectively.  

Fig. 2 indicates strong seasonal variations of concentrations between winter and summer, the 

former being usually one order of magnitude higher than the latter. It could be partly related to 

season-modulated emissions including residential heating at the first site in winter (Aymoz et al., 

2006; Marchand et al., 2004; Marchand et al., 2007) but could also result to a lower degradation of 

this compounds link to a lower photolysis (Finlayson-Pitts and Pitts Jr, 1986) and an accumulation 

of pollutants due to the formation of thermal inversions very common in Alpine valleys in winter 

season. 

Fig. 2 also indicates that, for all the time, the average concentrations are twice in the Cv (C1 and 

C2) than in the Mv despite much larger heavy-duty international traffic run in the latter. Therefore, 

heavy-duty traffic does not appear to be the fundamental parameter governing concentrations of 

PAHs and PAH derivatives in these areas. Ventilation is probably a key factor decreasing 

concentrations of pollutants in the Mv, which is wider than Cv, particularly in winter when the 

inversion layer formation is more relevant, leading pollutants to accumulate. 
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Differences also emerge considering the type of sampling sites. In the Cv, the C3 (2263 meters 

above sea level) can be considered as remote, with an absence of pollution sources, leading to very 

low concentrations of compounds. High concentrations observed at sites C1 (suburban) and C2 

(road side) are directly in relation with the proximity of sources (traffic, wood heating…), while the 

rural character of site C4 and its mid-altitude (1250 meters above sea level) are probably explaining 

the low concentrations observed there. These differences are particularly evident in the winter 

season, when the very local conditions are emphasized by the air mass stability.  

The low pollutant concentrations observed in the Mv compared to the Cv also show a lower 

variability with the site characteristics. Probably, the dispersion of pollutants can induce there a 

more homogeneous distribution of the pollutants all along the valley. 

 

3.3. Carcinogenic risk 

 

 Carcinogenic risk was estimated using toxic equivalent factors (TEFs) and was calculated as:  

 

PaBNPAH
i

iPAH
i

i URTEFNPAHTEFPAHriskicCarcinogen
ii ][][][ 







+= ∑∑  (1) 

 

where [PAH]i and [NPAH]i are the individual atmospheric concentrations of PAHs and NPAHs 

(expressed in ng m-3). TEFPAHi and TEFNPAHi are the individual toxic equivalent factors of PAH and 

NPAH, respectively. TEFs data are obtained from INERIS for PAHs (Doornaert and Pichard, 2003) 

and from OEHHA (OEHHA, 2002 and 2005) for NPAHs (Table 2). To the best of our knowledge, 

no such data are currently available for OPAHs. B[a]P is the reference compound for TEFs of 

PAHs and their derivatives. The value of its TEF is normalized at 1. URB[a]P is the inhalation cancer 
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unit risk factor of benzo[a]pyrene (=1.1 × 10-6 (ng m-3)-1) calculated from cancer potency factors 

(CPFs) using the following relationship  

 

CVkg
mCPFUR i

i ×
×

=
70

20 3

 (2) 

 

where CPFi is the inhalation cancer potency factor of the compound i (equal to 3.9 (mg/kg-day)-1 

for B[a]), 20 m3 is the reference human inspiration rate per day, 70 kg is the reference human body 

weight, and CV is the conversion factor from mg to ng (=1 × 106) (OEHHA, 2002 and 2005).  

Since the gas phase PAHs and NPAHs were not sampled at all sampling sites, only compounds 

occurring overall in the particulate phase were taken into account (9 PAHs and 5 NPAHs: see Table 

2). Further, NPAH concentrations determined with the DA-80 sampler in winter have been 

corrected (Albinet et al., 2007a). Results obtained for each sampling site are presented in Fig. 3. 

In concordance to aerial concentrations, also the carcinogenic risk in the Cv was two times that 

in the Mv. In addition, the average risk is about 5 to 35 times higher during winter than during 

summer, except at the altitude site (C3) where it was nearly constant. The risk associated to NPAHs 

could reach 20% of the total risk although only five compounds reached meaningful concentrations, 

which remained 1 to 2 orders of magnitude lower than that of PAHs. Moreover, highest NPAH risk 

contributions were observed, for both winter and summer campaigns, at the altitude and rural sites 

C3, C4 and M1 and at the suburban site of Modane in summer period (M3). This seems to indicate 

that the formation of secondary NPAHs significantly increase the carcinogenic risk at sites far from 

direct influence of pollution sources. It follows that the determination of atmospheric concentrations 

of PAH derivatives is quite important for risk assessment but also further investigations are 

necessary to assess the carcinogenic potencies of NPAHs and especially OPAHs.  
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3.4. NPAHs gas phase formation vs. direct sources 

 

Source specific ratios of NPAHs were investigated in order to assess the relative importance of 

primary sources versus secondary atmospheric gas phase formation, for both winter and summer 

periods. The ratio of 2-nitrofluoranthene to 1-nitropyrene (2-NF/1-NP) is generally used to evaluate 

the relative contribution of these pathways (Bamford and Baker, 2003; Ciccioli et al., 1989; Ciccioli 

et al., 1996; Feilberg and Nielsen, 2001; Marino et al., 2000; Zielinska et al., 1989b). 2-NF is solely 

produced from gas phase reactions between fluoranthene and NO2, initiated by OH during daytime 

and by NO3 during nightime (Arey et al., 1986; Atkinson et al., 1987). 1-NP has never been 

observed as a product from any known gas phase reaction and is therefore considered as coming 

essentially from direct emissions (Arey, 1998; Nielson, 1984; Paputa-Peck et al., 1983). Assuming 

same removal and photolysis rates for the two products (Fan et al., 1996; Feilberg and Nielsen, 

2000; Kamens et al., 1994), a ratio of 2NF/1NP less than five shows a predominance of primary 

emission sources whereas a ratio greater than five would highlight the importance of the gas phase 

formation of NPAHs (Ciccioli et al., 1996).  

Fig. 4 presents the 2+3-NF/1-NP ratios calculated day-by-day for all the sites except C3 where 

NPAH concentrations were close to the limits of quantification. It should be noted that the 

separation of 2- and 3-nitrofluoranthene could not be achieved with our analytical technique. 

Considering the relatively low proportion of 3-nitrofluoranthene relative to 2-nitrofluoranthene 

reported in previous studies (< 1% in Bamford and Baker, 2003 and in Zielinska et al., 1989a and 

<50% in Feilberg et al., 2001) we adopted conservatively an upper limit to 10 instead of 5 for the 

2+3-NF/1-NP ratio, with values between these two boundaries being subjected to discussion. 

In both winter and summer, the urban and sub-urban sites were clearly influenced by primary 

NPAH sources. By contrast, the gas-phase formation of NPAHs was evident in summer at C4 and 

M1, where it was favoured by both high concentrations of reactants (NO2, NO3 and OH) and 

temperature (Ciccioli et al., 1996). 
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Secondary NPAH formation could also be important at C1 and C2 under specific conditions. In 

winter, for a day-time period characterized by snowfalls, ratios observed at sites C1 and C2 were 

above 5 and 10, respectively. It is possible that lower photolysis during such period allows a longer 

life time for the secondary compounds formed in gaseous phase. Such a longer lifetime allows a 

larger adsorption to ambient particles where NPAHs are supposedly protected against photolysis 

(Atkinson and Arey, 1994) increasing the 2+3-NF/1-NP ratios. 

On the average, the gas phase formation was not a major source of NPAHs at the rural site M4 

where evidence for that was observed only at singular conditions during the winter period. Fig. 5 

shows the day-by-day variations of Σ PAHp, Σ OPAHp and Σ NPAHp at site M4 during the winter 

2002-2003 sampling campaign. During this week, three successive meteorological events were 

encountered: snowfall episodes, an anticyclonic period followed by a new strong snowfall period. 

During the anticyclonic period, the total concentrations of PAHs, OPAHs, and NPAHs increased, 

probably due to an accumulation process. Then, the strong snowfalls induced a decrease of the 

pollutant concentrations (e.g. NO2 and PM10) (Albinet et al., 2006) by wet deposition. NPAH gas 

phase formation was evident (2+3-NF/1-NP ratios >10) when the accumulation of primary 

pollutants was maximal (sample “01/27 night”) and once again, when photolysis was poor 

(snowfalls) and sufficient NO2 concentrations (sample “01/28 day”) were observed (Fig.5). 

 

3.5. Contribution of NPAHs from gas phase OH and NO3 reactions 

 

The 2-NF/2-NP ratio (2-nitrofluoranthene/2-nitropyrene) is usually used to evaluate the 

occurrence and the importance of the gas phase production of NPAHs from formation pathways 

initiated by OH and/or NO3 (Arey et al., 1989; Atkinson and Arey, 1994; Zielinska et al., 1989b). 2-

nitrofluoranthene is the major NPAH produced from the gas phase reaction of fluoranthene with 

OH (Arey et al., 1986) and the only nitrofluoranthene formed from the reaction initiated by NO3 
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(Zielinska et al., 1986). 2-nitropyrene is the only nitropyrene formed from the reaction with OH but 

is not formed from the gas phase reaction of pyrene with NO3 (Arey et al., 1986; Atkinson et al., 

1990; Zielinska et al., 1986). Values of the ratio 2-NF/2-NP close to 10 indicate major day-time OH 

reactions while ratio > 100 suggests dominant night-time NO3 formation pathways. 

For all sampling sites, the 2+3-NF/2-NP ratios were consistent with the day-time OH initiated 

PAH nitration as predominant pathway compared to the NO3 reaction (Fig. 6). Higher 2+3-NF/2-

NP ratios in summer compared to winter suggest an increase of the reaction pathways involving the 

OH radical.  

The 2+3-NF/2-NP ratio at rural sites was higher than at sub-urban and traffic sites. There, the 

concentration of NO3 could be affected by NO freshly emitted from vehicles, which could consume 

NO3 necessary for PAH nitration in night time. 

 

3.6. PAHs, OPAHs and NPAHs gas/particle partitioning 

 

The fraction of PAHs, OPAHs and NPAHs associated with the particle phase was strongly 

dependent on the molecular weight (MW) and on the ambient conditions (Fig.7). The lightest 

compounds (MW<202 g mol-1) were detected mainly in the gas phase (>50%) whereas more than 

90% of the compounds with a number of aromatic cycles ≥4 were detected in the particle phase for 

all samples and seasons.  

In most cases, gas/particle partitioning of PAHs was similar in both winter and summer seasons. 

The special behaviour observed at the traffic site C2 was probably related to the extreme proximity 

of PAH emission sources (<10 m from the major road of the valley). Much larger differences were 

found between summer and winter for the partitioning of OPAHs and NPAHs. Due to low ambient 

temperature, OPAHs and NPAHs were associated overall to the particulate phase in winter at that 

time of the year. During summer, a wide gas/particle partitioning was observed for OPAH and 
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NPAH of intermediate molecular weights (206<MW<223 g mol-1). Out of these compounds, only 

the gas/particle partitioning for 9-phenanthrenecarboxaldehyde and 3-nitrophenanthrene were 

correlated to the ambient temperature (Fig. 8).  

 

4. Conclusion 

 

During both summer and winter campaigns conducted at Cv and Mv in 2002-2003 , OPAH 

concentration levels were of the same order of magnitude as PAHs while NPAH concentrations 

were one to two orders of magnitude lower. Due to lower pollutant dispersion on average in the Cv 

related the geomorphology of this valley, total particulate concentrations of pollutants were higher 

there than in the Mv. Despite their much lower atmospheric concentrations, carcinogenic risk 

attributed to the NPAHs could reach 20% of the total risk to which contributed significantly 

secondary compounds. By looking to the 2+3-NF/1-NP ratio, the gas phase formation of 2-

nitrofluoranthene was hindered in winter overall at rural sites; concurrently the importance of 1-

nitropyrene increased.  The 2NF/2NP ratio rates indicated that at all sampling sites, the day-time 

OH initiated PAH nitration was more important than reaction with NO3
 in the night. Due to more 

favourable meteorological conditions (sunshine and heat), 2+3-NF/2-NP ratios were higher in the 

Mv than the Cv. The fraction of PAHs, OPAHs, and NPAHs associated with the particle phase was 

strongly dependent on their vapour pressure and on the ambient conditions.  
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Table 1 

Characteristics of the sampling sites and parameters measured 

PAH samplers Site Abbreviation Type Latitude Longitude Altitude (m.a.s.l.) 
DA-80 Impactor 

Chamonix Valley 
Clos de l’Ours C1 Suburban 45.9143 6.86019 1034 X 
Les Bossons C2 Traffic 45.9067 6.84505 1042 X X 

Plan de l’Aiguille C3 Altitude 45.9013 6.88650 2263 X  
Argentière C4 Rural 45.9865 6.92957 1250 X  

Maurienne Valley 
Tigny M1 Rural 45.4303 6.28550 441 X X 
Orelle M2 Suburban 45.2101 6.56670 1134 X*  

Modane M3 Suburban 45.2036 6.66720 1094  X 
Sollières M4 Rural 45.2564 6.80870 1373 X  

* Only in summer 2003. 

Site CO NOx O3 VOCs PM10 EC/OC POM T P WS, WD 
Chamonix Valley 

C1  X X X X X X X X X 
C2  X X  X   X   
C3  X X X X X X X   
C4 X X X     X X X 

Maurienne Valley 

M1 X X X     X X X 
M2  X X X X X X X X X 
M3 X X X X X X X    
M4  X X X X X  X   

VOCs: volatile organic compounds; EC: elemental carbon; OC: organic carbon; POM: partial 

speciation of the particulate organic matter; T and P: atmospheric temperature and pressure; WS: 

wind speed; WD: wind direction.  

 



Supplementary Table 1 

Average results for total (filter + PUF) OPAH (ng m-3), NPAH (pg m-3), benzo[a]pyrene (ng m-3) concentrations and associated particulate fraction, T (°C), 

CO, NO, NO2, PM10 and O3 concentrations (µg m-3) for the winter and summer campaigns in both valleys 

Winter 2002-2003 
 C1a (n=7) C2 (n=14) C3a (n=7) C4 (n=9) M1 (n=14) M3a (n=7) M4 (n=13) 
 Mean (SD) Mean (SD) % 

Filter Mean (SD) Mean (SD) % 
Filter Mean (SD) % 

Filter Mean (SD) Mean (SD) % 
Filter 

T (°C) -3 (2) -3 (2) - -3 (2) -0 (2) - 1 (3) - - - -4 (4) - 
NO (µg m-3) 47 (25) 72 (38) - 4 (3) 1 (1) - 11 (9) - 3 (3) 2 (1) - 
NO2(µg m-3) 56 (8) 52 (10) - 7 (3) 9 (5) - 32 (11) - 34 (11) 10 (6) - 

PM10 (µg m-3) 22 (4) 24 (11) - 4 (1) - - - - - - 8 (4) 9 (5) - 
CO (µg m-3) - - - - - - - 437 (761) - 396 (169) - 868 (115) - - - 
O3 (µg m-3) 10 (8) 19 (11) - 79 (3) 61 (11) - 25 (16) - 69 (29) 51 (20) - 

Benzo[a]pyrene (ng m-3) 1.88 0.76 2.81 (1.28) 100 0.01 0.01 0.16 (0.14) 100 0.85 (0.41) 100 0.68 (0.71) 0.76 (1.10) 100 
OPAHs (ng m-3) 

1-Naphthaldehyde 0.18 (0.16) 7.82 (7.36) 9 0.16 (0.78) 2.38 (1.19) 9 3.08 (3.74) 1 0.59 (0.37) 1.68 (1.63) 12 
9-Fluorenone 0.67 (0.37) 11.23 (4.33) 43 0.19 (0.13) 1.54 (1.48) 47 4.10 (1.97) 12 2.79 (1.58) 2.53 (2.15) 53 

9-Phenanthrenecarboxaldehyde 0.31 (0.12) 0.43 (0.16) 100 0.01 (0.01) 0.04 (0.02) 100 0.18 (0.14) 86 0.28 (0.18) 0.16 (0.14) 100 
9,10-Anthraquinone 1.42 (0.49) 3.60 (1.09) 99 0.15 (0.08) 0.57 (0.37) 100 1.77 (1.49) 93 2.76 (1.71) 2.36 (2.74) 99 
Benzo[a]fluorenone 0.84 (0.19) 1.59 (0.67) 100 0.17 (0.15) 0.43 (0.43) 100 0.45 (0.26) 99 0.79 (0.90) 0.63 (1.03) 100 
Benzo[b]fluorenone 0.86 (0.23) 1.49 (0.64) 100 0.18 (0.22) 0.36 (0.33) 100 0.44 (0.23) 100 0.65 (0.78) 0.60 (1.00) 100 

Benzanthrone 1.71 (0.59) 2.05 (0.95) 100 0.15 (0.29) 0.26 (0.17) 100 0.69 (0.33) 100 0.87 (0.91) 0.48 (0.82) 100 
Benz[a]anthracene-7,12-dione 0.27 (0.06) 0.55 (0.18) 100 0.13 (0.19) 0.22 (0.25) 100 0.29 (0.13) 100 0.29 (0.31) 0.45 (0.83) 100 

NPAHs (pg m-3) 
1-Nitronaphthalene 13.1 (6.4) 185.7b (135.0) 14 0.4b (0.7) 51.0b (33.4) 6 40.7b (36.6) 6 5.3 (3.9) 25.5b (22.0) 19 
2-Nitronaphthalene 8.9 (3.9) 66.2b (46.7) 15 0.1b (0.1) 23.8b (13.6) 4 28.5b (24.9) 3 3.9 (2.6) 14.8b (12.2) 12 

2-Nitrofluorene 1.2 (1.1) 1.1b (0.4) 100 nd - 0.1b (0.2) 50 0.1b (0.2) 100 0.6 (0.7) 0.2b (0.6) 100 
9-Nitroanthracene 502.6 (147.9) 85.3b (60.0) 100 1.7b (3.1) 10.3b (8.5) 97 145.1b (102.2) 88 327.6 (221.5) 114.7b (184.5) 98 

9-Nitrophenanthrene 20.9 (12.9) 4.3b (1.7) 94 0.1b (0.1) 0.7b (0.9) 91 1.6b (1.4) 72 4.9 (3.7) 0.5b (0.2) 96 
3-Nitrophenanthrene 40.8 (8.6) 9.3b (2.2) 100 0.1b (0.1) 1.1b (1.0) 100 5.5b (1.8) 92 14.0 (9.8) 3.4b (4.3) 100 

2+3-Nitrofluoranthene 260.8 (161.2) 167.5b (168.8) 98 1.3b (1.4) 18.7b (17.0) 98 101.8b (59.8) 100 277.2 (322.6) 80.8b (146.8) 100 
4-Nitropyrene 48.0 (14.3) 20.8b (24.8) 98 2.1b (2.1) 4.5b (1.7) 86 4.6b (2.1) 100 20.5 (14.4) 6.5b (7.1) 99 
1-Nitropyrene 186.9 (58.5) 53.7b (25.7) 100 2.4b (2.6) 9.9b (6.1) 97 24.8b (21.9) 100 70.0 (53.6) 10.8b (7.6) 100 
2-Nitropyrene 659.6 (167.1) 186.2b (67.7) 99 14.8b (38.2) 70.4b (46.4) 91 72.3b (32.9) 99 257.3 (357.3) 70.4b (110.7) 100 

7-Nitrobenz[a]anthracene 90.1 (47.2) 12.6b (13.9) 100 0.2b (0.5) 1.5b (1.8) 98 22.0b (22.7) 100 49.5 (48.0) 16.5b (43.7) 100 
6-Nitrochrysene 2.8 (1.2) 0.5b (0.2) 100 0.0b (0.1) 0.2 (0.1) 83 0.5b (0.4) 100 1.4 (2.7) 0.6b (0.6) 100 

1,3-Dinitropyrene 30.4 (9.0) 17.4b (12.4) 100 nd - 1.7b (2.3) 100 4.2b (2.3) 100 20.3 (27.1) 4.0b (8.1) 100 
1,6-Dinitropyrene 0.2 (0.3) nd - - nd - 1.2b (1.9) 100 6.5b (4.2) 100 0.1 (0.1) 1.8b (1.7) 100 
1,8-Dinitropyrene 85.7 (29.5) 30.6b (18.2) 100 nd - 4.6b (3.7) 100 12.0b (5.0) 100 30.7 (34.6) 10.1b (16.5) 100 

6-Nitrobenzo[a]pyrene 13.0 (3.9) 4.3b (2.8) 100 0.1b (0.1) 0.2b (0.3) 100 6.5b (4.2) 100 5.4 (7.1) 9.2b (26.6) 100 



Supplementary Table 1 (continued) 

a Concentrations determined with cascade impactor (only particulate phase). 
b NPAH concentrations determined in winter with DA-80 sampler could be 3 to 4 times higher (see Albinet et al., 2007a for more details) 

nd: not detected 

Summer 2003 
 C1a (n=7) C2 (n=14) C3 (n=7) C4 (n=14) M1 (n=14) M2 (n=11) M3a (n=7) M4 (n=14) 
 Mean (SD) Mean (SD) % 

Filter Mean (SD) % 
Filter Mean (SD) % 

Filter Mean (SD) % 
Filter Mean (SD) % 

Filter Mean (SD) Mean (SD) % 
Filter 

T (°C) 16 (3) 17 (6) - 12 (4) - 15 (6) - 25 (6) - 21 (5) - 21 (4) 18 (6) - 
NO (µg m-3) 5 (1) 42 (23) - 0 (0) - 1 (0) - 1 (1) - 1 (1) - 4 (4) 0 (0) - 
NO2(µg m-3) 16 (6) 33 (10) - 1 (1) - 6 (2) - 8 (5) - 10 (7) - 13 (6) 5 (2) - 

PM10 (µg m-3) 16 (7) 27 (13) - 14 (6) - - - - - - - 27 (14) - 29 (15) 30 (18) - 
CO (µg m-3) - - - - - - - - 181 (27) - 188 (85) - - - - 324 (71) - - - 
O3 (µg m-3) 62 (18) 62 (21) - 113 (20) - 84 (31) - 120 (36) - 97 (23) - 93 (24) 99 (25) - 

Benzo[a]pyrene (ng m-3) 0.04 (0.03) 0.12 (0.13) 100 0.01 (0.00) 100 0.04 (0.03) 69 0.03 (0.05) 100 0.05 (0.07) 100 0.03 (0.02) 0.05 (0.05) 78 
OPAHs (ng m-3) 

1-Naphthaldehyde 0.30 (0.02) 1.11 (0.74) 8 nd - - 3.53 (10.36) 1 0.33 (0.41) 0 0.34 (0.24) 30 0.07 (0.05) 0.30 (0.32) 29 
9-Fluorenone 0.62 (0.02) 1.77 (0.55) 8 0.16 (0.11) 2 0.41 (0.36) 13 0.61 (0.69) 9 0.96 (0.51) 7 0.11 (0.07) 0.47 (0.45) 10 

9-Phenanthrenecarboxaldehyde 0.07 (0.00) 0.06 (0.04) 65 0.00 (0.00) 92 0.01 (0.01) 69 0.02 (0.01) 68 0.02 (0.01) 35 0.00 (0.00) 0.01 (0.00) 61 
9,10-Anthraquinone 1.59 (0.04) 0.97 (0.52) 68 0.05 (0.02) 99 0.26 (0.17) 85 0.47 (0.36) 58 0.37 (0.22) 63 0.34 (0.13) 0.13 (0.09) 75 
Benzo[a]fluorenone 0.33 (0.02) 0.23 (0.28) 98 0.00 (0.00) 95 0.03 (0.02) 93 0.08 (0.14) 83 0.05 (0.03) 86 0.02 (0.02) 0.03 (0.01) 82 
Benzo[b]fluorenone 0.19 (0.02) 0.26 (0.40) 99 0.01 (0.00) 99 0.02 (0.02) 96 0.09 (0.18) 99 0.04 (0.03) 97 0.02 (0.02) 0.03 (0.02) 94 

Benzanthrone 0.02 (0.00) 0.29 (0.48) 99 0.00 (0.00) 100 0.02 (0.02) 97 0.06 (0.09) 99 0.04 (0.03) 95 0.00 (0.00) 0.05 (0.03) 99 
Benz[a]anthracene-7,12-dione 0.22 (0.03) 0.15 (0.27) 98 0.00 (0.00) 100 0.02 (0.02) 98 0.13 (0.30) 98 0.04 (0.03) 90 0.02 (0.02) 0.02 (0.01) 96 

NPAHs (pg m-3) 
1-Nitronaphthalene 0.3 (0.3) 55.5 (31.0) 5 0.1 (0.1) 10 15.0 (38.2) 6 25.6 (29.7) 13 27.4 (36.0) 4 1.7 (1.3) 12.5 (18.9) 2 
2-Nitronaphthalene 0.2 (0.1) 21.2 (10.2) 1 0.4 (0.3) 0 6.8 (15.1) 1 14.3 (13.3) 1 16.4 (16.3) 1 0.4 (0.2) 6.8 (9.4) 1 

2-Nitrofluorene 0.2 (0.4) 4.3 (3.5) 27 0.5 (1.1) 100 0.2 (0.6) 34 4.1 (7.2) 81 4.8 (4.4) 22 0.8 (2.0) 0.7 (0.5) 100 
9-Nitroanthracene 7.6 (2.3) 22.4 (10.0) 69 0.4 (0.1) 98 4.0 (5.1) 53 22.2 (18.4) 44 11.3 (9.1) 69 11.5 (7.0) 2.8 (2.7) 75 

9-Nitrophenanthrene 0.2 (0.1) 0.3 (0.2) 62 0.0 (0.0) 100 0.2 (0.4) 31 0.1 (0.1) 25 0.0 (0.1) 87 0.5 (0.3) 0.0 (0.0) 100 
3-Nitrophenanthrene 1.2 (0.4) 2.8 (1.5) 69 0.1 (0.1) 55 0.9 (1.0) 98 4.1 (4.7) 28 2.9 (2.4) 32 2.2 (1.4) 0.6 (0.3) 57 

2+3-Nitrofluoranthene 10.1 (9.7) 29.7 (24.8) 68 1.8 (1.3) 100 7.1 (11.1) 55 63.1 (45.4) 99 22.8 (20.4) 86 16.6 (10.4) 3.1 (2.2) 100 
4-Nitropyrene 0.3 (0.2) 2.8 (4.3) 100 0.0 (0.0) 100 0.1 (0.1) 100 0.2 (0.6) 100 0.1 (0.1) 91 0.4 (0.4) 0.1 (0.1) 100 
1-Nitropyrene 2.8 (0.9) 7.7 (4.8) 92 0.6 (0.5) 100 0.7 (0.4) 92 4.7 (5.1) 99 6.5 (7.2) 79 6.5 (5.8) 0.8 (0.7) 100 
2-Nitropyrene 5.2 (5.8) 27.7 (35.8) 100 0.7 (0.5) 100 4.0 (3.4) 100 8.8 (15.0) 92 1.8 (2.2) 94 15.1 (10.0) 0.9 (1.1) 100 

7-Nitrobenz[a]anthracene 0.5 (0.4) 2.1 (4.3) 100 nd - - 0.1 (0.3) 100 0.3 (0.5) 100 0.7 (1.1) 100 0.6 (0.8) 0.1 (0.3) 100 
6-Nitrochrysene 0.0 (0.0) 1.2 (1.5) 61 0.3 (0.7) 100 nd - - 1.0 (2.0) 83 2.4 (1.8) 60 1.5 (3.8) 0.2 (0.3) 100 

1,3-Dinitropyrene 0.2 (0.3) 2.1 (5.0) 100 nd - - nd - - 0.6 (2.2) 100 nd - - 0.6 (0.7) nd - - 
1,6-Dinitropyrene 0.0 (0.0) 0.0 (0.0) 100 nd - - nd - - nd - - nd - - nd - nd - - 
1,8-Dinitropyrene 0.4 (0.7) 10.1 (23.6) 100 nd - - 0.4 (0.7) 100 0.4 (1.6) 100 0.2 (0.5) 100 1.1 (0.9) 0.3 (0.6) 100 

6-Nitrobenzo[a]pyrene 0.1 (0.1) 0.9 (1.2) 100 0.2 (0.1) 100 0.1 (0.2) 100 0.3 (0.7) 100 1.0 (1.6) 100 1.4 (1.9) 0.9 (1.2) 100 



Table 3 

PAH and NPAH toxic equivalent factors (TEFs) 

Compounds TEFs 
PAHs1

Benz[a]anthracene 0.1 
Chrysene 0.01 

Benzo[b]fluoranthene 0.1 
Benzo[k]fluoranthene 0.1 

Benzo[a]pyrene 1 
Dibenz[a,h]anthracene 1 
Benzo[g,h,i]perylene 0.01 

Indeno[1,2,3,c,d]pyrene 0.1 
Coronene 0.001 

NPAHs2

1-Nitropyrene 0.1 
4-Nitropyrene 0.1 

6-Nitrochrysene 10 
1,6-Dinitropyrene 10 
1,8-Dinitropyrene 0.1 

 

1 data from Doornaert and Pichard (2003). 

2 data from OEHHA (2002 and 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Captions 

 

Fig. 1. Map of the Alpine area of the POVA research program and location of the sampling sites in 

the Chamonix and the Maurienne valleys.  

 

Fig. 2. Average Σ PAHp, Σ OPAHp and Σ NPAHp during winter 2002-2003 and summer 2003 field 

campaigns according to the sampling site (see the Results and discussion section for details). The 

errors bars show the standard deviation from the weekly average concentration. 

¤ Concentrations determined with cascade impactor. 

* NPAH concentrations determined in winter with DA-80 sampler could be 3 to 4 times higher (see Albinet et al., 2007a 

for more details). 

 

Fig. 3. Total carcinogenic risk calculated from atmospheric concentrations of 9 PAHs and 5 NPAHs 

mainly associated to the particulate phase.  

* NPAH concentrations determined by DA-80 sampler in winter have been corrected by a factor of 3.6 (Albinet et al., 

2007a). 

 

Fig. 4. 2+3-Nitrofluoranthene/1-Nitropyrene ratios (2+3-NF/1-NP) for air samples collected in the 

Chamonix and Maurienne valleys during winter 2002-2003 and summer 2003 sampling campaigns 

(Imp: cascade impactor sampler). Gray triangles and rounds represent the average ratios over the full 

weeks. 

 

Fig. 5. Weekly variations of the 2+3-Nitrofluoranthene/1-Nitropyrene ratio (2+3-NF/1-NP), Σ PAHp, 

Σ OPAHp, Σ NPAHp and NO2 concentrations at the rural site of Sollières (M4) during the winter 

2002-2003 sampling campaign (see the Results and discussion section for details).  

 



Fig. 6. 2+3-Nitrofluoranthene/2-Nitropyrene ratios (2+3-NF/2-NP) for air samples collected in the 

Chamonix and Maurienne valleys during winter 2002-2003 and summer 2003 sampling campaigns 

(Imp: cascade impactor sampler). 

 

Fig. 7. PAH, OPAH and NPAH particulate fractions according to their molecular weight for the 

winter 2002-2003 and summer 2003 sampling campaign (all sampling sites taking into account). 

 

Fig. 8. Fraction of 9-phenanthrenecarboxalehyde and 3-nitrophenanthrene in particulate phase 

according to the ambient temperature during the summer period (results from all sampling sites taken 

into account). 
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