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Received 15 May 2006; revised 7 December 2006; accepted 25 January 2007; published 31 May 2007.

[1] Sliding velocity and basal drag are strongly influenced by changes in subglacial water
pressure or subglacial water storage associated with opening and closing of water cavities
in the lee of bedrock obstacles. To better understand this influence, finite-element
simulations of ice flowing past bedrock obstacles with cavity formation are carried out for
different synthetic periodic bedrock shapes. In the numerical model, the cavity roof is
treated as an unknown free surface and is part of the solution. As an improvement
over earlier studies, the cases of nonlinear ice rheology and infinite bedrock slopes are
treated. Our results show that the relationship between basal drag and sliding velocity,
the friction law, can be easily extended from linear to nonlinear ice rheology and is
bounded even for bedrocks with locally infinite slopes. Combining our results with earlier
works by others, a phenomenological friction law is proposed that includes three
independent parameters that depend only on the bedrock geometry. This formulation
yields an upper bound of the basal drag for finite sliding velocity and a decrease in the
basal drag at low effective pressure or high velocity. This law should dramatically alter
results of models of temperate glaciers and should also have important repercussions on
models of glacier surges and fast glacier flows.

Citation: Gagliardini, O., D. Cohen, P. Råback, and T. Zwinger (2007), Finite-element modeling of subglacial cavities and related

friction law, J. Geophys. Res., 112, F02027, doi:10.1029/2006JF000576.

1. Introduction

[2] Numerous field studies show that the sliding speed of
temperate glaciers is strongly affected by daily and seasonal
changes in water pressure or water storage [e.g., Iken and
Bindschadler, 1987; Hooke et al., 1989; Iken and Truffer,
1997; Hanson et al., 1998; Anderson et al., 2004]. Over the
last 50 years, considerable efforts have been devoted to
modeling basal sliding first without, and then with forma-
tion of water cavities [e.g., Weertman, 1957; Lliboutry,
1968, 1979; Nye, 1969, 1970; Kamb, 1970, 1987; Morland,
1984; Fowler, 1981, 1986, 1987; Gudmundsson, 1997a,
1997b; Schoof, 2005]. Making the assumption that ice is
temperate and clean and thus slides without friction over a
rigid bedrock, these studies aimed at determining the
relationship between the mean basal drag induced by
the bedrock roughness, the mean sliding velocity, and the
effective pressure (the ice pressure minus the water pres-
sure). This relationship, the friction law, can then be used as
a (Robin-type) basal boundary condition on a smoothed
bedrock surface for which small obstacles have been elim-
inated. The term ‘‘friction’’ law is used here to distinguish it

from a sliding law where the sliding speed is expressed
explicitly as a function of basal drag and effective pressure.
Such explicit relation between velocity and basal drag
allows the basal drag to be equated with the driving stress,
leading to a (Dirichlet) velocity boundary condition at the
bedrock boundary.
[3] With the assumption of negligible friction between ice

and rock, basal resistance to shear is due entirely to viscous
and regelation flow of ice past bedrock obstacles. As long as
the sliding velocity or the water pressure is small, the ice is
in contact with the bed everywhere. With increasing water
pressure, water cavities form in the lee of bedrock obstacles
where the normal stress experienced by ice is lower than the
water pressure. The presence of water-filled cavities
decreases the area of the bed in contact with the ice and
consequently the friction law is modified.
[4] Lliboutry [1968] showed that, in the presence of

cavitation, basal friction should decrease for increasing
water pressure. He proposed that the friction law should
include the basal drag tb, the sliding velocity ub, and the
effective pressure N = pi � pw, where pi and pw are the ice
overburden pressure and the water pressure, respectively
[Lliboutry, 1979]. Iken [1981] inferred from a simple force
balance of ice sliding on a bed consisting of rectangular
steps that the quantity tb/N satisfies an upper bound
determined only by the maximum up-slope of the bed: tb/
N � mmax. A proof of the existence of Iken’s bound was
achieved by Schoof [2005] for a general bed geometry only
restricted to bounded slopes.
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[5] The empirical sliding law [Paterson, 1994]

ub � tpb=N
q p; q > 0 ; ð1Þ

is commonly used in models of temperate glaciers [e.g.,
Bindschadler, 1983; Van der Veen, 1987; Pattyn, 1996,
2002; Le Meur and Vincent, 2003]. It implies a basal drag
that increases without bound with increasing sliding
velocity or effective pressure. As cavities form in the lee
of bedrock obstacles as a result of increasing water pressure,
basal drag reaches a maximum value determined by the
maximum up-slope of the bed [Schoof, 2005], invalidating
equation (1).
[6] In the present paper, numerical simulations are carried

out to derive a friction law for glacier flow in the presence
of cavitation. Both the shape of cavities and the resulting
friction law are obtained for periodic synthetic bedrock
geometries. The ice is assumed to slide without friction
over a rigid undulating bed. Regelation and melting are
neglected (see section 2 for hypotheses and numerical
methods). The effect of nonlinear ice rheology is studied
(section 3). Using a bedrock composed of two inverted half-
ellipsoids, the existence of Iken’s [1981] bound for infinite
slopes is discussed (section 4). In section 5, numerical
experiments are discussed and key results summarized.
Finally, in section 7, we propose a phenomenological
friction law with three geometrical parameters that repro-
duces the main features obtained from our numerical experi-
ments with synthetic bedrock geometries.

2. Formulation of the Problem and Numerical
Method

2.1. Main Assumptions

[7] The main assumptions of the finite element (FE)
simulations are: (1) ice slides without friction over a rigid
bedrock, (2) water pressure, pw , is constant in space,
(3) regelation and melting of ice are neglected, (4) temper-
ature is constant in space, (5) gravity is neglected and the
weight of ice above the modeled domain is replaced by an
equivalent ice overburden pressure, and (6) inertia and
acceleration are neglected in the Navier-Stokes equations.

2.2. Equations to be Solved

[8] The constitutive law for the ice behavior is given by a
Norton-Hoff type law (Glen’s flow law in glaciology)

Sij ¼ 2hDij ; ð2Þ

where S is the deviatoric stress tensor, Dij = (ui,j + uj,i)/2 are
the components of the strain-rate tensor, and u is the
velocity. The effective viscosity h can be expressed as

h ¼ B�1=ng 1�nð Þ=n
e ; ð3Þ

where the strain-rate invariant ge is defined as

g2e ¼ 2DijDij : ð4Þ

In equation (3), the fluidity parameter B is a constant since
ice is assumed isothermal.

[9] The equations to be solved are the stress-equilibrium
equation

Sij;j � p;i ¼ 0 ; ð5Þ

and the incompressibility equation

Dii ¼ ui;i ¼ 0 : ð6Þ

Only applied stresses at boundaries are taken into account
and the stress variation due to the force of gravity is
neglected in equation (5).
[10] The elevation of the cavity roof y = h(x) is part of the

system of unknowns to be solved. The cavity roof is a free
surface and, since both regelation and melting are neglected,
the flow velocities are tangential to the cavity roof, i.e.,

u
@h

@x
� v ¼ 0 : ð7Þ

Since the elevation of the cavity cannot be less than the
bedrock surface, the following topological condition must
be fulfilled:

h xð Þ � b xð Þ ; ð8Þ

where y = b(x) is the equation of the bedrock geometry.

2.3. Boundary Conditions

[11] The domain is horizontally periodic of period l
corresponding to one wavelength. For the bottom boundary,
the ice is either in contact with water or with the bedrock.
This leads to two different types of boundary conditions:
(1) the ice-bedrock condition u � n = 0 applies if h = b and
�snn > pw; and (2) the ice-water condition snn = �pw
applies if h > b or if h = b and �snn � pw. Here n is the
upward pointing normal unit vector to the bed-cavity
boundary and snn = n � sn is the local normal stress on
the bed-cavity boundary.
[12] For the driving force, a natural choice is to model the

entire height of the glacier subject to the force of gravity as
done by Gudmundsson [1997b]. To speed computation,
however, the height of ice should be reduced since bedrock
perturbations on the ice flow decrease as the distance above
the bed increases. Then, gravity can be replaced by uniform
normal and tangential stresses applied on a fictitious bound-
ary sufficiently far above the bed but well below the glacier
free surface. Since we expect basal drag to be bounded
when water cavities are present, such stress loading will
become unstable for configurations where the applied shear
stress is larger than the bound. Thus, with stress-driven
tests, one can only obtain the first part of the friction law up
to the bound. To obtain the full relationship between basal
drag and sliding velocity past the maximum value of the
basal drag, one needs to apply a velocity-driven boundary
condition at the top of the domain. In what follows, the top
of the domain, y = H, represents a fictitious boundary at
which a horizontal velocity, �u, and a vertical normal stress,
�pi, representing the ice overburden pressure above the
domain, are applied. These two quantities are assumed to
be uniform over the top of the domain. The basal drag is
then calculated afterward from the resulting velocity field as
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explained below. The influence of the fictitious boundary
position, i.e., the domain height H, on the resulting friction
law is discussed in section 3.4.

2.4. Numerical Methods

[13] The set of equations is solved using the open source
FE code Elmer available at http://www.csc.fi/elmer.
We hereafter only discuss the particular implementations
needed for these simulations.
[14] Concerning the Stokes equations, the treatment of

the bed-cavity boundary condition is done using a condi-
tional Dirichlet boundary condition u.n = 0 which applies
only at nodes where h = b and �snn > pw. For other nodes,
the Neumann condition snn = �pw applies.
[15] Linear elements stabilized using the residual free

bubbles method [Baiocchi et al., 1993] or quadratic P2P1

elements (i.e., the classical quadratic velocity basis function
and linear pressure basis function elements) were both tried,
as well as structured and unstructured meshes. How element
and mesh types influence numerical results is discussed later.
[16] The calculation of the stress from the velocity and

isotropic pressure fields is a matter of interest because
different methods can lead to detectably different solutions.
In this study, the deviatoric stress field is obtained by
solving equation (2) using the following variational form
with the scalar test functions F:

Z
V

SijFdV ¼ 2

Z
V

hDijFdV ; ð9Þ

where Dij and h are calculated from the nodal velocities
using the derivative of the basis functions. The bedrock
inequality constraint (8) is implemented by adding a penalty
term to the free surface variational form [Donea and
Huerta, 2003].

2.5. Inferring the Friction Law

[17] For a given set of boundary conditions (i.e., water
pressure pw, overburden ice pressure �pi, and horizontal
velocity �u), the Stokes and free surface equations are solved
iteratively until a steady state solution is reached. From the
steady-state stress fields, the normal component of the
stress, snn, is evaluated on the bedrock-cavity surface.
Using the FE interpolation function, the average basal drag
is calculated as the moment over the boundary of the
horizontal part of the normal stress, i.e.,

tb ¼
1

l

Z l

0

snnnxd s ¼ � 1

l

Z l

0

snn

@h

@x
d x : ð10Þ

As a verification of the numerical method, the mean vertical
contribution of snn on the bottom boundary is calculated as

pi ¼ � 1

l

Z l

0

snnnyd s ¼ � 1

l

Z l

0

snndx ð11Þ

and compared to the applied overburden ice pressure �pi. In
all solutions, the relative difference between pi and �pi is
less than 1%. The effective pressure is then calculated as
N = pi � pw.
[18] From the steady state velocity field, the sliding veloc-

ity is calculated as the mean value of the horizontal compo-
nent of the velocity u on the bedrock-cavity boundary:

ub ¼
1

l

Z l

0

ud x : ð12Þ

Owing to viscous resistance, the inequality ub < �u is always
satisfied.
[19] This calculation is repeated for a new set of boundary

conditions with different values of pw, pi, and �u. From a
practical point of view, either the value of the water
pressure, or the velocity, or the overburden ice pressure
can be modified to get a new point that describes the friction
law function. For a given geometry and ice rheology, this
stage is repeated approximately twenty times in order to

Figure 1. (a) Friction law calculated for a sinusoidal
bedrock of roughness r = 0.08 and linear ice behavior (solid
line). The dotted curve represents the maximum positive
bedrock slope restricted to the area of ice-bed contact,
mmax

contact , normalized by the maximum value reached by C =
max(tb/N). The dash-dotted line corresponds to the friction
law in the absence of cavitation ub = Astb

n . (b) Sinusoidal bed
and cavity shapes and (c) normalized local effective pressure
on the bed-cavity boundary for four different water-pressure
levels labeled 1 through 4 in Figure 1a.
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obtain a smooth plot of basal drag as a function of sliding
speed (Figure 1a).

3. Sinusoidal Bedrock and Nonlinear Behavior

[20] The special case of ice sliding without friction over a
periodic sinusoidal bed in the presence of cavities has been
treated using perturbation theory [Lliboutry, 1968; Kamb,
1987; Fowler, 1986; Schoof, 2005] and the FE method
[Iken, 1981], but a linear ice rheology was assumed in all
these studies. When presented, the nonlinear extension was
always built from heuristic considerations [Kamb, 1987;
Fowler, 1986, 1987]. In the following, we present the first
results obtained for various power-law exponents ranging
from n = 1 to n = 4.

3.1. Sliding in the Absence of Cavitation

[21] It has been shown through various approaches
[Lliboutry, 1968, 1987; Fowler, 1981; Gudmundsson,
1997b] that, in the case of ice sliding without cavitation
over an undulating bed, the resulting basal drag and mean
sliding velocity verify the following relation:

ub ¼ Astnb ; ð13Þ

where n is the exponent in Glen’s flow law and As is the
sliding parameter in the absence of cavitation. From
dimensional analysis, Lliboutry [1987] and Gudmundsson
[1997b] showed that As / B l and that As should only
depend on three dimensionless parameters: the roughness
r = a/l, where a is the obstacle’s amplitude, the thinness
parameter d = l/(2pE), where E is the glacier thickness,
and n. From results of a model for nonlinear ice behavior,
Fowler [1981] demonstrated that As / 1/rn+1. Note
that Gudmundsson [1997b] translated this result into
As / 1/mmax

n+1 , which is only true in the special case of a
sinusoidal bed where mmax / 2pr.
[22] From these results, one can write the sliding param-

eter in the absence of cavitation as

As ¼
1

2pð Þnþ2

Bl
rnþ1

sG r; d; nð Þ ; ð14Þ

where sG(r, d, n) is a dimensionless geometrical parameter
that depends on the bedrock geometry and the exponent of
Glen’s flow law. From a numerical point of view, an
accurate computation of the geometric parameter sG also
depends on the mesh resolution, as discussed in section 3.4.
Note that equation (14) is only valid for small thinness
value, i.e., for bedrock obstacle wavelengths that are small
in comparison with the ice thickness [Gudmundsson, 1997b;
Schoof, 2002].
[23] From linear perturbation theory, Kamb [1970] de-

duced that limr!0 sG(r, 0, 1) = 1. Using FE modeling,
Gudmundsson [1997b] estimated sG as a Taylor series with
respect to the maximum bedrock slope for n = 1 to n = 5,

for l/E = 0.05, and for roughnesses ranging from r =
0.001 to r = 1.0. In his approach, the mesh height H is
equal to the glacier ice thickness E, the top boundary is a
stress-free surface, and the flow is driven by gravity.
[24] In order to compare our estimates of the sliding

parameter As with the results of Gudmundsson [1997b],
sG is reduced to a constant function, i.e., sG(r, d, n) = c0(n),
which corresponds to the constant term of the Taylor series
used by Gudmundsson [1997b]. For n = 1 to n = 4, Table 1
gives the values of c0(n) for the two approaches. The
relative difference between the two estimates of c0(n) varies
from 1.6% for n = 1 to 22% for n = 4. Such large differences
in the nonlinear cases arise because the problem is solved by
two slightly different approaches: in our analysis, as dis-
cussed earlier, it is not possible to apply a gravitational
driving force as was done by Gudmundsson [1997b]. The
driving force is replaced by an equivalent overburden ice
pressure and a horizontal ice velocity at the top of the
numerical domain. It was not possible to ensure that the
ratio of the shear stress relative to the ice overburden
pressure was equivalent to the ratio used in the simulations
done by Gudmundsson [1997b] for two reasons: first, the
value of the mean surface slope is not given byGudmundsson
[1997b]; second, in our approach, a bed-parallel driven
velocity is applied instead of a shear stress, for the reason
explained in section 2.3. In the remainder of the paper, the
sliding parameter As is calculated at the beginning of each
tests and this value is used to plot the results.

3.2. Linear Behavior and Different Roughness

[25] The friction law obtained for a roughness r = 0.08
and a linear behavior is plotted in Figure 1a (solid line). As
suggested by Fowler [1986], the friction law is plotted as

tb
CN

¼ f
ub

CNAs

� �
; ð15Þ

where As is the sliding parameter without cavitation and C is
the maximum value reached by tb/N. Figures 1b and 1c
show the shape of the cavity roof and the normalized local
effective pressure, respectively, corresponding to 4 specific
points along the curve of the friction law. At low water
pressure (Point 1), �snn > �pw and there is no cavity. At
Point 2, the normal stress reaches the water pressure in
the lee face of the obstacle and a cavity appears. When the
cavity extends past the maximum bed slope on the
obstacle’s stoss side, the basal drag starts decreasing
(Points 3 and 4). Because of a reduced contact area between
ice and bedrock, the normal stress concentrates just past the
point where ice makes contact with the bed, and this stress
concentration becomes larger as the cavity size increases
(see Figure 1c). The peak in normal stress downstream of
the contact point is in accord with stress singularities
predicted by Fowler [1986] and Schoof [2005]. With the
FE method, the value of the simulated normal stress peak is
mesh-dependent so that its maximum value should be used
with care. For the case shown in Figure 1c, the maximum
value of the normal stress is up to 20 times the ice
overburden pressure. Although the value of the normal
stress near the contact point will increase with mesh
refinement, the integral of the normal stress to estimate tb
(10) will converge to a given value.

Table 1. Comparison of c0(n) From Different Studies

n 1 2 3 4

Gudmundsson [1997b] 0.9936 0.5661 0.3294 0.1943
This study 0.9771 0.5140 0.2769 0.1515
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[26] As shown in Figure 1a (dotted curve), the maximum
positive bedrock slope restricted to the area of ice-bed
contact, mmax

contact, is always larger than tb/N. Using this
new variable instead of the maximum bedrock slope, Iken’s
bound remains valid even after the maximum bedrock slope
has been drowned by water in the cavity.
[27] To compare results with different roughnesses, the

friction law for n = 1 for values of r ranging from 0.005 to
0.1 is shown in Figure 2. Within this range, all curves of the
friction law can be superimposed on top of one another if
using a friction law of the form (15), as predicted by Fowler
[1986] using a scale analysis with linear rheology and small
roughness. As a result, the maximum value of the friction
law relative to the maximum slope, C/mmax, is constant in
the range of studied roughnesses. For all tests with linear
rheology, C/mmax = 0.84 ± 0.01, which is in good agreement
with Fowler’s [1986] and Schoof ’s [2005] results.
[28] Moreover, the FE results perfectly superimpose with

the friction law proposed by Schoof [2005], as shown in
Figure 2. In work by Schoof [2005] the friction law is
derived using dimensionless velocity (�ub) and stress (~tb and
~N ), whereas we are using dimensional variables. The fact
that the results superimpose indicates that the function f of
Schoof (~tb/~N = f (�ub/~N )) and our function (15) are identical.
As a consequence, dimensionless results of Schoof [2005] can
be made dimensional by simply changing �ub/~N to ub/(NAs).
Note that the parameter C in Figure 2, which appears in both
axes, has no effect on the shape of the friction law for the linear
case.
[29] Because the numerical method implemented for the

free surface allows only vertical displacement of boundary
nodes, the end point of the cavity is calculated with a
precision that is of the same order as the distance between

two consecutive nodes. As already shown by Iken [1981], a
small error in the position of the end point can lead to a
large error in the estimation of the basal drag. This large
error is certainly, to a large extent, due to a poor estimate of
the stress singularity at the contact point. The scatter of the
FE results shown in Figure 2 can be attributed mostly to this
error. The influence of mesh refinement on the resulting
friction law is discussed in section 3.4.

3.3. Nonlinear Behavior

[30] Numerical tests for roughnesses r = 0.05 and r = 0.08
were performed for power-law exponents n = 1 to n = 4. As
shown in Figure 3, all the resulting friction laws can be,
more or less, superimposed if [tb/(CN)]

n is expressed as a
function of ub/(C

n Nn As). For these tests, the maximum
value of the friction law is C/mmax = 0.84 ± 0.02. Note that
the sensitivity of the friction law to C increases with n. As
discussed earlier, the error in the location of the node where
the cavity reconnects to the bedrock explains the discrep-
ancy between the results. The sensitivity of the position of
that node increases with increasing values of n.
[31] Our results show the following. (1) The maximum

value of tb/N does not depend on the power-law exponent
n; that is, C(n) is constant for a given bed geometry. (2) The
friction law f is not modified by a change of n if the law is
expressed in the form [tb/(CN)]

n = f(ub/(C
n Nn As)), as long

as As = As(n) takes the appropriate value.
[32] An important implication of these results is that the

friction law for nonlinear ice rheology can be easily
extrapolated from the linear case. Only the sliding param-
eter, As(n), must be calculated as a function of n. Note that
determining As(n) is a simple problem in comparison to
obtaining the full curve f of the friction law. Using the FE

Figure 2. Friction law calculated for a sinusoidal bedrock
and a linear ice rheology for different roughnesses ranging
from r = 0.005 to r = 0.1. C = 0.84 mmax was adopted to plot
all curves. Very good agreement is found with the
semianalytical result of Schoof [2005] (solid curve).
The dash-dotted line corresponds to the friction law in the
absence of cavitation ub = Astb

n and the dashed line
indicates the maximum value reached by tb/(CN).

Figure 3. Friction law calculated for a sinusoidal bedrock
for n = 1, 2, 3 and 4 for roughnesses r = 0.05 (open symbol)
and r = 0.08 (solid symbol). C = 0.84 ± 0.02 � mmax was
adopted to plot all results. The solid line shows the
semianalytical friction law obtained by Schoof [2005] in the
case of a linear rheology. Same definition for dashed and
dash-dotted lines as in Figure 2.
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method, As(n) can be obtained even for a complicated
bedrock topography.

3.4. Influence of Mesh Characteristics

[33] In the present study, numerical results may be
influenced by the following mesh characteristics: mesh
refinement and mesh height. The former concerns any
modeling done using the FE technique. The latter is inherent
to our approach: instead of solving the entire ice thickness
above the bedrock (as done for example by Gudmundsson
[1997a]), our domain is truncated some distance away from
the bed and a velocity and ice overburden pressure are
applied there. Section 3.4.1 presents quantitative results to
estimate the effects of mesh refinement on the friction law.
In section 3.4.2 we show that our FE results are independent
of the mesh height H if the height is large enough relative to
the horizontal wavelength of the obstacle.
3.4.1. Mesh Refinement
[34] The influence of mesh refinement on FE results is

tested by comparing the friction law obtained for the three
different meshes described in Table 2. For these tests, r = 0.08
and n = 1. Structured, linear, quadrilateral elements are used.
As shown in Table 2, the influence of mesh refinement on the
sliding parameter As is small (less than 1%). Mesh refinement
also has a small effect on the maximum value of tb/N, as
shown in Figure 4. Thus the three meshes lead to nearly
identical friction laws up to the peak in basal drag. After the
peak, the friction law is more sensitive to mesh refinement. In
Figure 4, the influence of the distance between two consec-
utive mesh nodes clearly affects the friction law. The curve
for the coarser mesh (S1, 21 nodes along the bed) oscillates
around the two other curves obtained with finer meshes (S2
and S3with respectively 51 and 101 nodes along the bed) and
these oscillations increase with cavity size (increasing ub/N).
These oscillations are due to the geometrical mismatch
between the true contact point and the mesh node that
represents the modeled contact point. When the true contact
point and the node lie on top of each other, the estimate of the
friction law for the coarse mesh is close to estimates with
finer meshes. When the true contact point lies about equal
distance between two consecutive mesh nodes, the estimate
of friction is poor. The amplitude of oscillations for the coarse
mesh probably increases with cavity size because normal
stresses become large (see Figure 1c) and are less accurately
estimated. In view of these results, all FE tests done in the
remaining of this study were done using at least 51 nodes to
describe the bedrock-cavity boundary.
3.4.2. Mesh Height
[35] As shown by Gudmundsson [1997b], the sliding

parameter As depends on the ratio of the wavelength l to

the total glacier height E. Since in our approach gravity is
neglected, the domain height H should be kept to a small
value to reduce computing time. The perturbation on the
velocity and stress fields induced by the bedrock obstacle is
a decreasing function of the height above the bed. At some
elevation, this perturbation becomes negligible and the
different fields are constants along the horizontal direction.
Therefore one can find a minimum height for which the
constant boundary conditions applied at the top of the
domain will negligibly influence the final results. This
minimal mesh height is, of course, dependent on the
bedrock roughness. Various meshes with H/l ranging from
0.2 to 2.0 were tested showing that, as long as the mesh
height is greater than H = 0.5l, the friction law does not
depend on mesh height.

4. Ellipsoidal Bedrock and Infinite Slope

[36] All analytical models of cavitation developed so far
are limited by the assumption of bounded bedrock slopes. In
the case of a bed with an infinite bed slope, a concentration
of normal stress near the zone of infinite slope could
generate increasingly large resistive forces, and hence an
unbounded basal drag. This could only occur if the cavity
does not extend past the maximum slope of the bedrock. If,
on the contrary, the cavity extends past the point of
maximum slope, the basal drag should not increase with
increasing sliding speed, and one should observe a decreas-
ing drag with sliding speed as in the case with bounded
slopes. These two possible scenarios leave open the ques-
tion of the existence of Iken’s [1981] bound in the case of an
infinite slope.
[37] In the following calculations we try to answer this

question. To this end, we study the flow of ice over an
ellipsoidal bed characterized by a roughness r = a/l, where
a is the half length of the ellipsoid axis perpendicular to the
mean direction of the flow. The bed is periodic of wave-
length l and within the period is composed of two inverted

Figure 4. Influence of mesh refinement on the friction law
for three different meshes defined in Table 2. Results are for
a sinusoidal bedrock with r = 0.08 and n = 1.

Table 2. Characteristic of the Three Different Sinusoidal-Bed

Meshes

Mesh S1 S2 S3

Number of nodes 441 1581 4141
Number of B. nodesa 21 51 101
DmmaxMesh,

b % 2.42 0.46 10�8

As/(Bl) 0.5994 0.5930 0.5947
CPUc 1 4.2 13.3

aNumber of nodes on the bedrock-cavity boundary.
bDmmaxMesh = (mmaxMesh � 2pr)/2pr.
cRelative to mesh S1.
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half ellipsoids as shown in Figure 5b. At the junction of
the two half ellipsoids the slope is theoretically infinite.
For all these tests, the ice is taken to have a linear
rheology (n = 1).
[38] As shown in Figure 5a, the friction law for an

ellipsoidal bed is slightly different from that obtained for
a sinusoidal bed. First, because of the large negative slope in
the lee face of the ellipsoid, the normalized effective
pressure is null there and a cavity exists even at low water
pressures (Point 1). Second, there is a zone in the vicinity of
the maximum bedrock slope where the cavity ends that is
very unstable (note that Points 3 and 4 are separated by the
same increase in water pressure than any other two points in
the friction law curve shown in Figure 5a). Two interpreta-
tions of the curve in Figure 5a are possible: either there are
some missing points on the curve between Points 3 and 4
which would show the basal drag increasing without bound
after Point 3, or the cavity is not stable when its end point

lies in the vicinity of the maximum bedrock slope. The
following two tests attempt to answer this issue.

4.1. Influence of Mesh Refinement

[39] Several meshes were built such that one node would
always fall exactly at the junction between two half ellip-
soids. The slope at this node is strongly mesh-dependent
and is never infinite. Comparison of results for the same
bedrock geometry but with different levels of mesh refine-
ments should be a good indicator of the influence of the
value of the maximum slope on the friction law.
[40] We compare the results obtained for a bedrock

roughness r = 0.08 using four meshes described in
Table 3, with maximum mesh slopes that vary between 2.4
and 3800. Note the large difference in the maximum slope
value between linear and quadratic boundary elements.
[41] A relative difference of about 15% is found between

the computed sliding parameter As for the four meshes (see
Table 3). This difference is large in comparison to the 1%
difference obtained for the case of a sinusoidal bedrock.
However, despite the large difference in As, all friction laws
calculated with the four meshes are very close, as shown in
Figure 6. The peak value of the friction law C  1.2 does
not depend on the value of the maximum mesh slope. Note

Figure 5. (a) Friction law calculated for the ellipsoidal
bedrock of roughness r = 0.08 and a linear ice behavior
(solid curve). The dotted curve represents the maximum
positive bedrock slope restricted to the area of ice-bed
contact, mmax

contact , over C. The dash-dotted line corresponds to
the friction law in the absence of cavitation. (b) Ellipsoidal
bed and cavity shapes, and (c) normalized local effective
pressure on the bed-cavity boundary for four different water-
pressure levels labeled 1 to 4 in Figure 5a.

Table 3. Characteristic of the Four Different Ellipsoidal-Bed

Meshes

Mesh E1 E2 E3 E4

Element type T3 T6 T6 Q4
Mesh typea U U U S
Number of nodes 1021 2092 3664 5226
Number of B. nodesb 97 97 129 201
mmaxMesh 5.0 1600 3800 2.4
As/(Bl) 0.247 0.267 0.216 0.284

aUnstructured or structured.
bNumber of nodes on the bedrock-cavity boundary.

Figure 6. Friction law calculated for the ellipsoidal
bedrock of roughness r = 0.05 for the four different meshes
described in Table 3. C = 1.2 was adopted to plot all these
curves. Same definition for dashed and dash-dotted lines as
in Figure 2.
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that it was not possible to add points in the region of the
discontinuity even by decreasing the interval of the water
pressure between two steady state solutions. From this
result, one can conclude that the resulting sliding law for
the ellipsoidal bedrock does not depend on the actual
maximum mesh slope.

4.2. Different Roughnesses

[42] To confirm this result, the friction law is calculated
for roughnesses ranging from r = 0.04 to r = 0.12. In all
these tests, the mesh has the same number of elements and
nodes, resulting in the value of the maximum mesh slope to
be proportional to the roughness. Results from these tests
indicate that the sliding parameter can be estimated as

As ¼ Bl
�2� 10�5 þ 0:013r þ 0:0262r2

r2
; ð16Þ

with a root-mean-square error less than 0.03%.
[43] According to Figure 7, the peak value of the friction

law C  1.2 does not depend on the roughness, but the
postpeak decrease does. If one replaces C by the roughness
r in Figure 7, the postpeak curves can be superimposed
(then, of course, the prepeak curves no longer superimpose).
It was not possible to superimpose the complete friction
curves for the ellipsoidal bedrock on one single curve. As in
the case of the sinusoidal bedrock, the postpeak portion of
the friction law is constrained by the maximum positive
bedrock slope restricted to the area of ice-bed contact,
mmax
contact, as shown in Figure 5a (dotted curve). The abrupt

change of the slope around the point of maximum slope
explains the fast decrease of tb/N after this point has been
overtaken by the water cavity. In the case of different
roughnesses, as shown in Figure 7, the prepeak is not
controlled by the roughness because, in all cases, the
maximum slope mmax, even if proportional to r, is very

large. However, just after the point of maximum slope is
overtaken by the cavity, mmax

contact quickly becomes much
smaller, but is still proportional to r. The postpeak friction
law is then controlled by the actual maximum slope mmax

contact,
explaining why the postpeak curves do not superimposed.
Note that we have verified that each postpeak curve
computed in this study is bounded by mmax

contact/C of the
corresponding bedrock roughness. Although not a proof,
results from Figures 6 and 7 show that the friction law
remains bounded in the limiting case of an infinite bedrock
slope.

5. Discussion of FE Results

[44] To characterize the peak and postpeak features of our
periodic tests, we introduce the parameter Dm = mmax/�m,
where �m �4 r = 4 a/l is the mean positive bedrock slope
calculated over the stoss face of the obstacle. The slope
severity index, Dm, indicates how abrupt the slope is for a
given roughness r.
[45] Using this parameter, it appears that Iken’s bound

seems to be less and less relevant as the slope severity index
becomes larger, i.e., C/mmax decreases with increasing Dm.
In other words, for large slope severity index, the upper
limit on drag is a lot less than that predicted by Iken’s
bound. For a sawtooth bedrock (tests done by the authors
but not presented here), C = mmax and Dm = 1, while for the
ellipsoid bedrock Dm is infinite and C is constant and does
not depend on roughness. These two examples can be
viewed as two end-member cases. For the sinusoidal bed-
rock, C = 0.84mmax and Dm = p/2. Note that C = mmax for
the sawtooth bedrock can be obtained analytically
[C. Schoof, personal communication, 2006]. For large slope
severity index, it becomes more and more difficult to reach
the bound because the point of maximum slope is overtaken
quickly by the cavity and then annihilated.
[46] The general pattern of the postpeak curve of our tests

can also be characterized by the slope severity index Dm.
The postpeak basal drag decrease is faster for larger Dm

because larger Dm implies a large reduction of mmax
contact once

the maximum slope has been overtaken by the cavity.
[47] Note that the above analysis using Dm applies to the

case of periodic beds. Its application to nonperiodic beds is
not straightforward.

6. General Conditions for a Sliding Law

[48] From our results obtained on periodic synthetic
bedrocks and from works by others on more general bed
topographies [Fowler, 1987; Schoof, 2005], some general
conditions must be fulfilled by the friction law.
[49] 1. According to our results for the sinusoidal bed and

the nonlinear rheology, an appropriate expression for this
law is a function of the form

tb
CN

� �n

¼ f cð Þ ; ð17Þ

where

c ¼ ub

CnNnAs

: ð18Þ

Figure 7. Friction law calculated for the ellipsoidal
bedrock for different roughnesses ranging from r = 0.04
to r = 0.12. C = 1.2 was adopted to plot all the curves. Same
definition applies for dashed and dash-dotted lines as given
in Figure 2.
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An important aspect of the function f should be that it is
independent of the power-law exponent n if one chooses the
appropriate value for the sliding parameter, As, for each
value of n. With this property results obtained in the linear
case can be easily extended to nonlinear rheology. The
heuristic assumption made by Schoof [2005] that tb/N is a
function of ub/N

n is then confirmed by our results.
[50] 2. For low water pressure, the friction law is tangen-

tial to the straight line obtained in the case of no cavitation,
which can be written as

@f

@c

����
c¼0

¼ 1 : ð19Þ

[51] 3. Here tb/N should reach a global maximum value
C � mmax which is independent of the power-law exponent
n:

@f

@c
¼ 0 ) f cð Þ ¼ 1 8n : ð20Þ

[52] 4. For higher water pressure, after the global maxi-
mum stress is reached at c = cM, the friction law should
decrease for c larger than cM and tb/N should remain
bounded by the maximum bedrock slope restricted to the
area of ice-bed contact, mmax

contact:

tb
N

� mcontact
max : ð21Þ

This latest condition can be seen as the local extension of
Iken’s bound to the actual cavity configuration. Because, in
general, the area of the ice-bed contact is not known a priori,
condition (21) cannot be used to constrain point by point the
postpeak friction law curve.
[53] The four conditions can be seen as general conditions

to be fulfilled by a sliding law. These four conditions

obtained from our numerical results on synthetic periodic
bedrock and also (linear expression of the first but not the
fourth condition) from works by other on more general bed
geometries [Fowler, 1987; Schoof, 2005], should hold even
for more complicated bedrock geometries. As demonstrated
by Schoof [2005], the tail-off of a realistic bed composed of
many different superimposed obstacle sizes and shapes may
be suppressed significantly, so that, on the basis of our
results, no more than (21) can be said regarding the
postpeak behavior of the friction law for a real bedrock.

7. A Friction Law for Glacier Modeling

[54] We now follow the idea of Schoof [2005] who
proposed a phenomenological friction law simple enough
to be implemented in a glacier flow model. Our objective is
not to propose a friction law that reproduces exactly our
numerical results, but to give a formulation that captures the
main features of sliding with cavitation, as enounced by the
four previous general conditions. A possible parameterized
form for the friction law that fulfills these conditions can be
written as

tb
N

¼ C
c

1þ acq

� �1=n

; ð22Þ

where c is given by (18) and the coefficient a is chosen so
that condition (20) is fulfilled for all q,

a ¼ q� 1ð Þq�1

qq
: ð23Þ

[55] The peak value of the sliding law is obtained at cM =
q/(q � 1) which corresponds to the sliding velocity

ub ¼
q

q� 1
AsC

nNn : ð24Þ

In the limiting case where q = 1, the proposed friction law
(22) is equivalent to the one proposed by Schoof [2005].
Schoof, however, predicted that tb/N is a function of ub/N

n

and not a function of ub/(C
n Nn).

[56] In addition to ice rheological parameters n and B,
only three geometrical parameters (As, C, and q) enter in the
phenomenological friction law (22). What values of As, C,
and q should be used for a real bedrock? The sliding
parameter, As, relates ub and tb

n before cavitation occurs.
Given a known bedrock profile and ice rheology, As can be
estimated from FE simulations.
[57] The maximum value of tb/N in the friction law, C, is

a positive value less than the bedrock maximum slope mmax.
Importantly, C is a constant for a given bedrock geometry,
independent of Glen’s flow law exponent, n. Our results
indicate that the ratio C/mmax is a decreasing function of the
slope severity Dm.
[58] The exponent parameter, q, controls the postpeak

decrease of the friction law (Figure 8). The larger q is, the
faster the friction law tends to zero after the peak. Note that,
as shown by Schoof [2005], the postpeak form of the
friction law is not necessarily a monotonically decreasing
function, as in the case of a bedrock consisting of a

Figure 8. Proposed phenomenological friction law for
different values of the parameter exponent q. Using these
axes definition, the shape of the curves is not modified by a
change in the two other parameters C and As. Same
definition applies for dashed and dash-dotted lines as given
in Figure 2.

F02027 GAGLIARDINI ET AL.: FRICTION LAW FOR GLACIERS

9 of 11

F02027



superposition of obstacles with many different wavelengths.
This condition is assumed here for simplicity, but it is not a
general feature of a friction law. Our tests show that q is an
increasing function of Dm. For the sawtooth bedrock, basal
drag increases asymptotically toward a maximum and q =
1.0 is an appropriate value for this geometry. For the
ellipsoidal bedrock, q  3.0 approximately reproduces the
numerical simulations, whereas q  2.0 should be used for
the sinusoidal bedrock. If q = 1.0, there is no peak and
the basal drag tends asymptotically to the maximum value
tb/N = C. This particular case should not be dismissed as it
may yield more stable numerical solutions for models of
glacier flow than a multivalued friction law when q > 1.
[59] From a practical point of view, a method to deter-

mine the three parameters C, q, and As for a real bedrock
topography would be to couple two approaches: (1) use
perturbation models with linear rheology, as done by Schoof
[2005], to determine the corresponding friction law, f, and
then estimate the optimal value of C and q that best fit f; and
(2) use a FE model of the real bedrock without cavities to
calculate As as a function of n.
[60] Determination of the friction law for a real bedrock

would require precise knowledge of the bedrock profile at
the decimeter to tens of meter scale. This information is
usually not available. A few authors [Benoist, 1979;
Echelmeyer and Wang, 1987; Cuffey et al., 1999; Hubbard
et al., 2000] have measured bedrock profiles but only
Benoist [1979] and Hubbard et al. [2000] made measure-
ments at the scale of interest here. All these authors
computed the spectral roughness of subglacial beds which
links the density of bumps to their wave numbers. The
spectral roughness by itself, however, is not sufficient to
estimate all of the parameters in the friction law because
some parameters in the law depend on the maximum slope
of bedrock obstacles, a piece of information not provided
in the spectral roughness. Ideally, in locations where a
sufficiently large area of the bed can be precisely mapped
(i.e., recently deglaciated glacier bedrock), FE calculations
such as done here in combination with analytical methods
could be used to estimate the three geometrical parameters.
With the assumption that the roughness measured in the
forefield of the glacier is representative of the roughness
over ice-covered bedrock, the values of these three param-
eters could be used on a smoothed bedrock profile over
the entire length of the glacier.
[61] Because the proposed phenomenological friction law

is multivalued in the sliding speed and exhibits a maximum
in the value of the basal drag, it cannot be used in
combination with the shallow ice approximation (SIA)
model [Hutter, 1983]. In SIA, basal drag is equated to the
driving stress which may exceed the maximum basal drag
given by the friction law. This problem does not arise with
the unbounded sliding law given by equation (1). For
example, both Le Meur and Vincent [2003] and Pattyn
[1996] use equation (1) as a sliding law but Le Meur and
Vincent [2003], using SIA, equated tb to the driving stress
(r g E sina, where r is ice density, g is gravity, E is ice
thickness, and a is surface slope), whereas Pattyn [1996]
uses tb as an unknown in his basal boundary condition to
determine the sliding speed. Both options are possible with
an unbounded sliding law of the form of equation (1). The

approach of Le Meur and Vincent [2003] is no longer
possible with the present friction law.
[62] Because the proposed friction law depends on the

effective pressure N, a model of the subglacial hydraulic
system will be needed. An estimate of the spatial variation
of the water pressure at the base can be obtained by a simple
parameterized model as in work by Pattyn [1996] or by
coupling the ice-flow model with a more complex model for
the glacier hydrology as proposed by Flowers and Clarke
[2002a, 2002b]. As effective pressure will vary along the
glacier bed and in time, the basal drag computed from the
friction law will not be uniform or constant. This will allow
such processes as stress redistribution to take place over the
glacier bed as has been observed in field studies [e.g.,
Raymond, 1971; Kavanaugh and Clarke, 2001].

8. Conclusions

[63] The existence of water-filled cavity is ubiquitous in
temperate ice sliding over hard bedrock and water cavities
may also be present between ice and soft sediment layers. In
this work, we show that the form of the friction law for
linear ice rheology can be easily extended to nonlinear
rheology. We also show that Iken’s bound still holds in the
case of an infinite bedrock slope. Moreover, a modified
Iken’s bound, which uses the maximum slope of the
bedrock restricted to the area of ice-bed contact, constrains
the value of the basal drag past its maximum value. These
conditions, derived for a periodic bedrock, should hold for
more general bed forms.
[64] From results obtained for synthetic periodic bed-

rocks, we propose a phenomenological friction law
(equation 22) that should be used as an alternative to the
commonly used sliding law ub = Astb

p/Nq which fails to
predict bounded basal drag. Identification of the three
geometrical parameters of the proposed parameterized fric-
tion law will require a modeling effort using the strategy
presented above that combines both analytical derivation of
a friction law (for example using Schoof’s [2005] method)
and our numerical model. This will yield a friction law for
specific sites where bedrock roughness is known.
[65] As demonstrated here and by others [Lliboutry, 1979;

Fowler, 1986; Schoof, 2005], bedrock geometry has a
strong influence on the behavior of the friction law and
thus an accurate description of the bedrock roughness at the
decimeter to meter scale is necessary to make useful
predictions of sliding speed in models of glacier flow.
Additional mapping efforts would be useful to constrain
the sensibility of the friction law parameters to various real
glacier beds. For a given basal drag the sliding speed in our
friction law is multivalued suggesting that this law could
find some applications in glacier surges and fast glacier
flows.

Notation

a half height of obstacle, m.
As sliding parameter without cavity, m Pa�n a�1.
b bedrock elevation, m.
B fluidity parameter, Pa�n a�1.
C friction law maximum value C � mmax.
D strain-rate tensor, a�1.
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E glacier thickness, m.
h cavity roof elevation, m.
H mesh height, m.

mmax maximum bedrock slope.
mmax
contact maximum bedrock slope restricted to the area of

ice-bed contact.
�m mean positive bedrock slope.
n power-law exponent.
n normal upward pointing normal vector to the bed-

cavity boundary.
N effective pressure N = pi � pw, Pa.
p pressure (compressive-positive), Pa.
�pi applied overburden ice pressure, Pa.
pi integrated ice pressure, Pa.
pw water pressure, Pa.
q friction law exponent q � 1.
r bedrock roughness r = a/l.
S deviatoric stress tensor, Pa.
u local horizontal velocity, m a�1.
ub mean sliding velocity, m a�1.
v local vertical velocity, m a�1.
x horizontal coordinate in flow direction, m.
y vertical coordinate, m.
ge invariant of the strain rate, a�1.
d thinness parameter d = l/(2p E).

Dm slope severity index Dm = mmax/�m.
h effective viscosity, Pa a.
s Cauchy stress tensor (compressive-negative), Pa.
tb mean basal drag, Pa.
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Väisälä Foundation of the Finnish Academy. O. Gagliardini was funded by
the French ANR project MIDIGA. D. Cohen was funded by the U.S.
National Science Foundation grant EAR-0229692.

References
Anderson, R. S., S. P. Anderson, K. R. MacGregor, E. D. Waddington,
S. O’Neel, C. A. Riihimaki, and M. G. Loso (2004), Strong feedbacks
between hydrology and sliding of a small alpine glacier, J. Geophys.
Res., 109, F03005, doi:10.1029/2004JF000120.

Baiocchi, C., F. Brezzi, and L. P. Franca (1993), Virtual bubbles and the
Galerkin least squares method, Comput. Methods Appl. Mech. Eng., 105,
125–141.

Benoist, J.-P. (1979), The spectral power density and shadowing function of
a glacial microrelief at the decimeter scale, J. Glaciol., 23, 57–66.

Bindschadler, R. (1983), The importance of pressurized subglacial water in
separation and sliding at the glacier bed, J. Glaciol., 29, 3–19.

Cuffey, K. M., H. Conway, B. Hallet, A. M. Gades, and C. F. Raymond
(1999), Interfacial water in polar glaciers and glacier sliding at �17�C,
Geophys. Res. Lett., 26, 751–754.

Donea, J., and A. Huerta (2003), Finite Element Methods for Flow Pro-
blems, John Wiley, Hoboken, N. J.

Echelmeyer, K., and Z. Wang (1987), Direct observation of basal sliding
and deformation of basal drift at sub-freezing temperatures, J. Glaciol.,
33, 83–98.

Flowers, G. E., and G. K. C. Clarke (2002a), A multicomponent coupled
model of glacier hydrology: 1. Theory and synthetic examples, J. Geo-
phys. Res., 107(B11), 2287, doi:10.1029/2001JB001122.

Flowers, G. E., and G. K. C. Clarke (2002b), A multicomponent coupled
model of glacier hydrology: 2. Application to Trapridge glacier, Yukon,
Canada, J. Geophys. Res., 107(B11), 2288, doi:10.1029/2001JB001124.

Fowler, A. C. (1981), A theoretical treatment of the sliding of glaciers in the
absence of cavitation, Philos. Trans. R. Soc., Ser. A, 298, 637–685.

Fowler, A. C. (1986), A sliding law for glaciers of constant viscosity in the
presence of subglacial cavitation, Proc. R. Soc., Ser. A, 407, 147–170.

Fowler, A. C. (1987), Sliding with cavity formation, J. Glaciol., 33, 255–
267.

Gudmundsson, G. H. (1997a), Basal-flow characteristics of a linear med-
ium sliding frictionless over small bedrock undulations, J. Glaciol., 43,
71–79.

Gudmundsson, G. H. (1997b), Basal-flow characteristics of a non-linear
flow sliding frictionless over strongly undulating bedrock, J. Glaciol., 43,
80–89.

Hanson, B., R. L. Hooke, and E. M. Grace (1998), Short-term velocity and
water-pressure variations down-glacier from a riegel, Storglaciaren,
Sweden, J. Glaciol., 44, 359–367.

Hooke, R. L., P. Calla, P. Holmund, M. Nilsson, and A. Stroeven (1989), A
3 year record of seasonal variations in surface velocity, Storglaciären,
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