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ABSTRACT. The relationship between velocity field and isochrone geometry along a steady flowline of
an ice sheet is examined. The method is analytical and based upon the stream function and its vertically
normalized form, the normalized stream function (NSF). We show that the slope of the isochrones is the
slope of the iso-NSF lines, plus a path term which is the cumulative result of the past trajectory of the ice
particles. We illustrate this path term in three different examples: varying basal melting, varying basal sliding
(Weertman effect) and varying velocity profile around a divide (Raymond effect). The path term generally
counteracts the slope of the iso-NSF lines. In the case of the Raymond effect, it can even lead to depressions
surrounding the bumps if the transition from dome to flank velocity profile is sufficiently abrupt.

1. INTRODUCTION

Radio-echo sounding of the cold Greenland and Antarc-
tic ice sheets has been taking place since the 1960s. Such
observations not only measure the ice thickness and basal
conditions but also determine internal layering. Such layers
are commonly regarded as isochronal layers, i.e. layers of
the same age (Fujita and others, 1999; Hempel and others,
2000). Since these layers represent former ice surfaces, they
potentially contain significant information about the ice flow.
The connection between isochronal layer geometry and

flow fields was originally pointed out by Weertman (1976),
who described the effect of no-sliding to sliding transitions
on these layers. Along such a transition, the increase in basal
horizontal velocity induces an increase in the vertical vel-
ocity at a given depth. As a consequence, isochrones in the
lower part slope towards the bed.
Various other studies established and then employed the

connection between ice flow and isochronal layers. At an
ice divide, Raymond (1983) first showed that the non-linear
rheology of ice gives rise to lower vertical velocities com-
pared to the flank flow. He suggested that this would result
in anticlines in the radar echo layers, which were later ob-
served (Vaughan and others, 1999). The ‘Raymond effect’ has
been exploited to infer past divide-flow changes (Conway
and others, 1999; Martı́n and others, 2006).
A third application has been the inference of surface and

basal mass-balance conditions. The varying depth of shallow
isochrones permits reconstruction of the spatial variation of
the accumulation in various areas. For the near-surface iso-
chrones, ice-equivalent layer depth can be viewed as being
directly proportional to local accumulation rate (e.g. Pinglot
and others, 2001). For slightly deeper layers, one needs to
correct for total strain rate using a one-dimensional model
(Vaughan and others, 1999; Fahnestock and others, 2001),
and also sometimes for horizontal advection of the ice with
two-dimensional or three-dimensional (3-D) models (Nere-
son and others, 2000; Baldwin and others, 2003; Siegert and
others, 2003). Basal melting rates were inferred from basal
isochrones above Lake Ellsworth, West Antarctica (Siegert
and others, 2004).

Despite these uses of isochrone geometry for ice-flow re-
construction, the theoretical relationship between isochrone
geometry and ice flow remains generally unclear. In partic-
ular, it is unclear how much quantitative information is con-
tained in isochrones: an area where theoretical studies are of
use. The steady-state case has been most intensively studied.
It is intuitive that isochrones and streamlines should have a
fairly intimate relationship. For example, in the case of neg-
ligible basal melting, Hindmarsh and others (2006) showed
that over short wavelengths, basal isochrones tend to track
streamlines. However, we need to extend these restrictions in
order to describe the relationship between isochrone geom-
etry and flowlines in the interior of a steady ice sheet. Par-
renin and others (2006) derived an analytical solution for the
slope of isochrones, which helps to understand the influence
of bedrock and surface geometry, spatial accumulation pat-
tern and lateral flow divergence. However, their analysis only
applies when the velocity profiles are spatially uniform as a
function of a normalized vertical coordinate, and therefore
excludes in practice certain cases where the velocity fields
are strictly non-uniform as a result of, for example, changes
in basal sliding or ice mechanical behaviour.
The aim of the present study is to derive an analytical ex-

pression for the slope of the isochrones along the steady ver-
tical flow tube of an ice sheet. The analysis here applies to
cases where the velocity profiles (shape functions) are non-
uniform.
To do this, we derive in section 2 the well-known stream

function of the flow in the general unsteady case, and intro-
duce the normalized stream function (NSF) Ω which is a ver-
tically normalized form of the stream function. In section 3,
we study the steady case with a new coordinate system (π, θ)
referred to as the logarithmic flux coordinate system (Parrenin
and others, 2006), in which particles have a linear trajec-
tory. The isochrone slope formula is expressed in section 4,
and we show that the slope of the isochrones is closely re-
lated to the slope of the iso-Ω lines. It is used to interpret
the isochrone geometry in the case of varying basal melting
in section 5.1, of no-sliding to sliding transitions (Weertman
effect) in section 5.2, or close to ice divides (Raymond effect)
in section 5.3.
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2. GENERAL CONSIDERATIONS IN THE
UNSTEADY CASE
2.1. Basic notations
We consider a flowline of an ice sheet. Time is represented by
t . We write the equations in the (x, z) coordinates where x,
the horizontal coordinate along the flow, is the distance from
the ice divide and z is the vertical coordinate. We suppose
that the horizontal direction of the flow does not depend
on the vertical position and is time-independent, and we
represent the lateral flow divergence by the varying flow tube
width Y (x). In practice, for grounded ice, the direction of the
flow can be determined from the surface elevation gradient.
In this case, the steady assumption for the flow tube means
that the shape of surface elevation contours does not change
with time. However, the analytical development presented
in this paper also applies to other cases (e.g. the flow of ice
in an ice shelf).
The ice-sheet geometry is given by the bedrock elevation

B(x, t ), the surface elevation S(x, t ) and the total ice thickness
H(x, t ) = S(x, t ) − B(x, t ). We suppose that snow densifies
instantaneously, and let the surface accumulation of ice and
basal melting rate at the ice–bedrock interface be a(x, t ) and
m(x, t ), respectively. In other words, we implicitly transform
the vertical real coordinate into a ‘pure ice equivalent’ ver-
tical coordinate. We let ux (x, z, t ) denote the horizontal vel-
ocity and uz (x, z, t ) the vertical velocity of the ice particles.
We also let χ(x, z, t ) represent the age of the ice particle.
We now define several fluxes that will be used in sec-

tion 2.2 to derive the stream function. The partial horizontal
flux qH(x, z, t ) is defined as the horizontal flux passing below
depth z:

qH(x, z, t ) = Y (x)
∫ z

B
ux (x, z

′, t ) dz ′ (1)

with QH(x, t ) = qH(x, S, t ) being the total horizontal flux at
position x and time t . We further define the basal melting
flux as

Qm(x, t ) =
∫ x

0
Y (x ′)m(x ′, t ) dx ′ (2)

and the bedrock uplift flux as

QB(x, t ) = −
∫ x

0
Y (x ′)

∂B
∂t
(x ′, t ) dx ′. (3)

See Table 1 for a list of notation used throughout the paper.

2.2. The stream function
For clarity, in the following formulae we will neglect the
dependencies of the functions on the spatial and temporal
coordinates. They will be shown only when it is of special
interest.
It is well known from the fluid mechanics theory (Massey,

1998) that a plane flowwith a stationary density ρ can be rep-
resented by a stream function ψ. The stream function has an
important physical meaning. For example, the flux through
any curve linking two points A and B is independent of the
chosen curve and is given by the difference ψB−ψA. A corol-
lary of this property is that along a streamline, ψ is constant.
We can extend this idea to a flowline of varying width as

follows. Here, we can subsume the flow tube width Y (x) into
a density, changing in space but not in time, and our ice flow
thus derives in principle from a stream function. The aim of

Table 1. List of symbols

Symbol Definition Equation

Y (x ) Flow tube width
B(x , t ) Bedrock elevation
S (x , t ) Surface elevation
H(x , t ) Total ice thickness
a(x , t ) Surface accumulation rate
m(x , t ) Basal melting rate
ux (x , z , t ) Horizontal velocity
uz (x , z , t ) Vertical velocity
χ(x , z , t ) Age of ice
qH(x , z , t ) Partial horizontal flux (1)
QH(x , t ) Total horizontal flux
Qm(x , z , t ) Basal melting flux (2)
QB(x , t ) Bedrock uplift flux (3)
q(x , z , t ) Stream function (9)
Q (x , t ) Total flux
Ω(x , z , t ) Normalized stream function (11)
ω(x , z , t ) Horizontal flux shape function (13)
μ(x , t ) Basal to total horizontal flux ratio (14)
zΩ(x , Ω, t ) Elevation of iso-Ω lines
uΩ(x , z , t ) Ω velocity (18)
π(x , z ) Logarithmic flux horizontal coordinate (20)
θ(x , z ) Logarithmic flux vertical coordinate (21)
uπ (π, θ) Logarithmic flux horizontal velocity (23)
uθ (π, θ) Logarithmic flux vertical velocity (25)
x0 Initial position of the ice particle
Q0 Total flux at initial position x0
κ (26)
α(x , z ) Path-sign parameter (31)
P (x , z ) Path term (34)
S (π) Sedimentation function (A1)
P (π, θ) Profile function (A2)

this subsection is to derive the stream function of the flow,
i.e. a function q verifying

Yux =
∂q
∂z
, (4)

Yuz = −∂q
∂x

. (5)

To start with, the horizontal velocity can easily be deduced
from the vertical derivative of the partial flux:

Yux =
∂qH
∂z

. (6)

We now deduce the vertical velocity profile from the ice
mass conservation relationship.
We consider a domain (see Fig. 1) delimited by: (1) two

vertical lines at x and x+dx; (2) the bedrock; (3) a horizontal
surface at z; and of course (4) the lateral flow tube walls. The
statement of integrated mass balance for the domain can be
written

uzYdx +
(
m − ∂B

∂t

)
Ydx + qH(x + dx, z, t ) = qH(x, z, t ).

(7)
Taking the limit dx → 0, we obtain

Yuz = −
[

∂qH
∂x

+ Y
(
m − ∂B

∂t

)]
. (8)

We can now easily check that

q(x, z, t ) = qH(x, z, t ) +Qm(x, t ) +QB(x, t ) (9)

verifies Equations (4) and (5), defining the stream function.
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S

Fig. 1. Illustration of the mass conservation equation on a vertical
column truncated at vertical level z.

2.3. The (x , Ω) coordinate system
We define the total flux at position x and time t byQ (x, t ) =
q(x, S, t ). Considering mass conservation over an entire ice
column leads to

∂Q
∂x

= Y
(
a − ∂S

∂t

)
. (10)

Except at the divide whereQ (x, t ) = 0, we define the normal-
ized stream function Ω(x, z, t ) such that the stream function
q is given by

q(x, z, t ) = Q (x, t )Ω(x, z, t ). (11)

This new variable can be related to the horizontal flux shape
function ω through

Ω =
ω + μ

1 + μ
, (12)

with ω defined (Reeh and Paterson, 1988; Hindmarsh and
others, 2006; Parrenin and others, 2006)

qH(x, z, t ) = QH(x, t )ω(x, z, t ) (13)

and with μ being the ratio of the basal flux to the total hori-
zontal flux, i.e.

μ(x, t ) =
Qm(x, t ) +QB(x, t )

QH(x, t )
. (14)

Let us now write the velocity field in terms of Ω. From
Equation (4), the horizontal velocity ux is given by

ux =
Q
Y

∂Ω
∂z

. (15)

From Equations (5) and (10), the vertical velocity uz can
be derived as

uz = −
[(
a − ∂S

∂t

)
Ω +

Q
Y

∂Ω
∂x

]
. (16)

We now assume Ω to be a strictly increasing function of
z for every (x, t ). This corresponds to assuming that there
is no reverse flow. It permits the use of Ω as the vertical
coordinate, and we will call it the stream vertical coordinate.
In the following, we will denote by zΩ(x, Ω, t ) the vertical
coordinate z written as a function of (x, Ω), i.e. the elevation
of the iso-Ω lines.

The temporal variation of Ω following an ice particle, called
here the Ω velocity, is obtained using the chain rule:

uΩ =
∂Ω
∂x
ux +

∂Ω
∂z
uz +

∂Ω
∂t

(17)

which simplifies to

uΩ = −∂Ω
∂z

(
a − ∂S

∂t

)
Ω +

∂Ω
∂t

. (18)

3. THE STEADY STATE AND THE (π, θ)
COORDINATE SYSTEM
In this section, we assume steady state and introduce a new
logarithmic flux coordinate system (π, θ) in which particles
have linear trajectories. This is a similar technique to Parrenin
and others (2006), but with a slightly different definition for π
and θ. Apart from being aesthetically pleasant for mathemat-
ically minded readers, this coordinate system is considerably
easier to work with and to derive the analytical formula for
the isochrone slope in section 4.

3.1. The (π, θ) coordinate system
Since we assume that the ice sheet is in steady state, B(x, t ) =
B(x), S(x, t ) = S(x), H(x, t ) = H(x), a(x, t ) = a(x), m(x, t ) =
m(x), Ω(x, z, t ) = Ω(x, z), etc. From Equation (18), the
Ω velocity becomes:

uΩ = −∂Ω
∂z
aΩ. (19)

We now transform from (x, z) to a new system (π, θ) de-
fined by

π(x) = ln
(
Q (x)
Q ref

)
, (20)

θ(x, z) = ln
(
Ω(x, z)

)
, (21)

where Q ref = Q (x ref) and where x ref is a reference position
along the flowline. In the following, we refer to π as the loga-
rithmic flux horizontal coordinate and θ as the logarithmic
flux vertical coordinate. Note that the change of variable
from x to π requires Q (x) to be an increasing function, and
we will therefore assume that the accumulation a is strictly
positive all along the flowline.
We then define the horizontal and vertical velocity com-

ponents in this new coordinate system: uπ = dπ/dt and
uθ = dθ/dt . The logarithmic flux horizontal velocity uπ can
be derived from the horizontal velocity in the standard x co-
ordinate:

uπ =
1
Q

∂Q
∂x
ux . (22)

Using Equations (10) and (15) leads to

uπ = a
∂Ω
∂z

. (23)

Similarly, we can derive the vertical velocity uθ from uΩ:

uθ =
1
Ω
uΩ. (24)

Replacing uΩ by its expression in Equation (19) leads to:

uθ = −a∂Ω
∂z

. (25)

The parameter κ, defined as either 1/uπ or −1/uθ, will
play an important role in the following:

κ = a−1
∂zΩ
∂Ω

. (26)
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Fig. 2. Effect of varying basal melting. Particle trajectories are thick black dashed curves. (a) Isochrones in the (x, z) coordinates; (b) iso-Ω
lines in the (x, z) coordinates; (c) isochrones in the (x, Ω) coordinates (this diagram is a good illustration of the path effect because iso-Ω
lines are flat); and (d) isochrones in the (π, θ) coordinates.

3.2. Trajectories in (π, θ)
We immediately remark that Equations (23) and (25) sum to
zero. This gives simple linear trajectories for ice particles in
this logarithmic flux coordinate system (π, θ), i.e.

dθ
dπ

∣∣∣∣
c
= −1 (27)

which is equivalent to

θ = π0 − π, (28)

where π0 = ln(Q0/Q ref) and Q0 is the total flux at the initial
position x0 of the particle at the surface. We have used the
notation |c to design the trajectories, reflecting the fact that
they are the characteristics of the hyperbolic age equation.
We can derive a similar relationship by taking the exponen-
tial of Equation (28) to obtain

Q0 = QΩ. (29)

This equation simply represents the fact that the stream func-
tion q is constant along a trajectory in steady state.

4. SLOPE OF ISOCHRONES
We derive in the Appendix an analytical formula for the slope
of the isochrones. We first derive the slope in the (π, θ) co-
ordinate system and then transform it to the (x, Ω) and (x, z)
coordinate systems.
The (π, θ) isochrone slope is given by:

dθ
dπ

∣∣∣∣
χ

=
α

1− α
(30)

where α, the path-sign parameter, determines the sign of the
(π, θ) slope and is given by a simple integration along the
particle trajectory

α = κ−1
∫ x

x0

∂κ

∂x

(
x ′,
Q (x0)
Q (x ′)

)
dx ′. (31)

The slope in the (x, Ω) coordinate is

dΩ
dx

∣∣∣∣
χ

=
α

1− α

uΩ
ux

. (32)

Returning to the physical (x, z) coordinate system, the slope
is

dz
dx

∣∣∣∣
χ

=
α

1− α

1
ux

uΩ
∂Ω/∂z

+
dz
dx

∣∣∣∣
Ω

(33)

andwe remind readers that dz/dx|Ωis the slope of the Ω lines
in physical space. Consequently, from Equation (33), there is
a close relationship between the slope of the isochrones and
the slope of the iso-Ω lines. Isochrone slope is equal to iso-Ω
line slope, plus a term:

P (x, z) = α

1− α

1
ux

uΩ
∂Ω/∂z

. (34)

By comparison to dz/dx|Ω which depends only on the local
variation of the Ω field, this P term will be called the path
term. Indeed, it depends upon the whole history of the ice
particle; it is defined by what happened along its path. This
new formulation of the slope of isochrones shows that every
spatial variation of the normalized stream function Ω will dir-
ectly impact the isochrone geometry. In the case of no basal
melting, the more restrictive statement of Hindmarsh and
others (2006) that over short wavelengths basal isochrones
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Fig. 3. Effect of increased sliding (Weertman effect). The sliding area is situated between 40 km and 80 km. Particle trajectories are thick
black dashed curves. (a) Isochrones in the (x, z) coordinates; (b) iso-Ω lines in the (x, z) coordinates; (c) isochrones in the (x, Ω) coordinates;
and (d) isochrones in the (π, θ) coordinates.

tend to track changes in the velocity profiles is easily inter-
preted in this framework. This means that near the bed the
path term is nearly zero and that dz/dx|Ω is approximately
the isochrone slope.
We note here that a change of ice thickness or a change of

velocity profile have the same impact on isochrone geometry
through the zΩ function. This is a useful way of considering
situations where the flow does not follow the bedrock geom-
etry (e.g. at short spatial wavelengths (Hindmarsh and others,
2006) or when there is dead ice near the bed).
Let us look more closely at the path term. It has been al-

ready discussed in Parrenin and others (2006) in the case
when the velocity profiles are horizontally uniform. In this
study, the impact of spatial variations of surface accumula-
tion rates, ice thickness and flow tube width was discussed.
The first multiplicative factor of the path term is the (π, θ)
slope α/(1−α) where α is related to the integration of ∂κ/∂x
along the particle trajectory from Equation (31). Along the
particle trajectory, a decreasing accumulation a or a positive
∂2zΩ/∂x∂Ω will rotate the isochrone counterclockwise, and
this historical imprint will remain attached to the particle.
The second multiplicative factor of the path term is posi-

tive and will have no influence on its sign. It is the ratio of
a reference vertical velocity uΩ/(∂Ω/∂z) = aΩ and of the
horizontal velocity ux . For this reason, it will be called the
velocity scale factor. The greater the horizontal velocity ux
and the smaller the reference vertical velocity uΩ/(∂Ω/∂z),
the more attenuated the path term. Along a typical particle
journey, this velocity scale factor generally decreases, since
the sinking of the particle mean Ω decreases and the total flux
also increases. Generally, historical imprints are thus diluted
with time.

We may remark that the slope formula Equation (33) pre-
sents a singularity for x = 0: in this case, both α and ux tend
to zero. This uncertainty may be removed by an asymptotic
analysis around the divide, but this is beyond the scope of
the current study.
How may one visualize the path effect? A convenient way

is to look at the isochrones in the (x, Ω) coordinate sys-
tem, where the spatial variations of Ω disappear (see Equa-
tion (32)). One may also look at the isochrones in the (π, θ)
coordinate system, which illustrates the path term corrected
for the velocity scale factor. The reader will become more
familiar with these different visualizations by studying the
illustrations in the following section.

5. ILLUSTRATIONS
We illustrate with three different examples, with changes in
the horizontal and/or velocity profile, the effect of various
parameters on the slope of the isochrones. These examples
are not meant to be completely realistic, but rather simplified
and pedagogical. They will familiarize the reader with the
isochrone slope formula obtained in section 4.
In our examples, the ice thickness is constant along the

flow tube and it is convenient to use the normalized vertical
coordinate ζ defined by

ζ =
z − B
H

. (35)

We will also denote by ωζ the ω variable as a function of
(x, ζ) as opposed to (x, z).
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Fig. 4. Effect of reduced vertical velocity at a dome (Raymond effect), with an exponential transition from dome to flank velocity profiles.
Particle trajectories are thick black dashed curves. Thick white curve is the critical line. (a) Isochrones in the (x, z) coordinates (note the
depressions surrounding the Raymond bump in the middle of the ice sheet); (b) iso-Ω lines in the (x, z) coordinates; (c) isochrones in the
(x, Ω) coordinates; and (d) isochrones in the (π, θ) coordinates. The abscissa axis is discontinuous for this last panel.

5.1. Influence of varying basal melting
In this first experiment, we assume: (1) plug flow; (2) no
lateral divergence (Y = constant); (3) ice thickness to be
constant and equal to 1000m; (4) accumulation rate to be
constant and equal to 0.2ma−1 of ice; and (5) a varying
basal melting of ice (in ma−1)

m(x) = 0.1× x
x1
, (36)

with x1 = 6 km.
Results are plotted in Figure 2. Isochrones sink towards the

bed, mainly because iso-Ω lines also sink towards the bed.
Indeed, while Ω varies linearly on each vertical (because of
plug flow), the value of Ω at bedrock, μ/(1 + μ), increases
with the ratio of basal melting flux μ.
We now consider: what is the path effect associated with

this flow? As seen in Figure 2c, this path effect is positive,
counteracting the sinking of the iso-Ω lines. Indeed, the ver-
tical space between iso-Ω lines increases when x increases,
leading to a positive ∂2zΩ/∂x∂Ω and thus a positive ∂κ/∂x
(since a is constant).

5.2. The Weertman effect revisited
The Weertman effect (Weertman, 1976) which occurs at no-
sliding to sliding transitions and can be observed at the
boundaries of subglacial lakes, refers to the fact that in these
circumstances the isochrones sink towards the bed. For sim-
plicity, we assume that the ice sheet is in steady state, that the

ice thickness is constant and that there is no basal melting.
As a consequence, the Ω and ω variables are equivalent.
A no-sliding to sliding transition corresponds to a transition
from a flow with internal deformation defined by its shape
function z1Ω to a plug flow (defined by z

2
Ω ≡ B + ΩH). If the

change is abrupt, then from Equation (33) we can say that
the jump of the isochrones is equal to the jump of the iso-Ω
lines. Because z1Ω and z

2
Ω are equal at Ω = 0 and Ω = 1, the

maximum jump is obtained at a coordinate Ωcrit such that

∂z1Ω
∂Ω

=
∂z2Ω
∂Ω

(37)

and we note zcrit the corresponding depth before the jump.
Following Leysinger Vieli and others (2007), we refer to the
particle trajectory passing through zcrit as the trajectory in-
tersecting elevation of maximum change (TIEMC).
We illustrate the Weertman effect with a simple ice flow

model with prescribed velocity profile. We assume: (1) no
lateral divergence (Y = constant); (2) accumulation rate to
be constant and equal to 0.03ma−1; (3) no basal melting all
along the flow tube (μ = 0); (4) bed and surface topography
constant and equal to B = 0m and S = 4000m, respec-
tively; (5) full sliding flow (plug flow) from 40 to 80km down-
stream of the ice divide (position x1 and x2, corresponding to
π1 and π2; see Fig. 3); and (6) flow with internal deformation
elsewhere, defined by the horizontal flux shape function

ωSIAζ (ζ) = 1− p + 2
p + 1

(1− ζ) +
1

p + 1
(1− ζ)p+2, (38)
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D t 

D
 

Fig. 5. Example of a trough flanking a Raymond bump from Fletcher
Promontory, Ellsworth Land, West Antarctica. Troughs are on right-
hand side. Data collected on 5 December 2005 using a 4MHz
nominal centre-frequency ground-based ice-penetrating radar.

where p is the exponent of the Glen flow law. Here, we
take p = 3. Such a shape function can be derived from the
shallow-ice approximation for the case of isothermal and
isotropic ice (Lliboutry, 1979; Raymond, 1983; Hindmarsh,
1999).
In reality, and as modelled byHindmarsh and others (2006,

e.g. fig. 7), horizontal stress gradients mean that the shape
function changes over distances comparable to the ice thick-
ness. This can correspond to a large or small change in π, de-
pending upon the distance from the divide. In most cases of
interest (e.g. the onset of an ice stream) the flux will be large.
This implies that the π-transition distance from no-sliding to
sliding will be short and it will be appropriate to model the
jump as abrupt. At first glance, α is no longer defined since
such an abrupt transition in Ω presents a singularity and the
derivative ∂κ/∂x is infinite. This is, however, a known prop-
erty of hyperbolic equations which allows for discontinuities
in boundary conditions and in internal data. Here, the inte-
gral of ∂κ/∂x through the transition is simply equal to the
value of κ after the transition minus its value before. In other
words, α is bounded everywhere in the domain. The places
where α is discontinuous correspond to the places where the
(π, θ) slope of the isochrones is discontinuous.
We now investigate what happens just downstream of the

transition, i.e. the path effect. As we can see in Figure 3a, and
already deduced by Leysinger Vieli and others (2007) from
modelling experiments, the near-basal isochrones above the
sliding area slope towards the bedrock in the downstream dir-
ection, while in the upper part of the ice sheet the isochrones
slope towards the surface. This is a typical path effect which
can be explained by examination of the path term P . In
our modelling experiment, we considered spatially constant
conditions of accumulation rate a, melting rate m and sur-
face and bedrock elevations S and B. Assuming that we are
in the sliding area, iso-Ω lines are flat and the slope of the

isochrones is defined by the path term P , whose sign is that
of α. From Equation (31), we find that the sign of α is deter-
mined by that of ∂κ/∂x (which is the sign of ∂2zΩ/∂x∂Ω)
when the particle crosses the sliding transition. For the par-
ticles that cross the transition above the critical depth zcrit,
∂zΩ/∂Ω increases (∂2zΩ/∂x∂Ω > 0) and thus the slope of
the isochrones is positive. Conversely, for the particles that
cross the transition below the critical depth, the slope of the
isochrones is negative. The two areas of positive and negative
path term are delimited by the TIEMC.

5.3. The Raymond effect revisited
‘Raymond bumps’ (Raymond, 1983) are anticlines in the iso-
chrones found only at ice divides, where the non-linear rhe-
ology of ice gives rise to slower vertical velocities. Using
the notation of this paper, and assuming no basal melting
(Ω = ω), Raymond bumps are characterized by a signifi-
cantly larger NSF Ω in the vicinity of the dome compared
to the flanks. In other words, iso-Ω lines have a negative
slope in (x, z). This is the main reason why isochrones have
a negative slope, following our analytical Equation (33).
We illustrate the Raymond effect with a simple ice flow

model with prescribed velocity profile, based on the Roose-
velt Island (Antarctica) example (Martı́n and others, 2006).
We assumed: (1) no lateral divergence (Y = constant); (2) ac-
cumulation rate to be constant and equal to 0.18ma−1;
(3) no basal melting all along the flow tube; (4) bed and
surface topography constant and equal to B = 0m and
S = 750m, respectively; and (5) flow with internal defor-
mation defined by the following zΩ function:

zΩ(Ω) = kz
D
Ω (Ω) + (1− k )zSIAΩ (Ω), (39)

where zSIAΩ corresponds to the ωSIAζ horizontal flux shape
function as defined in section 5.2, using an exponent p =
6.5. zDω corresponds to the following horizontal flux shape
function:

ωDζ (ζ) = ζ2 (40)

and k is defined

k = exp
(
−x

2

x20

)
. (41)

We set x0 = 450m in our modelling experiment. The values
of x0, ωDζ , ωSIAζ , p and k are consistent with the more real-
istic full-Stokes thermomechanical simulation of Martı́n and
others (2006). The results are illustrated in Figure 4.
The path effect associated with a Raymond bump is of

interest. The sign of the path term P is the sign of α. In
our modelling experiment, the accumulation conditions are
constant in the area around the divide and α is given by

α =
(

∂zΩ
∂Ω

)−1 ∫ x

x0

∂2zΩ
∂x∂Ω

(
x ′,
Q (x0)
Q (x ′)

)
dx ′. (42)

As ∂zΩ/∂x < 0, there is a critical Ωcrit(x) value (correspond-
ing to a critical depth zcrit(x)) for which ∂2zΩ/∂x∂ω = 0.
Above Ωcrit, ∂2zΩ/∂x∂Ω > 0 and the (π, θ) slope increases.
Below Ωcrit, ∂

2zΩ/∂x∂Ω < 0 and the (π, θ) slope decreases.
In our example, as a consequence of the separable form (39),
Ωcrit is constant along the flow tube and corresponds to the
value where the difference zDΩ (Ω)−zSIAΩ (Ω) is maximum.With
our choices of zDΩ (Ω) and z

SIA
Ω (Ω), a numerical approximation

for Ωcrit is 0.305.
It is remarkable that the Raymond effect implies a transi-

tion of velocity profile which occurs over a non-negligible π
distance, contrary to what usually happens in a no-sliding to
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Fig. 6. Effect of reduced vertical velocity at a dome (Raymond effect), with a hyperbolic transition from dome to flank velocity profile.
Particle trajectories are black thick dashed curves. Thick white curve is the critical line. (a) Isochrones in the (x, z) coordinates (note that
there are in this case no depressions surrounding the Raymond bump); (b) iso-Ω lines in the (x, z) coordinates; (c) isochrones in the (x, Ω)
coordinates; (d) isochrones in the (π, θ) coordinates. The abscissa axis is discontinuous for this last panel.

sliding transition (see section 5.2). This is why the discussion
of the path term is more complicated than for this previous
example.
For particles in the upper part of the ice sheet, all their

journey in the Raymond area is above this critical depth,
and therefore P > 0. This means that the path effect has
the opposite outcome to the classical Raymond effect (see
Fig. 4), rotating isochrones towards the surface. The zone of
P > 0 actually extends below the critical depth because of
an inertial effect; it takes time for P to return to zero.
For some particles deposited sufficiently close to the div-

ide, the first part of their journey above the critical depth does
not impact very much on the P term (which is a horizontal
integral) because their horizontal displacement is very small.
Consequently, the net result of their journey is a negative P
term, rotating the isochrones toward the bed. The bump at
the base of Figure 4 reflects the zone for which P < 0, which
is delimited by Ω ≈ 0.15 in the dome area in our example.
Finally, there is a transition between those two areas where

P > 0 and P < 0, for which P = 0. After leaving the
Raymond area, α does not evolve (although the positive scale
factor does) and the transition P = 0 is passively advected
along a trajectory.
The sum of the iso-Ω line slope and the path term slope

leads to narrower bumps in the upper part of the ice sheet
and broader bumps at the base. In our case, the decay to the
flank velocity profile is sufficiently quick that the classical
Raymond effect, defined by ∂zΩ/∂x, does not obliterate the

path effect. As a result, depressions appear around the Ray-
mond bump in the middle of the ice sheet. Such depressions
have been observed at Roosevelt Island, West Antarctica,
(Conway and others, 1999; Martı́n and others, 2006) though
only on one flank of the Raymond bump and in the upper
parts at Fletcher Promontory (Vaughan and others, 1999). A
deeper example from Fletcher Promontory is displayed in
Figure 5.
If the transition from dome to flank velocity profile occurs

over a sufficiently broad area, no depressions are visible
around the Raymond bump. For example, isochrones for a
parameter k defined

k =
1

(x/x0)2 + 1
(43)

are illustrated in Figure 6. The question of which glacio-
logical conditions are necessary for the transition to be suffi-
ciently abrupt for the appearance of depressions is still open.
For example, do these depressions appear with a Glen iso-
tropic rheology? Or is it necessary to involve complex effects
such as sliding just outside the dome area? Such questions
could be answered in future studies using full Stokes ice-flow
models.

6. CONCLUSIONS AND PERSPECTIVES
We have studied the link between the velocity field and
the isochrone geometry along a steady flowline of an ice
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sheet using an analytical method. We determined the stream
function of the flow and defined the normalized stream func-
tion Ω as its vertically normalized form. We further defined a
logarithmic flux coordinate system (π, θ), in which ice parti-
cles have linear trajectories in the steady case. Using this
new coordinate system, we showed that the slope of the
isochrones is equal to the slope of the iso-Ω lines, plus a
path term, which expresses the relevant past history of the
ice layer along its path.
We illustrated this path term in the case of varying basal

melting, varying basal sliding (Weertman effect) and varying
velocity profile at the divide (Raymond effect). We show that
in those examples the path term generally counteracts the
slope of the iso-Ω lines. In the case of the Raymond effect,
it can even lead to depressions on either side of the bumps
if the transition from dome to flank velocity profile is suffi-
ciently abrupt.
This analytical development opens new perspectives to re-

construct the velocity field in a steady-state ice sheet from
measured isochrones. We may attempt, for example, to re-
move the path effect from the slope of the isochrones to
derive the normalized stream function in the domain. The
feasibility of such an inverse method and its application to
radar profiles from Greenland and Antarctica should be stud-
ied in future works.
A further interesting question is how the ice flow can be

constrained by isochronal layers in the full 3-D case. We do
not expect such simple analytical solutions as in the present
study, as there is no simple generalization of the stream func-
tion. The inversion of the flow from isochronal layers will in
this general case be an ill-posed problem, and additional
information from mechanical equations will be needed to
reconstruct the velocity field.
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APPENDIX
SLOPE OF ISOCHRONES
We derive an analytical formula for the slope of the iso-
chrones. The slope depends on the spatial coordinate system,
and will be qualified according to, for example, the (π, θ)
slope or the (x, z) slope. We first derive the (π, θ) slope and
then convert this formula to the (x, Ω) and (x, z) coordinate
systems.
In the following, P and S are two functions of (π, θ), de-

fined as

S(π) =
1
a

(A1)

and

P (π, θ) =
∂zΩ
∂Ω

. (A2)
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A1. Slope in the (π, θ) coordinate system
Consider two particles initially at the upper surface of the ice
sheet at arbitrary neighbouring positions x0, x0 + δx0 (which
correspond to π0, π0 + δπ0). After time Δt the particles will
have positions x, x+δx (which correspond to π,π+δπ) with
elevations z, z + δz (with corresponding θ, θ+ δθ). Our goal
is to derive an expression for the isochrone (x, z) slope by
first deriving the (π, θ) slope. As indicated by the notation,
we will assume that δπ, etc., are small quantities. The proof
which follows is similar to that in Parrenin and others (2006)
(replacing T and ψ by S and P , respectively), with the ex-
ception that (1) P is now a function of π and θ and not just
θ; and (2) the product SP is differentiated with respect to π
and not with respect to θ.
As a consequence of Equation (27), the trajectories in the

(π, θ) space of both particles are two parallel lines with a
slope of−1, separated by the horizontal distance δπ0 (Fig. 7).
This is the fundamental reason why we can easily derive an
analytical expression for the slope of the isochrones. The
(π, θ) slope of the isochrones can be written (assuming that
δπ0 → 0)

dθ
dπ

∣∣∣∣
χ

=
δθ

δπ
=

δπ0 − δπ

δπ
. (A3)

(The notation |χ is used throughout the paper to define con-
stant age, i.e. an isochronal layer.)
To proceed further, we must relate δπ to δπ0. Firstly, we

need to evaluate the normalized time δτπ required for the
second particle to travel from π + δπ0 to π + δπ (see Fig. 7).
When δπ, δπ0 are small, these quantities can be derived from
Equation (23) as:

δτπ = S (π) P (π, θ) (δπ − δπ0) . (A4)

Secondly, we need to evaluate the difference in duration
between the two journeys of the particles, represented by
δτπ0→π , from π0 to π for the first particle and from π0 + δπ0
to π + δπ0 for the second particle. Using Equation (23), we
can determine δτπ0→π to be:

δτπ0→π =
∫ π

π0

[
S(π′)P (π′,π0 − π′)S(π′ + δπ0)

· P (π′ + δπ0,π0 − π′)
]
dπ′. (A5)

If we differentiate the SP product with respect to π, we obtain

δτπ0→π = −δπ0

∫ π

π0

∂(SP )
∂π

(π′, π0 − π′) dπ′. (A6)

By construction, both particles have the same age and there-
fore δτπ0→π = δτπ. This gives

δπ = (1− α)δπ0, (A7)

with

α =
1
SP

∫ π

π0

∂(SP )
∂π

(π′, π0 − π′) dπ′, (A8)

which can also be written in terms of (x, Ω) as

α = κ−1
∫ x

x0

∂κ

∂x

(
x ′,
Q (x0)
Q (x ′)

)
dx ′. (A9)

 Trajectories 

Isochrone

ππ π π π π π π π π

π π

Fig. 7. Illustration of the derivation of the formula for isochrone
slope.

Finally, we replace δπ by (1 − α)δπ0 in Equation (A3) to
reach the first goal of deriving an expression for the (π, θ)
isochrone slope:

dθ
dπ

∣∣∣∣
χ

=
α

1− α
. (A10)

The (π, θ) slope therefore depends on the integration along
the particle trajectory of ∂(SP )/∂π. The initial position of the
particle can be evaluated from Equation (29), and thus the
slope of the isochrone can be estimated directly by integrat-
ing Equation (A8).
We can express α in a different way through an integration

by parts of Equation (A8):

1− α =
1
SP

[
S0P0 −

∫ π

π0

S(π′, π0 − π′)
∂P
∂θ
(π′, π0 − π′) dθ′

]

(A11)
with S0 = S(π0) and P0 = P (π0, θ = 0). From Equation (A7),
it follows that α > 1 corresponds to the fact that isochrone
slope exceeded the vertical, which is not possible for a verti-
cally increasing horizontal velocity. Indeed, such a velocity
field implies ∂2Ω/∂z2 positive for all x, ∂P/∂θ negative and
thus (1 − α) positive from Equation (A11). Hence, we will
refer to α as the path-sign parameter as in general its sign
determines the sign of the isochrone slope in the (π, θ) co-
ordinate system.

A2. Slope of isochrones in (x , Ω) and (x , z )
We can now write the slope of isochrones in the (x, Ω) co-
ordinate system as:

dΩ
dx

∣∣∣∣
χ

=
dθ
dπ

∣∣∣∣
χ

∂π

∂x

/
∂θ

∂Ω
+
dΩ
dx

∣∣∣∣
θ

. (A12)

Now, dΩ/dx|θ = 0, and from Equations (20) and (21) we
obtain

∂π

∂x
=
Ya
Q

(A13)

and
∂θ

∂Ω
=
1
Ω
, (A14)

which gives

dΩ
dx

∣∣∣∣
χ

=
α

1− α

Y
Q
aΩ. (A15)
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Returning to the physical (x, z) coordinate system, we can
write

dz
dx

∣∣∣∣
χ

=
dΩ
dx

∣∣∣∣
χ

/
∂Ω
∂z

+
dz
dx

∣∣∣∣
Ω
, (A16)

which gives the slope of the isochrones in the (x, z) co-
ordinate system as

dz
dx

∣∣∣∣
χ

=
α

1− α

Y
Q
aΩ

/
∂Ω
∂z

+
dz
dx

∣∣∣∣
Ω

. (A17)
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