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ABSTRACT: The influence of eustasy, tectonic deformation and sediment flux as controlling 

parameters on basin stratigraphy and depositional sequence development are largely accepted. Eustasy 

is usually considered as the dominant mechanism of sequence generation, especially for Pleistocene 

age successions. In active subduction margin settings, the high rates of tectonic deformation are 

expected to have a stronger influence on basin fill architecture, while sediment flux is generally less 

well constrained, and therefore less frequently considered. The active Hikurangi subduction margin in 

New Zealand offers the opportunity to quantitatively assess the relative roles of tectonic, climatic and 

eustatic drivers. 

We present a quantitative source-to-sink-like study of the Late Pleistocene succession from the 

Hawke‘s Bay sector of the inner forearc domain (c. 150 ka to Present). The interpretation of a grid of 

high-resolution marine seismic data, onland and offshore core and well descriptions, and the 

integration of geomorphic studies enabled identification of system tracts.  In turn these comprise two 

sea-level-cycle depositional sequences (LPS1 and LPS2), including one complete 100 ka sequence 

(LPS1). Isopach maps of both sequences reveal changes in sediment distribution and preservation that 

reflect the relative roles of tectonic deformation and eustasy. Eustasy dominates development of 
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sequence architecture at relatively short time scales (i.e., < 20-30 kyrs), whereas tectonic deformation 

is increasingly important at longer time scales (≥100 kyrs). Four long-lasting depocenters are 

identified over the inner forearc domain and located in four subsiding basins (Kidnappers, Mahia, 

Lachlan and Motu-o-Kura basins). Significant shifts of the depocenter location in the basins are 

correlated with eustatic sea level changes. Estimates of sediment volumes and masses from isopach 

maps indicate higher mass accumulation rates during climato-eustatic extremes, which we correlated 

to the onland erosional response. 

Sediment distribution and landscape evolution are strongly influenced by the interaction of the 

structural deformation and sediment flux. We present paleogeographic reconstructions for the inner 

forearc domain coincident with two paleoclimatic extremes (Last Glacial Maximum and Holocene 

Optimum). These illustrate the importance of eustatic changes, structural deformation and sediment 

flux on the pattern of sediment distribution, accumulation and sequence architecture. 

 

Keywords : Sequence stratigraphy, sedimentation, forearc basin, active margin, climate, eustasy, 

source to sink, New Zealand. 

 

INTRODUCTION 

Eustasy, climate and tectonic deformation are key parameters that control erosion, sediment supply 

and transport, deposition and preservation and thus stratigraphic patterns in sedimentary basins (Jervey 

1988; Posamentier et al. 1988; Blum and Törnqvist 2000). This is particularly emphasized during the 

Pleistocene as high amplitude climate-driven eustatic changes influence the development of 

depositional sequences. Classical Atlantic-type passive margin settings are characterized by extensive 

continental source regions with relatively subdued topography, simple shelf ramp and upper slope 

morphology reflecting moderate regional subsidence of the continental margin (Payton 1977), 

relatively low sediment supply, and eustatic sea-level changes that control the distribution and 

preservation of sediments (e.g. Vail et al. 1977). In tectonically quiet or passive settings marginal to 

active plate boundaries, the architecture of sedimentary successions reflect interactions between high 

sediment supply, eustatic and climatic changes, and moderate regional uplift and/or subsidence (Saul 
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et al. 1999; Lu et al. 2005; Browne and Naish 2003; Naish et al. 2005; Proust et al. 2005; Duncan et al. 

2000; Gulick et al. 2005). In contrast to these settings, forearc regions of active subduction margins 

are characterized by high rates of active tectonics, spatially and temporally varying uplift and 

subsidence associated with local structural evolution, relatively short, steep gradient sediment 

pathways, and commonly high sedimentation rates. Fault and fold structures control uplift in 

catchment regions, control the structure of sedimentary basins, and create complex topography that 

may in turn influence the distribution of sediments and the architecture of depositional sequences in 

forearc domains. The combined and often inter-related influences and the respective roles of tectonic 

deformation, sediment flux, eustasy, and climate change on topography, accommodation space, and 

stratigraphic architecture, is rarely well illustrated or understood on such active margins (Okamura and 

Blum 1993; Christie-Blick and Driscoll 1995; Catuneanu 2006).  

The upper Pleistocene stratigraphy of the Hawke‘s Bay region of the active Hikurangi subduction 

margin, New Zealand (Fig. 1), represents an ideal location to improve understanding of inner forearc 

sequence architecture in response to climatic and tectonic forcing and its inter-relationship with 

eustasy changes. The region is undergoing rapid tectonic deformation (Beanland et al. 1998; Cashman 

and Kelsey 1990; Barnes et al. 2002; Litchfield and Berryman 2006), and contains an excellently 

preserved record of erosion and sedimentation during a complete high-amplitude climatic-eustatic 

cycle (i.e., since 150 ka – e.g. Lewis 1971a, 1973). Interpretation of extensive data in this region 

enables us to (1) characterize the marine sedimentary architecture beneath the shelf and upper trench 

slope basins (seismic facies and units, stratigraphic architecture, age controls); (2) evaluate terrestrial 

sediment responses to climate change and uplift in the inner forearc foothills and mountainous 

catchments; and (3) integrate these components of the forearc domain into a ―source to sink‖ model. 

These results enabled us to develop two end-member sequence stratigraphic models of the 

paleogeographic evolution of the inner forearc, characteristic of glacial and interglacial conditions. 

Based on this we evaluate the sediment budget of the margin since 150 ka, and explore relationships 

between the marine and non-marine morphostructural evolution. We show that the Late Pleistocene 

evolution of the Hawke Bay forearc domain results from the interaction of both long and short-term 

climatic and tectonic forcing factors.  



 4 

This study presents the interpretation and integration of a large dataset acquired both in the onshore 

and in the marine parts of the forearc domain in the Hawke‘s Bay region (Fig. 2). The onshore data 

were provided by fieldwork as part of this study, as well as published interpretations of fluvial terraces 

and groundwater boreholes. The marine data include an extensive grid of seismic reflection profies of 

variable resolution and depth of penetration (3.5 kHz, boomer, airgun multichannel (MCS)), 

bathymetry data and sediment cores (Appendix 1; Fig. 2).  

 

REGIONAL SETTING OF THE HAWKE’S BAY FOREARC DOMAIN 

Tectonic Evolution and Geomorphic Domains 

The active Hikurangi margin of New Zealand is characterized by oblique subduction of a thickened 

wedge of the oceanic Pacific plate beneath the continental crust of the North Island of New Zealand 

(Australian Plate) (Fig.1). The present day structure of the margin is the result of polyphase tectonic 

evolution. Subduction started during the early Miocene about 25 Myrs ago (Ballance 1976; Pettinga 

1982; Spörli and Ballance 1989; Chanier 1991; Field and Uruski 1997) and tectonic deformation has 

been dominated by thrust faulting, with a Late Miocene-Pliocene phase of shallow extension followed 

by further shortening and inversion (Chanier et al. 1992; Buret et al. 1997, Barnes et al. 2002; Barnes 

and Nicol 2004), and strike-slip deformation along the axial ranges since 1-2 Ma (Nicol et al. 2007 

and references herein). 

The active margin comprises a series of approximately parallel NE-SW-striking domains (Lewis and 

Pettinga, 1993) (Fig. 1D). From west to east these include:  

1) A volcanic arc (Central Volcanic Zone) and backarc rift merging along strike into the 

subsiding Wanganui Basin; 

2) Flat-topped axial ranges representing the frontal ridge (Fig. 3), composed of Mesozoic 

basement rocks that are being uplifted by dextral-reverse faults, and deeply eroded by a 

network of V-shaped river valleys with localized aggradational terraces (Smale et al. 1978; 

Beanland et al. 1998; Litchfield 2003). The emergence of the ranges occurred close to the 

Plio-Pleistocene boundary (Beu et al., 1981; Erdman and Kelsey, 1992), with uplift rates of 

1.0-1.3 mm.yr-1 (Beu et al., 1981; Litchfield and Berryman, 2006);  
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3) Rounded foothills consisting of uplifted and emergent Miocene to Pleistocene marine and 

terrestrial sediments of the formerly-wider forearc basin, deformed by thrust faults and gentle 

folds (Grant-Taylor 1978; Cashman et al. 1992; Beanland et al. 1998).These foothills are 

incised by wide U-shaped river valleys with sets of cut and fill terraces (Litchfield and 

Berryman 2005). Uplift rates for the last 125 ka, derived from fluvial terrace elevations 

(Litchfield and Berryman 2006), range from 3 mm.yr-1 along the Ruahine range-front to <1 

mm.yr-1 further to the east;  

4) An irregular, 20-30 km wide, actively subsiding forearc basin filled by up to 3000m of Mio-

Pliocene deep marine sediments and Plio-Pleistocene shallow marine to fluvial sediments 

(Ballance et al. 1982; Proust and Chanier 2004), and bounded by major thrust and reverse 

faults (Cashman et al. 1992; Beanland et al. 1998; Barnes et al. 2002). The sedimentation rate 

is estimated to have reached 3.6 mm.yr-1 during the last 18 kyr (Litchfield and Berryman 

2006) on the coastal Heretaunga Plains. Except for these plains, the major part of the basin is 

currently submerged beneath Hawke Bay, with subsidence rates of the order of ~1.0-1.5 

mm.yr-1 (Pillans 1986; Proust and Chanier 2004; Cochran et al. 2006). The geometry of the 

active forearc basin is partially controlled by the distribution of major active structural ridges;  

5) An imbricated frontal wedge up to about 160 km wide, the inner part of which comprises 

highly deformed pre-subduction and syn-subduction cover sequences that are partly exposed 

in the emergent coastal ranges (Pettinga, 1982) and along an outer shelf structural high that 

includes the Kidnappers and Lachlan ridges (Barnes et al., 2002, Barnes and Nicol, 2004). The 

outer part of the wedge consists predominantly of trench fill turbidites accreted beneath the 

middle and lower continental slope during the Quaternary (Lewis and Pettinga, 1993; Collot et 

al., 1996). The seafloor deepens very gradually across the shelf, at 0.1-0.2°, to the modern 

shelf edge at about 150 m water depth (Fig. 3). On the slope, where the average gradient is 

about 1°-3°, west-dipping thrust faults form a series of subparallel ridges and basins that are 

uplifting and subsiding respectively at rates of c. <0.5 mm.yr-1 and up to 3 mm.yr-1 (Lewis 

1974; Lewis and Bennett 1985; Lewis and Pettinga 1993). The slope basins typically range in 

size from 5-30 km wide and 10-60 km long (Fig. 3). Infilling of the basins to various degrees 
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by predominantly hemipelagic sediment results in an overall ramp and flat bathymetric profile 

across the continental slope (Lewis 1980; Carter and Manighetti, 2006). The highest trench-

slope basin off Hawke Bay is the Motu-o-Kura Trough, whick lies west of the Motu-o-Kura 

Ridge.  

 

In this study we focus on the sedimentary evolution since 150 ka in region of the inner forearc 

between the axial ranges of the North Island and the toe of the lowstand sedimentary wedge in the 

Motu-o-Kura basin on the upper continental slope. It therefore corresponds to a quasi source-to-sink 

study as a small fraction of the eroded material may escape the domain through hyperpicnal or 

turbiditic flows as illustrated (1) by the presence of terrigeneous deposits in the lower slope-basins 

with mass accumulation rates (MAR) of c. 22.7g.cm-2.kyr-1 (84% of the total MAR for the last 140 

kyrs) calculatd from core MD98-2121(Carter and Manighetti, 2006) (see location on Fig. 3) and (2) by 

recent studies of the Waipaoa river catchment – sedimentary basin, North of Hawke Bay, where 

sediment escape has been evidenced  (Orpin, 2004). 

 

Climatic Evolution 

In southern Hawke‘s Bay, a nearly 200 m deep borehole drilled in the Poukawa basin (Fig. 3), 

provides a complete and detailed record of late Pleistocene vegetation and climate change 

(Shulmeister et al., 2001; Carter, 2002; Okuda et al., 2002). Climatic conditions changed from warm 

and moist (podocarp/hardwood forest) at the last interglacial (Oxygen Isotopic Stage 5) to colder and 

drier (grass and shrub lands) at the last glacial maximum (LGM) and finally to warm and moist at 

present day (Okuda et al., 2002). The drier conditions of the LGM probably resulted from lower 

precipitation and enhanced wind speeds (McGlone, 2001; Shulmeister et al., 2001) associated to a El-

Niño-like conditions with dominance of westerly winds. These are illustrated by the development of 

tussock grassland environment. Palynological studies and climate reconstructions for the Late 

Pleistocene indicate a mean annual temperature decline up to c. 7°C at the LGM (Newnham et al., 

1999 & 2003; Shane and Sandiford, 2003; Shulmeister et al. 2001; Barrell et al., 2005; Alloway et al., 

2007; Wilmshurst et al. 2007). Glacial ice conditions in North Island were limited to the highest crests 
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of the southern axial ranges and to highest volcanoes of the Central Volcanic Zone at the LGM 

(McArthur and Shepherd, 1990; Pillans et al., 1993; Brook and Brock, 2005). No evidence of 

glaciation has been reported in the major segments of the axial ranges, west of the Hawke Bay. 

 

LATE PLEISTOCENE (<150ka) STRATIGRAPHIC UNITS: SOURCE TO SINK 

 

Late Pleistocene sediments are preserved across the source-to-sink depositional profile, including 

fluvial deposits of foothills domain, the actively subsiding forearc basin (coastal plain and offshore 

shelf), and the upper slope Motu-o-Kura Trough.  

Marine Seismic Units and Unconformities 

On the inner shelf boomer and 3.5 KHz profiles reveal flat lying horizons that gradually dip westward 

as they approach the Kidnappers ridge (Figs. 4, 5). On the outer shelf to upper slope late Pleistocene 

prograding lowstand wedge, characterized by sigmoidal reflectors, extends to ~500 m below the shelf 

edge. The seismic reflections are truncated by five major unconformities (S1 to S5) that separate six 

seismic units (U1 to U6) (Table 1). Within these units, eleven seismic facies (Fs1 to Fs11) are 

recognized (Table 2). We present three key boomer profiles from inner Hawke Bay (Lines 6, 8 and 11) 

(Figs. 2, 5) and two 3.5 KHz profiles (AG1 and MD152) from the mid-shelf to upper slope (Figs. 2, 6, 

7). 

 Seismic Unit 1.---U1 forms the acoustic basement to the late Pleistocene seismic units and the 

core of the tectonically active Kidnappers, Lachlan and Motu-o-Kura ridges (Figs. 3, 4). In the latter 

case, internal reflections are highly deformed with an overall 5-10° tilt to the northwest. U1 is 

truncated above by a sharp erosional surface S1 (Fig. 5 and Table 2B). The two-way-travel time 

(TWT) thickness of U1 ranges from 150 ms to over 1.3s TWT. In the inner part of Hawke Bay, U1 is 

comprised of two sub-units (U1a, U1b) separated by a sharp truncation surface dipping 10° to the NW 

(Figs. 4, 5). The lower sub-unit U1a is made up of homogenous, high frequency, parallel reflectors 

(seismic facies Fs1, Tables 1, 2) interpreted as a well-bedded sandstone and siltstone succession. The 

upper sub-unit U1b has a sheet- to wedge-shaped reflector configuration, with low continuity, wavy to 
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chaotic, high amplitude reflections with superimposed channel-shape diffractions that alternate with 

medium continuity, sub parallel, high amplitude reflections (well-bedded) in Fs2-Fs6 (Table 2; Fig. 5).  

The internal unconformity between U1a and U1b, observed beneath the inner shelf, correlates to the 

regional unconformity that separates the Pleistocene Kidnappers Group and the Pliocene Black Reef 

Sandstones Formation onshore at Cape Kidnappers (Proust and Chanier, 2004) (for location refer Fig. 

3). The underlying U1a is correlated to the shallow marine, regressive, sandstones and siltstones of 

early to mid-Pliocene Flat Rock and Black Reef Formations (Harmsen, 1985). In the middle part of 

U1b, a thick package of chaotic reflections correlates to the 90m- thick Clifton conglomerate exposed 

in the coastal cliffs, equivalent to the upper part of the Kidnappers Group (Fig. 5C) Thus, the lower 

half of U1b correlates to the Pleistocene Kidnappers Group deposits, that are made up of over 400 m-

thick conglomerates, sandstones and siltstones strata deposited in shallow marine (inner bay to upper 

slope offshore) and terrestrial (fluvial, braid-fan) environments (Kingma, 1971; Kamp, 1978, 1990; 

Proust and Chanier, 2004). The upper half of U1b corresponds to the fluvial conglomerates and sands 

in the lower part of the Awatoto and Tollemache onshore wells (line 11 collected close to Awatoto 

well, see Figs. 2, 5A, 8). Core sampling from the mid-shelf to upper slope strata by the R/V Marion-

Dufresne in 2006 further corroborates these correlations in the inner bay. Two long piston cores 

MD06-2995 and MD06-2996, of respectively 19 m and 26.8 m, penetrated U1 over the Motu-o-Kura 

ridge, at approximately 500 m of water depth (Fig. 2). These sediments are made up of gas-rich, 

highly compacted, silty mud (Proust et al., 2006). The absence of Bolivinita pliozea and the presence 

of more than 25% of sinistral form of Gr. truncatulinoides in the basal part of MD06-2995 are 

consistent with an age younger than 0.5 Ma (B. Hayward pers. comm., in Proust et al., 2006). The 

absence of Bolivinita pliozea and the presence of dextral T. truncatulinoides in the basal part of 

MD06-2996 (B. Hayward pers. comm. in Proust et al., 2006) are consistent with an age ranging from 

0.5 -0.6 Ma (Fig. 6). Three 1 to 2 m-long piston cores MD06-2998 to3000, penetrated U1 over the 

Kidnappers ridge in 70-90m of water depth (Fig. 2). These sediments correlate to the mid-Pleistocene 

Series (630-400 kyr) noted in Barnes and Nicol, 2004), and confirm the interpretation of U1 as Plio-

Pleistocene in age, but also imply that the whole mid-Pleistocene to Present section is condensed 

below the shelf break, at circa 500 m of water depth (Figs. 4, 6). 



 9 

 Seismic Unit 2.---Beneath the inner shelf,U2 is a 160 ms TWT thick wedge-shape unit thinning 

out eastward against the Kidnappers ridge (Figs. 4, 5) and locally tilted 1-2°NW. Beneath the outer-

shelf and upper slope region, U2 is more than 300 ms TWT thick, lens shaped (Fig. 9A), and locally 

deformed by active structures. U2 lies conformably on surface S1 with evidence of rare onlapping 

reflections beneath the upper slope (Fig. 9A). It is truncated above by an irregular, channeled surface 

(S2) dipping 1° NW in the SE and flattening to the NW (Fig. 9B). 

On the shelf, U2 is made up of facies Fs2 with sub-parallel, low continuity reflections above S1 

passing upward to chaotic reflections with diffractions below S2 (Fig. 5, Table 2). On the outer shelf 

and upper slope, U2 is comprised of three seismic facies (Fs7, Fs8, Fs9) organized in 100ms-thick 

(TWT) lens-shaped seismic reflection packages bounded by conformable high amplitude surfaces that 

are correlated with difficulty around the seismic grid (Fig. 9A). In an individual seismic package, Fs9 

exhibits reflections with a regular sub-parallel configuration and good continuity that pass 

progressively to a sub-parallel, wavy (seismic facies Fs8) configuration in a basinward direction, while 

to landward a reflection free configuration (seismic facies Fs7) is evident. Towards the top of the unit, 

the seismic facies becomes progressively more chaotic. The stacking arrangement of seismic reflection 

packages exhibit an initial retrogradational followed by progradation pattern (Fig. 9A). This 

progradational stacking pattern appears in both the Lachlan and Motu-o-Kura basins, where lens shape 

packages are separated by clear downward shifts (Fig. 9A and 9B). In the Lachlan basin, the 

downward shift trend reveals a SW progradation of packages, along the axis of the basin. 

On the inner shelf, surface S1 can be geometrically correlated from seismic profiles to (1) the large 

and well preserved marine terrace that topped the Kidnappers cliffs, and (2) to the first marine 

incursion observed in the coastal wells, by converting all data at the same scale (well, seismic and 

topographic cross sections - Fig. 8 and 10). In addition to geometric features (e.g.strike, dip), the 

strength of the S1-Kidnappers marine terrace correlation is supported by common features that both 

surfaces share (e.g. straight and sharp wave cut-like erosion of the tilted Kidnappers Group series – 

Fig. 10). The age of the marine terrace at Cape Kidnappers is deduced from (1) its height, 120 to 180 

m above present day sealevel, with respect to localHolocene uplift rates (c.1 to c.2 mm.yr-1), derived 

from younger Holocene marine terraces height (Hull, 1985; Hull 1987), (2) from the loess stratigraphy 
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(three loess layers) that overlies the terrace, which is consistent with the MIS 5 (Hull, 1985 and 

personnal communication), and (3) the observation that the terrace cuts almost horizontally the tilted 

Kidnappers Group (c. 1 to c. 0.45 Ma; Proust and Chanier, 2004). The S1 surface correlates offshore 

to the wave ravinement surface (WR) of the last interglacial (MIS 5e), wedging out against the 

Kidnappers ridge (Lewis, 1971a; Barnes et al., 2002). Seismic facies Fs2 is interpreted as an 

alternation of shallow marine siltstones and sandstones passing upward to stacked lenses of 

channelized terrestrial conglomerates interbedded with sandstone strata. This interpretation is 

supported by the overall coarsening upward succession of shallow marine silty sands and fluvial 

gravels observed in the wells (Fig. 8). This succession is organized into a set of parasequences that can 

be correlated to the MIS5-MIS3 sea level changes. In the outer part of the Hawke Bay seismic facies 

Fs7, Fs8 and Fs9 are interpreted to correspond to a series of massive to well-bedded sandstones and 

siltstones that pass basinward to a set of large scale bedforms interpreted as sediment waves. This last 

facies becomes more chaotic up section. Fs7, Fs8 and Fs9 are arranged into progradational facies 

tracts that are organized into a broad retrogradational and then progradational stack, with two 

landward stepping packages overlain by three seaward stepping packages respectively (Fig. 9A and 

9B). The shallowing upward succession of shallow marine sandstone and siltstone to fluvial 

conglomerates, gives rise to a laterally deepening and vertically shallowing stack of sequences 

comprised of shore-connected, massive sandstones with channels (Fs7), well bedded marine siltstones 

(Fs8) passing basinward to sediment waves (Fs9).  

 Seismic Unit 3.---Beneath the inner shelf U3 is a thin, 10 to 20 ms thick (TWT), slightly concave 

up, discontinuous, sheet drape unit. Reflections onlap at the base onto S2, and are either concordant, or 

truncated above, along S3 (Figs. 4, 5; Table 1). S2 is an irregular truncation surface with channels that 

transition to a concordant surface in a seaward direction from the northern part of the Lachlan basin 

(Figs. 6, 7, 9B) to the offshore. S2 truncates U2 as it approaches the structurally active ridges. 

Nevertheless S2 is not preserved on top of the active ridges (Figs. 5, 7). 

Beneath the shelf, U3 is ~50-100 ms TWT thick, and made up of random alternations of stacked, 

channel shaped, and minor sub-parallel reflections assigned to seismic facies Fs3. On the outer shelf to 

upper slope, U3 is made up of facies Fs9, Fs10, and Fs11. Fs9 exhibits sub-parallel, high continuity, 
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medium amplitude reflections that pass upwards to chaotic, high amplitude reflector configurations in 

Fs10, or in a seaward direction, to wavy, parallel and highly continuous reflections in Fs11 (Fig. 6, 

Table 2). The latter are characterized by long thin and faint lee-side reflections and usually short, thick 

and high amplitude stoss-side reflections. The stacked wavy undulations exhibit an apparent 

progressive landward/upslope migration (S-type sediment wave) (Fig. 6) together with a convex-

upward geometry and a decreasing height and wavelength. Reflection-free configuration patches occur 

randomly into Fs11 on the seaward dipping side of the undulations. The seaward end of Fs11 

coincides with the progressive wedging-out and condensation of its internal reflections as they 

approach the first slope scarp of the imbricate frontal wedge at a water depth of c.500m. 

The S2 surface is an irregular truncation surface with channels incised into lenses of inferred terrestrial 

gravels interbedded with sands. It geometrically correlates to the maximum downward shift in base-

level next to the base of the thickest gravel bed in the coastal wells (Fig. 8). It is interpreted as the last 

sequence boundary (SB) of the last glacial maximum (MIS 2, ~20 kyr). The overlying facies Fs3, on 

the shelf, is interpreted as fluvial, channel belt gravel and overbank sand deposits.  It passes basinward 

to well-bedded marine sands and silts (Fs9, Fig.6) that give rise at the shelf edge to massive sands and 

channels of high amplitude chaotic configurations (Fs10). Below the shelf edge Fs10 passes to wavy 

reflections Fs11. Fs11 geometries are consistent with an extensive field of upslope migrating sediment 

waves (Lee et al., 2002). This interpretation differs from those of Lewis (1971b) and Barnes and 

Lewis (1991), who interpreted these undulations as the extensive Kidnappers slide mass. Our re-

interpretation of the ―Kidnappers slide‖ as a field of sediment waves is based on (1) the absence of 

both a major headscarp wall at the upper end and a shortening zone at the lower end, (2) the good 

continuity of some seismic reflectors on both sides of the supposed fault plane, and (3) the unsusual 

downward attenuation of deformation along fault plane-like features (e.g., Lee et al., 2002)(Fig.6). A 

30 m-long piston core (MD06-2997) penetrated through the whole Fs11 sediment wave package, and 

revealed bioturbated silty to sandy clays with organic rich layers resting over gas-rich liquefied mud. 

The presence of gas at the base of the core is compatible with the base of a reflection free patch seen 

on the 3.5 KHz profile (Fig. 6). Radiocarbon measurements on shell samples taken from two former 

cores, Q942 and S784 (Barnes et al., 1991), penetrating the top of U3, provide respective ages of 
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19,240±310 yrs to 18,060±200 yr (c. 23 ka to c. 21.5 ka in calendar years – Fig. 6). Preliminary tephra 

identification at the uppermost part of MD06-2996, where U3 thins out almost completely (Fig. 6), 

provided age estimations ranging from c.50 to c.30ka (Philip Shane, personal communication). This 

confirms that the upper part of U3 was deposited during the last glacial maximum between c.25 to 

c.21 ka (Pahnke and Sachs, 2006).  

 Seismic Unit 4.---U4 is a 30 ms thick (TWT) wedge-shaped unit that is only represented in inner 

Hawke Bay (Figs. 4, 5). It pinches out to the SE against the west flank of the Kidnappers ridge. It is 

slightly tilted seaward (~1°) except for local deformation along the Kidnappers Ridge (Fig. 5B). U4 

reflections clearly onlap S3 and are truncated above by a sharp and planar erosion surface S4. U4 is 

made up of seismic facies Fs3 with sub-parallel, highly discontinuous, wavy and channel-shape 

reflectors. 

S3 is interpreted as a transgressive surface (TS) onlapped by U4 fluvial sediments inferred to have 

formed during post-glacial sea-level rise. S3 is tentatively correlated to the change from fluvial gravels 

to fluvial sandy gravels at 35m depth in the Awatoto well (Fig. 8). The sandy gravels are bracketed by 

two dated samples, 10247±99yrs BP at base and 7889±114 yrs BP (radiocarbon ages) at top, that 

constrain the late stage of post-glacial sea level rise in the inner part of Hawke Bay (Dravid and 

Brown, 1997). This corresponds more or less to a rapid sea level rise from c. -30m to c. -9m according 

to Gibb‘s sea level curve (Gibb, 1986). 

 Seismic Unit 5.---U5 is a 25-40 ms thick (TWT), bank to lens shape, slightly concave up unit that 

thins out toward the coastline and drapes over the active ridges (Fig. 4). It reaches a maximum 

thickness across the inner shelf in Hawke Bay and immediately landward of the shelf edge, offshore 

Waimarama coast (Figs. 4, 6, 7). U5 internal reflections onlap onto a sharp and planar erosion surface 

of regional extend S4 (Figs. 5, 7). S4 extends across the entire inner bay, truncating all units adjacent 

to Kidnappers ridge (Fig. 5). U5 is bounded above by a concordant surface S5 that dips slightly 

seaward and is overlain by downlapping reflections (Fig. 6). In the inner bay, U5 is comprised of low 

amplitude, average continuity and frequency, sub-parallel reflections of seismic facies Fs4 (Fig. 5, 

Table 2). In the outer bay, U5 is made up of sub-parallel, continuous reflections of seismic facies Fs7 

which drape the undulations of Fs11 below the shelf edge (Fig. 7).  
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The basal S4 planar erosion surface is interpreted as the wave ravinement surface (WR) that developed 

as the sea flooded the area during the postglacial sea level rise (c.20 to c. 7 ka BP; Gibb, 1986; Carter 

et al., 1986; Cochran et al., 2006, Lamarche et al., 2006). Numerous authors have previously 

recognized this prominent surface along the East Coast margin (Lewis, 1973a; Foster and Carter, 

1997; Barnes et al., 2002).  The upper surface (S5) is dipping slightly seaward and is interpreted as the 

maximum flooding surface (MFS) formed as the sea reached its highest elevation at the Holocene 

optimum ~7 ka B.P.  

In the inner shelf, U5 is interpreted as a horizontal, poorly bedded silts and sands succession, probably 

deposited in a high to moderate energy, marine shelf environment (seismic facies Fs4). These deposits 

are time equivalent to the coastal and floodplain carbonaceous silty clays (Fig. 8) preserved at the back 

of a prominent retrogradational gravel beach on land (U4; see also Dravid and Brown, 1997). In the 

outer parts of Hawke Bay, U5 is comprised of Fs7 sub-parallel, continuous reflections that represent 

marine silts and sands. Piston cores MD06-2998 and MD06-3000 probably penetrated U5 where it 

thins out over the Kidnappers Ridge. It is made up of poorly sorted pebbly-muddy sands that may 

correspond to retrogradational shore deposits. 

 Seismic Unit 6.---U6 is a 10-35 ms thick (TWT), sheet drape to lens-shaped unit dipping slightly 

seaward (Figs. 4, 5). U6 drapes most of the shelf and upper slope and, as for U5, thickens markedly 

offshore from the Waimarama coast (Fig. 6). Below the shelf edge, U6 thins out rapidly and can 

hardly be distinguished from U5, as they show almost no internal reflections. The internal reflections 

downlap onto a concordant surface S5 and are either truncated, or gently top-lapped, by the seafloor 

above. 

In the inner parts of Hawke Bay, U6 is made up of low amplitude, oblique parallel to sigmoidal 

reflections in dip direction, and parallel reflections in an along strike direction (facies Fs5) (Fig.5). 

Further offshore, U6 is comprised of sub-parallel, low continuity to reflection free (seismic facies 

Fs8). Below the shelf edge, this facies drapes the undulations observed in U5 and U3 forming a wavy 

seabed.  

On the shelf, facies Fs5 is interpreted as poorly bedded, marine silt deposit prograding towards the 

shelf break. These moderate to low energy deposits are capped inland by coastal and floodplain 
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deposits (Fig. 8). On the upper slope, sediment collected in the down-lapping seismic facies Fs8, from 

the top of cores MD06-2997 and MD06-2998 (Fig. 6) are made up of marine bioturbated silty to sandy 

clays and clayey silts and sands with shell debris. Tephra and shell samples from former shallow cores  

in the same unit (e.g. Q939 and S783) provide ages ranging from 6,644 yr±98 to 1,215±78 yr B.P. 

(Barnes et al., 1991). U11 is interpreted as a prograding marine highstand system tract (HST) 

developed along the MFS since the Holocene optimum (7.2 kyr). 

 

Terrestrial River Terraces and Cover Deposits  

Flights of uplifted fluvial aggradation terraces are well preserved along the major river valleys 

(Tukituki, Ngaruroro, Mohaka, Wairoa) within the foothills domain of Hawke‘s Bay (Litchfield, 2003; 

Litchfield and Berryman, 2005). Aggradation deposits are comprised of sandy gravels derived from 

Mesozoic greywacke basement exposed in the axial ranges. The aggradation gravels are occasionally 

overlain by fluvial (overbank) silts and/or loess beds. Occasional tephras from the Central Volcanic 

Zone (see Fig.1) are intercalated and visibly preserved in the terrace deposits. The terrace cover 

deposits are typically ~6 m-thick but can locally reach up to ~30 m (Litchfield, 2003). Litchfield 

(2003) and Litchfield and Berryman (2005) correlate four major terrace fill units (T1 to T4) between 

catchments along Eastern North Island, using different age calibration methods, including 14C, optical 

simulated luminence (OSL) and tephrostratigraphy. The most extensive and best dated of these 

terraces are T1, T2 and T3 (Fig. 11). In addition to OSL ages of T1 (16.3±1.5 to 23.9±1.8 ka), 

Litchfield and Berryman (2003) have identified the Kawakawa tephra within the terrace fill deposits. 

Age of the Kawakawa tephra is well determined at c. 26.5 ka - Frogatt and Lowe (1990). T1 is topped 

by a thin loess (Loess 1) dated at between 11.2±0.8 to 13.2±0.9 Kyr using OSL and including 

Rerewhakaaitu tephra (c.17.7 ka). Thus, aggradation of T1 started at the end of marine oxygen isotope 

stage (MIS) 3 (c. 30 ka) and finished at c. 15 ka, before the end of MIS 2 (c.13 ka) (Fig. 12).  

The age of T2 aggradation is constrained by the Kawakawa (c. 26.5 ka) and the Omataroa (c. 30.5 ka) 

tephras. T2 formed during the MIS3 cooling stage that occurred at c. 40 ka (Fig. 12). T3 cover  

deposits are dated from 67.6±6.8 to 75.3±5.5 kyr using OSL, and including the Rotoehu tephra. Age of 

the Rotoehu tephra is still subject to some debates but generally varies from c.40 to c.71±6 ka (Pullar 
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and Heine, 1971; Berryman, 1992, Wilson et al., 1992; Lian and Shane, 2000, Shane and Sandiford, 

2003). Two distinctive loess formations top the T3 fluvial deposits. They are identified as Loess 1 

(also T1 loess cover) overlying Loess 2 (39.7±2.5 kyr OSL) (Litchfield and Berryman, 2005). The 

aggradation of T3 terrace occurred during MIS4 (c.59 to c.72 ka), probably from ~80 to c. 60 ka (Fig. 

12). 

Older uplifted terrace remnants, including the Salisbury terrace (Kingma, 1958; Raub, 1985), are also 

locally present in the foothills domain between Ngaruroro and Tukituki catchments. A topographic 

section across the foothills from the Tukituki to the Ngaruroro Rivers reveals the presence of two 

elevated and dissected, remnant terrace surfaces (Figs. 11). The topmost is the widespread Salisbury 

terrace at c.550 m elevation (Fig. 11A). The second, referred to as ―T4‖, is located immediately below 

the Salisbury terrace at c.400 m elevation, and is observed south of Ngaruroro River (Fig. 11B). 

Except for rare examples in other catchments (Litchfield and Rieser, 2005), age control on these 

terraces is lacking but an estimate of the stratigraphic position of these older terraces is possible. By 

combining old terrace elevations with younger age-dated terraces from Litchfield and Berryman 

(2006), it is possible to infer an age ranging from c. 120 ka to c. 100 ka (MIS5) for the T4 terrace and 

an age ranging from c. 150 ka to c. 130 ka (MIS6), for the Salisbury terrace (Fig. 11). The latter 

estimation is compatible with the youngest ages of the underlying sedimentary succession of mid-

Pleistocene age (Raub, 1985; Shane et al., 1996; Paquet 2007) (Fig. 11A). These data are also 

consistent with the average local uplift rates of the foothills domain (c.1.5 to 2.5mm.yr-1, Fig. 11C) 

(Litchfield and Berryman, 2006).  

The phases of terrace aggradation are separated from periods of river incision. The formation of 

terrace cover sequences broadly correlates with late Pleistocene cool/cold periods while incision 

corresponds to warm stages (Figs. 12B, 13B – see Discussion).  

 

TWO MAJOR SEDIMENTARY SEQUENCES CORRESPONDING TO THE LAST TWO 

CLIMATIC-EUSTATIC CYCLES (<150 KYRS) 

Correlation of the sedimentary units and seismic facies to marine sediment cores, Hawke Bay #1 well, 

coastal borehole data, and onland exposures (Appndix 1) enabled us recognise a wide range of 
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sedimentary environments within the deposits across the inner forarc region (Tables 1, 2; Fig. 14). 

These include (1) fluvial channel and overbank (flood plain) gravels, sands and silts; (2) coastal plain 

and lagoonal sands and silts; (3) shoreface gravels and sands; (4) shallow marine sands and silts; and 

(5) upper slope silts and muds. Consideration of the geometry of the marine sedimentary units, their 

unconformities, facies relationships, depositional environments, and age control, and integration of the 

units with coeval fluvial terraces, allow us to identify two major, tens to hundreds of metres thick, late 

Pleistocene climato-eustatic sequences that span the entire inner forearc region from the foothills 

domain to the upper slope Motu-o-Kura basin (Fig. 12; see also Fig. 4). We demonstrate below that 

the lower sequence (Late Pleistocene 1 - LPS1) represents a complete climato-eustatically driven 100 

ka-type depositional sequence corresponding to marine oxygen isotope stages (MIS) 6 to 3 (c. 150 ka 

to 30 ka). The upper sequence (Late Pleistocene 2 - LPS2) corresponds to MIS 2 to 1 (c. 30 ka to 

Present).  

 

Late Pleistocene 1 (LPS1): MIS 6 to MIS 3 (150 to 30 ka) 

Sequence LPS1 is preserved in river valleys and in several onshore-to-offshore basins (Kidnappers, 

Lachlan, Motu-o-Kura) bounded by tectonically active ridges (Fig. 4). The sequence rests 

unconformably on a deformed Plio-Pleistocene substrate (seismic unit U1) that is exposed at the 

seafloor along the Kidnappers, Lachlan and Motu-o-Kura ridges (Fig. 5C). On the shelf, the 

unconformity at the top of U1 is the sharp, planar ravinement surface S1. On the outer shelf and upper 

slope, S1 is an onlap surface that becomes progressively concordant in a basinward direction. The top 

of LPS1 is defined by an extensive surface (S2) characterized by reflector truncations and channel 

incisions. This surface becomes concordant beyond the shelf edge, and is interpreted as a sequence 

boundary.   

Over the inner shelf, within the Kidnappers basin, LPS1is made up of thin basal, deepening up, 

transgressive marine sands overlain in turn by a shallowing upward succession of shallow marine silts 

and sands to floodplain and fluvial sands and gravels (seismic unit U2) (Figs. 5, 8 and 14). From mid-

shelf to upper slope, within the Lachlan and the Motu-o-Kura basins, the sequence exhibits deeper 
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water paleoenvironments, with massive to well-bedded marine sands and silts passing basinward to a 

set of large-scale bedforms interpreted as sediment waves, but with retrogradational and progradation 

geometries that are interpreted to reflect the deepening and shallowing up trends observed on the shelf. 

These trends correspond respectively to lowstand, transgressive, highstand and regressive systems 

tracts of an individual depositional sequence (Figs. 9, 13). Towards the top of U2 in the offshore, 

LPS1 is characterized by a chaotic facies interpreted as channelized and remobilized sediments. The 

substantial volume of sediment involved is attributed to a relative sea level fall immediately predating 

the formation of unconformity S2. 

The age of LPS1 is bracketed by: (1) the age of the condensed section at the base of the sediment 

waves (U1) dated at ca. 500 ka to 600 ka (Proust et al., 2006); (2) the age of the uplifted marine terrace 

at Cape Kidnappers (Lewis, 1971a; Hull, 1985) geometrically projected to S1 and dated at c. 120 ka; 

and (3), the age of the Te Rere tephra (~25 ka) sampled in the upper part of U3 in sediment cores 

(Barnes et al., 1991). We therefore correlate the basal ravinement surface S1 to the last interglacial sea 

level rise that occurred from c. 135 to 125 ka (MIS6 to MIS5). As S1 is a composite surface that 

evolves offshore as a sequence boundary-type surface, we infer that the base of LPS1 corresponds to 

the penultimate glacial sea level maximum fall c. 150 ka (c. -110m). The topmost unconformity S2 

correlates to the LGM ~25 ka. Accordingly, the LPS1 sediments record the last interglacial MIS6 to 

MIS5 period of time, and the overall glacial sea-level fall that occurred from MIS5 to MIS2. These 

correlations are corroborated by two landward stepping offshore units that represent the transgressive 

and early highstand systems tracts of LPS1, overlain by three seaward stepping units that are related to 

the three main stages of the late highstand and regressive systems tracts in LPS1 (MIS5d, MIS5b and 

MIS4) (Figs. 9, 13). 

The development of aggradational cover sequences on terraces T2, T3 and T4 are coeval with the 

deposition of these seaward stepping marine units of LPS1 observed beneath the outer shelf and upper 

slope (Fig. 7). The older Salisbury terrace is considered as the penultimate glacial maximum 

equivalent of the youngest terrace T1. Its offshore equivalent is inferred to be the basal lowstand 

deposits of LPS1 (Figs. 9, 13B). This scenario implies that the terrace strath correlates to the sequence 

boundary unconformity at the base of a 100 Kyr terrestrial -to-marine depositional sequence. 
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Late Pleistocene 2 (LPS2): MIS 2 to MIS 1 (30 ka -Present) 

Sequence LPS2 provides the most accessible and best-resolved record of glacial and interglacial 

environments across the inner forearc region. The sequence lies on the strath of terrace T1 in river 

valleys, on the LGM unconformity S2 on the shelf, and on a concordant surface on the slope. On the 

inner shelf it is draped over both the subsiding basins and the ridges, and comprises four seismic units 

U3, U4, U5, and U6, respectively bounded above by surfaces S3, S4, S5 and the sea floor (Figs. 4, 5, 

13). On the mid shelf and upper slope, in the Lachlan and Motu-o-Kura basins, it comprises three 

seismic units, U3, U5 and U6. The surface S4 merges, locally on the ridges, with the sequence 

boundary S2 and the transgressive ravinement S3.  

On the shelf, LPS2 includes channel fill lenses of lowstand fluvial gravels and overbank silts and 

sands (U3) (Fig. 14). On the outer shelf, the sequence grades upward from well-bedded, transgressive 

marine silts and sands to prograding, shore-connected massive sands with scattered channels. Further 

offshore, beyond the shelf edge, on the upper slope, it is comprised of a field of upslope migrating 

sediment waves made up of gas-rich, bioturbated marine silt (Fig. 6). LPS2 wedges out in the Motu-o-

Kura basin at c. 500 m water depth. 

LPS2 includes the lowstand, transgressive, and highstand components of the present sea-level cycle.  

The lowstand systems tract deposits are overlain by extensive transgressive fluvial sediments (U4) 

deposited during the early stage of the postglacial sea level rise above the transgressive ravinement 

surface S3 (Figs. 13, 14). These sediments are truncated above by a widespread, planar, strongly 

diachronous wave ravinement surface S4, and covered by a thin veneer of coquina sands. Surface S4 is 

onlapped by low energy, marine silts (U5) passing in a landward direction, through a prominent gravel 

beach, to coastal plain silts. The transgressive fluvial sediments together with the onlapping marine 

silts are part of an overall transgressive systems tract. The uppermost sediment package is composed 

of prograding shelf to upper slope silt (U6) downlapping onto a planar maximum flooding surface 

dated at 7.2 ka (S5). These silts transition on land to coastal and flood plain silts and sands with a few 

interclated gravel lenses (Fig. 8). U6 is the presently accumulating highstand systems tract. 
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This sequence stratigraphic interpretation is constrained by dated horizons, including from the base to 

the top: (1) the presence of both Te Rere (c. 25 kyr - Froggatt and Lowe, 1990; Nairn, 2002) in the 

sediment below or next to S4 (Barnes et al., 1991) and  (2) the radiocarbon ages of gastropod shells 

collected from the merged basal unconformity (S2) and marine transgressive surface (S4) dated from 

18,060±200 yr to 19,240±310 yr (Barnes et al., 1991); (3) the ages of other gastropod shells preserved 

in the sediment that overlies the unconformity S4 (Unit 5 & 6), dated from 6,644±98 yr to 1,215±78 yr 

(Barnes et al., 1991); (4) the radiocarbon age of the oldest sample collected in the uppermost part of 

the fluvial TST of LPS2, in the coastal plain areas that surround the Kidnappers basin, dated at 

10,247±99 yr B.P. (Dravid and Brown, 1997); (5) the ages of sediments located immediately below 

and above the maximum flooding surface S5 ranging from c. 9,500 yr B.P. to c. 5,300 yr B.P. in the 

present day coastal area (Gibb, 1986; Carter et al., 1986; Cochran et al., 2006; Dravid and Brown, 

1997); and (6) the ages of the Waimihia and Taupo tephras in terrestrial deposits covering the marine 

highstand deposits in the coastal plains dated at c. 3,450 yr and c. 1,750 yr respectively (Cochran et al., 

2006; Dravid and Brown, 1997). The composite sequence boundary at the base of LPS2 therefore 

correlates to the last glacial maximum incision (c. 30 ka – MIS2), and the transgressive/wave 

ravinement surface correlates to the postglacial sea level rise that occurred from c. 18 ka to c. 7.2 ka 

(MIS1 to MIS2) as proposed by Gibb (1986) (Figs. 8 and 13). The maximum flooding surface, within 

LPS2, is correlated to the end of the last sea level rise at c. 7.2 ka (and later).  

The aggradational cover sediments of Terrace T1 started developing during rapid sea level fall at the 

end of LPS1, and continued into the early stage of sea level rise. The terrace development was 

therefore coeval with the deposition of the lowstand and early transgressive systems tracts in the 

offshore. The river incision that followed the development of T1, commenced during the later stages 

of sea level rise and may be continuing today during the highstand.   

 

SPATIAL AND TEMPORAL VARIATIONS IN SEDIMENT DISTRIBUTION  

 

We compiled isopach maps revealing the thickness of sequences LPS1 and LPS2 (Figs. 14, 15). The 

TWT time intervals were converted to sediment thickness using an average velocity of 1600 m.s-1. The 
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maps highlight the distribution of sediments over the entire Hawke‘s Bay forearc domain from the 

foothills terrace sequences to the toe of the lowstand systems tracts at c. 500 m of water depth.  

 

Sequence LPS1 (150 ka to 30 ka) 

The older sequence is mainly preserved in four main depocentres separated by the tectonically active 

ridges, including the Kidnappers, Mahia, Lachlan, and Motu-o-Kura basins (Fig. 15). It is absent over 

the actively rising Kidnappers and Lachlan ridges, and wedges out onto the western flank of the Motu-

o-Kura ridge. The total volume of sediment preserved in LPS1 is of the order of 340 ± 50 km3.  

The Kidnappers depocentre is a broad asymmetric NE trending syncline with a steep western flank 

along the Napier fault, and a lower-angle eastern flank along the Kidnappers ridge. The sediment 

thickness reaches 160 m beneath the Heretaunga plains (present-day restricted coastal plains), 

decreasing rapidly southward and more progressively in a northward direction. The northern part 

connects to the circular-shape Mahia depocentre where sediment thickness reaches c. 150 m. The 

Mahia depocentre connects to the Lachlan depocentre by a c. 100 m-deep depression corresponding to 

the Lachlan basin syncline. The Lachlan depocentre is located in the southern part of the Lachlan 

basin, and sediment thickness reaches c. 150 m directly west of the Lachlan Bank. The Lachlan 

depocentre connects along the shelf edge to the Motu-o-Kura depocentre where sediment bodies drape 

the outer shelf and upper slope (Fig. 15). The maximum sediment thickness reaches c. 300 m between 

the shelf edge and the Waimarama coast, where active thrust faults disrupt the sediment fill. LPS1 

deposits are also present in the foothills domain as terrace (T2, T3, T4 and Salisbury) cover beds up to 

c. 10 m thick.  

 

Sequence LPS2 (30 ka to present) 

The sequence LPS2 is widely preserved over the inner forearc region (Fig. 16). It thins out, and is 

locally absent, over the major active structural ridges, and it wedges out progressively with depth 

below the shelf edge. In the Kidnappers basin, more than half of the sequence is made up of fluvial 

transgressive deposits, overlain by shallow marine TST and HST. In the Motu-o-Kura basin 

depocentre the sequence is comprised of marine HST and TST that forms a thick wedge. The total 
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volume of sediment preserved in LPS2 is of the order of 140 ± 20 km3. We estimate that the LST 

component corresponds to approximately one third of the total volume (c. 55 ± 8 km3). This 

component includes onshore the 10 m-thick aggradational cover beds of terrace T1 in the foothills 

domain, estimated from fieldwork and former studies (e.g. Litchfield, 2003) and c.30 meter-thick 

gravel deposits in the restricted coastal plains, estimated from average quality onshore seimic data (not 

presented here) tie to Awatoto, Tollemache Orchard and other wells in the Heretaunga Plains (Dravid 

and Brown, 1997; this study). The major part of the LST component is primarily distributed offshore 

into three main depocentres, including the Kidnappers basin (offshore extension of the coastal 

Heretaunga Plains), the southern part of the Lachlan basin, and the Motu-o-Kura basin. In the 

Kidnappers basin LST sediment thickness reaches up to c. 30 m and is deposited in a broad syncline of 

similar shape as LPS1. These sediments thin out to the north and are minor in Mahia basin. In the 

contiguous Lachlan and Motu-o-Kura basins the LST sediment thickness reaches a maximum of c. 30 

m below the shelf edge (Fig. 16).  

The TST/HST component of LPS2 is distributed widely in Hawke Bay, as well as the coastal parts of 

the Heretaunga plain. We estimate that its volume corresponds to about two thirds of the total volume 

of LPS2 (i.e., c. 85 ± 12 km3). Although this component thins slightly over some of the thrust ridges, 

its thickness is relatively less influenced by the active structures and thus its preservation is more 

widespread than for LPS1 or the LST component of LPS2. The TST/HST component reaches c. 60 m 

thickness in the Kidnappers basin, beneath the coastal Heretaunga plains (Awatoto and Tollemache 

Orchard wells, Fig. 8), and it thins rapidly offshore. The Mahia and Lachlan basin depocentres are is 

located above their LPS1 equivalents, with a sediment thickness of about 30 m. The Motu-o-Kura 

TST/HST depocentre is located primarily between the Waimarama coast and the shelf edge (white 

dashed line on Fig. 16), on the hanging wall of active thrust faults. These sediments thin dramatically 

off the shelf, pinching out against the Motu-o-Kura Ridge, and they are not present upstream in the 

foothills domain where river incision is dominating over this period of time.  

 

RECONSTRUCTION OF THE LATE PLEISTOCENE FOREARC LANDSCAPE 
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We present two Late Pleistocene paleogeographic reconstructions, including: (i). a cold, dry period 

during a low eustatic sea level (-120 m) at the Last Glacial Maximum (~20 ka) corresponding to the 

LPS2 lowstand systems tracts (Fig. 17A), and (ii). a warm, moist period at a high eustatic sea level 

comparable to the present mean sea level (~0 m) at the Holocene optimum (~7.2 ka) corresponding to 

the LPS2 late transgressive to early highstand systems tracts (Fig. 17B). These reconstructions are 

derived from the distribution of sediments and facies presented in this study, as well as the 

compilation of data available in the literature (refer Fig. 17).  The maps reveal how sediment dispersal 

is controlled by: (1) a long depositional profile with fluvial deposition from the axial range front (~300 

m elevation) to the outer shelf from where it transitions to marine deposition to the toe of the 

Lowstand wedge (c. -500 m) during the Last Glacial Maximum; and (2) a shorter depositional profile 

with the beginning of long-term fluvial deposition restricted to the coastal floodplain (< 20 m) and 

marine deposition concentrated on the shelf (above -150 m). 

The reconstruction of the depositional environments at the LGM (Fig. 17A) illustrates that fluvial 

gravels and overbank sands and silts were widespread in Hawke‘s Bay. The major rivers in southern 

Hawke‘s Bay (e.g. Ngaruroro, Tukituki) flowed through the Kidnappers basin before joining the 

northern Hawke‘s Bay rivers (e.g. Mohaka, Wairoa) in the Mahia basin, and turning SE into the 

Lachlan basin. The gravels and coarse sands occupied most of the main valleys on land and tapered in 

the narrow connection between the uplifted Kidnappers and Lachlan Ridges (Fig. 17A). This coarse-

grained alluvial domain transitions to a contracted coastal plain, characterized by a high gradient 

shoreface. Such configuration is in accordance with the increase of southerly winds during LGM. This 

shoreface is comprised of a shore-connected, massive sand wedge with scattered channels that may 

correspond either to a delta front sediment wedge or an estuarine sub-tidal mouth-bar complex. This 

interpretation is consistent with tidal amplification induced by the narrowing between the two ridges 

during low sea level. With essentially no submerged continental shelf, the shoreface sands and silts 

rapidly transition, across an abrupt break in slope (Figs. 6, 17A), to a field of fine-grained upslope 

migrating sediment waves on the upper slope. Formation of the sediment wave field in the Motu-o-

Kura Basin may result from (1) the large amount of LGM terrigeneous supply together with the 

relocation of the river outlets at the southern end of the Lachlan Basin, and (2) from the increase of the 
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northward flowingproto-Wairarapa Coastal Current due to a strong inflow of Sub-Antarctic Water 

current (e.g; Carter et al., 1998; Chiswell, 2000, Carter and Manighetti, 2006). 

The reconstruction of the depositional environments at the Holocene Optimum provide a generalized 

view of marine sedimentation in Hawke Bay (Fig. 17B). It is in agreement with the present day 

sedimentation in Hawke Bay (Pantin, 1966) except for coastal plains where potential analogies with 

Holocene are less concievable. Low energy, shallow marine silts and muds cover much of Hawke Bay. 

It is in adequation with the seafloor On land, sedimentation is reduced except in structural depressions 

such as the Poukawa basin (Shulmeister et al., 2001), dominated by a lacustrine depositional 

environment. Sheltered embayments preserve some coarse-grained alluvial gravels at the outlet of the 

major rivers (e.g. Tukituki, Ngaruroro, Wairoa) and fine grained silts and clays associated with 

lagoonal environments (e.g. Heretaunga plains). Deposition of marine sediments is locally condensed 

or absent within Hawke Bay and over structural ridges, including the Kidnappers ridge in the central 

part of the bay and to the west of the Kidnappers Ridge. 

 

LATE PLEISTOCENE SEDIMENT BUDGET  

The mass accumulation rates of late Pleistocene sediments deposited in the inner forearc was 

evaluated by using volume estimations from the isopach maps (Figs. 15, 16) and mean porosity values 

estimated from various porosity curves and varying from 45% to 60% (e.g. Allen and Allen, 2005). 

Error estimates have been determined by evaluating the maximum and minimum values of each 

parameter that are used in the sediment budget calculation (i.e. Velocity, surface, volume, porosity, 

sequence duration). Errors on mass accumulation rates vary from 26% to 39% so values have to be 

understood with care. Nevertheless we believe that general trends are consistent.  

The mass accumulation rates over the Hawke‘s Bay inner forearc domain range from 3.95 1.15 Mt/yr 

(Error: 29%) in LPS1 to 5.67 1.97 Mt/yr ( 34%) in LPS2. In the latter, LST and the combined TST-

early HST accumulation rates reach 5.56 2.18 MT/yr ( 39%) and 5.75 1.80 MT/yr ( 31%) 

respectively.The late highstand sediments are interpreted to record a lower accumulation rate than the 

LST and TST -early HST. High mass accumulation rates on the shelf during the LGM (LPS2 - LST) 
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are attributed to an increase in erosion onland. This increase was also noted by McGlone et al., (1984), 

Newnham et al. (2003), and Harper and Collen (2002) and attributed to the replacement of protective 

vegetation cover (Notofagus – Podocarp forests) by unprotective shrubland and grassland over the 

ranges (McLea, 1990; Newnham and Lowe, 2000; McGlone, 2001, 2002). The higher accumulation 

rate for TST-early HST may be the result of the postglacial commencement of river incision in the 

foothills (Litchfield and Berryman, 2005) and the recycling of LST shelf deposits. These results are in 

agreement with studies of mass accumulation rates in a deeper slope basin, offshore Hawke Bay, 

where the terrigeneous componant doubles during glacial periods (Carter et al., 2001; Carter et al., 

2006). Despite the higher LPS2 mass accumulation rates, and considering the potential errors, it 

appears that the mass accumulation rates are broadly constant over the late Pleistocene with an 

average value of 4.23 1.09 Mt/yr ( 26%). This value is one third of the current suspended sediment 

yield estimations of 12 Mt/yr for the Hawke Bay rivers (c.11 Mt/yr) and one third of the Wairarapa 

Coast (c.1 Mt/yr) (Hicks and Shankar, 2003). This difference can be explained by (1) the occurrence 

of shelf sedimentation outside of our study area, and possible escape or loss of mud from the shelf to 

the deeper slope basins (also not investigated as part of this study) during either storm related and/or 

seismically induced submarine mass wasting, and/or (2) the increase of recent sediment supply due to 

the anthropogenic influence, with post-settlement (century-scale) deforestation and related erosion 

described by Marutani et al. (1999) and Gomez et al. (2001). The first hypothesis concerning dispersal 

and escape of sediment from the study area is documented by the occurrence of terrigeneous deposits 

in the lower slope basins offshore Hawke Bay (core MD97-2121; Carter et al., 2002; Carter and 

Manighetti, 2006) and by recent studies of the Hikurangi margin (Orpin, 2004). The second hypothesis 

has been already proposed for the Poverty Bay shelf north of our study area, where mass accumulation 

on the shelf during Holocene represents only ~10% of the current river sediment supply (Foster and 

Carter, 1997; Orpin et al., 2006). These values are consistant 

 

DISCUSSION 

Implications for Sequence Stratigraphic Models in Active Subduction Margins 
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In contrast to classical Atlantic-type passive margin settings with extensive but relatively subdued 

continental source regions, uplift of the inner Hawkes Bay forearc (axial ranges and foothills) at rates 

of 1-3 mm yr-1 (Litchfield and Berryman 2006) creates substantial youthful topography, steep 

gradients, and promotes erosion with fluvial systems delivering voluminous amount of coarse-grained 

clastic sediment to basin depocentres. The distribution of the sediment across the inner forearc region, 

between sediment source and ―sink‖, clearly reflects complex interactions between eustasy, climate 

change, rapid tectonic deformation, volcanism and variations in sediment flux. Our results provide 

insights into the relative roles of the principal drivers (eustasy, climate, tectonic deformation) that 

control stratigraphic architecture in sedimentary basins, which are typically not easy to decipher on 

active margins (e.g., Christie-Blick and Driscoll 1995).  

During late Pleistocene high-amplitude climato-eustatic cycles the mean rates of sea-level fall and rise 

reached -4 mm.yr-1 and +11 mm.yr-1 over c. 5-10 ka periods, respectively, (Imbrie et al. 1984; Pillans 

et al. 1998; Waelbroeck et al. 2002). In contrast the rates of vertical tectonic deformation associated 

with active structures (ridges and basins) in Hawke‘s Bay range from about -2 to +4 mm.yr-1 

(Berryman 1993; Barnes et al. 2002; Cochran et al. 2006). The difference between these rates implies 

that global glacial-interglacial climate cycles and eustatic change is a first order driver of sequence 

architecture on the convergent margin during late Pleistocene. Whilst tectonic deformation appears to 

be a second order driver, the strength of the tectonic signature on basin development is dependant on 

the duration of the depositional sequence.  

Over sufficiently long periods of time the growth of structural ridges can be sufficient to create uplift 

and subsidence leading to syn-tectonic growth sequences, with structural ridges forming localized 

barriers to sediment transport. This is revealed by the isopach map of sequence LPS1 (Fig. 15), which 

at 100 kyr duration, is sufficiently long for a tectonic signature to be clearly evident in the basin 

geometry. The active deformation across the forearc controls the structure, location and geometry of 

the sedimentary depocentres, as well as the pathways available for drainage and sediment dispersal. 

Although the total width of the inner forearc between source (the crest of the axial ranges) and ―sink‖ 

(the toe of the lowstand wedge) is narrow (c. 125 km) relative to many passive margins, the sediment 

dispersal pathway is a circuitous route along corridors of relative subsidence located between 



 26 

discontinuous, rising, thrust-faulted ridges associated with growing folds. In sequence LPS1, the effect 

of sea level variation on the sediment distribution is thus, relatively attenuated, compared to the 

influence of persistently high rates of tectonic deformation. In addition, the influence of active 

tectonics is also evident by the large amount of terrigenous sediment supply compared to passive 

margins (Milliman and Syvitski, 1992). 

Over the relatively shorter period of time represented by sequence LPS2 (30 ka, and < 20 ka for the 

marine component on the shelf), it is clear that sediment distribution (Fig. 15) is strongly controlled by 

the magnitude and rate of the last sea level rise. Transgressive and highstand marine sediments in this 

sequence are preserved as drape over major structures including the Kidnappers Ridge and the 

Waimarama thrust faults on the offshore, southern shelf. The distribution of the sequence stratigraphic 

systems tracts reflects largely the marine transgression, and the associated changes in regional oceanic 

conditions. Whilst tectonic effects are evident as growth signatures in the post-glacial sequence (e.g., 

Lewis 1971; Barnes et al. 2002; Barnes and Nicol 2004), they mainly felt close to the shoreline, where 

local coseismic uplift events can have a dramatic impact on the coastal environment (e.g., Hull 1986; 

Berryman 1993b).  At millennial and centennial timescales, catastrophic events such as large volcanic 

eruptions, major earthquake-generated landslides and cyclons enhance erosion and may control the 

sediment delivery. 

Terraces aggradation deposits in the eastern foothills of the axial ranges are synchronous with cooling 

periods associated with sea level falls on the shelf and upper slope. Incision by rivers occurs during 

warm periods and sea level rises and/or stillstand/highstand. These temporal relationships differ from 

the traditional models that describe maximum river incision during maximum rate of sea level fall and 

river aggradation during sea level rise (Van Wagoner et al., 1988; Posamentier et al. 1988; 

Posamentier and Vail 1988; Strong and Paola 2006). However, alternative models may explain the 

differences in timing of river incision and aggradation observed in our study area. Such models 

involve either: (1) climate; or (2) both shelf morphology and sea level change as the predominant 

control parameters. 

The first model, developed by Litchfield and Berryman (2005) for the eastern North Island rivers, 

proposes that climate controls sediment supply and stream power (water flux) through time and 
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therefore aggradation and incision in rivers. Thus, aggradation occurred during cool to cold stages as a 

result of: (1) increasing sediment supply to the rivers, due to enhanced erosion and slope instability 

within the cold and deforested axial ranges (Froggatt and Rogers, 1990; McGlone, 2001, 2002; 

Newnham et al., 2003; Shulmeister et al., 2004); and (2) a decrease of stream power due to dryer 

conditions (Shulmeister et al. 2001; Newnham et al. 2003). Incision occurs during warm and moist 

periods (e.g. MIS1), to compensate the effects of both aggradation and tectonic uplift, as: (1) forests 

regenerate in the axial ranges and prevent dramatic erosion; and (2) stream power increases along with 

increasing rainfall rates.  

A second alternative model is based on the impact of the shelf morphology on the stream equilibrium 

profile during a sea level fall (Dalrymple et al. 1998). It proposes that the lengthening of river profiles 

on a broad and low-gradient shelf during sea level fall and lowstand conditions implies an elevation of 

the stream equilibrium profile above the river profile. Such a change corresponds to the creation of 

accommodation space along the river and favors regressive alluvial aggradation. Several examples and 

variations of this model are presented in the literature (Posamentier et al. 1992; Miall 1991; Shumm 

1993; Dalrymple et al. 1998; Woolfe et al. 1998; Browne and Naish 2003).  

The paleogeographic reconstruction of the LGM environment (Fig. 16A) including, rivers and 

sediment pathways at the end of the late Pleistocene regression, show that rivers flowed within the 

Kidnappers basins on a low-gradient emergent shelf, before turning SE to the northern Lachlan basin 

where they finally reached the LGM shoreline (c.-120 m). The initiation of erosional retreat was 

limited because the LGM shoreline did not pass beyond the shelf edge (c.-150 m) and preexisting 

canyons are absent on the shelf (Talling 1998). These conditions, with rivers flowing around the 

Kidnappers ridge, prevailed for most of the late Pleistocene eustatic sea level fall. This particular river 

course implies a significant lengthening of the river profiles. At the LGM, the courses of rivers were 

~110 km longer than exist today in southern Hawke‘s Bay, and ~80 km longer in northern Hawke‘s 

Bay. The Tukituki, Ngaruroro, Mohaka and Wairoa rivers were respectively 250 km, 280 km, 250 km 

and 220 km long at LGM whereas present day profiles are respectively 140 km, 170 km, 170 km, and 

140 km. Such lengthening of river profiles is consistent with the creation of sub-aerial accommodation 

space, as proposed by Dalrymple et al. (1998) and illustrated by Browne and Naish (2003) for the 
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South Island Canterbury plains and shelf. Thus, fluvial aggradation could have occurred in response to 

the lengthening of river valleys and the associated creation of sub-aerial accommodation space during 

eustatic sea level fall. River incision occurred when sea level stopped falling and local uplift in the 

foothills again became the prevalent factor influencing river behavior. Tectonic deformation and sea 

level changes acted together as controlling parameters on fluvial aggradation and incision and the 

timing of their shifts. Nevertheless, the role of climate as a controlling parameter on sediment supply 

and water flux provided to the system cannot be discounted. We believe that the interplay of both 

models is required to explain the evolution of the fluvial network during the late Pleistocene.  

 

6- CONCLUSIONS 

1. A detailed source-to-sink, stratigraphic study of late Pleistocene (< 150 ka) depositional 

sequences in the Hawke‘s Bay region of New Zealand provides constraints for deciphering the 

principal drivers of sequence architecture in the forearc region of a mid-latitude, temperate 

climate, active subduction margins. Sedimentary units and uncomformities were interpreted as 

system tracts and constitutive of two sea-level-cycle depositional sequences (LPS1 and LPS2), 

including one complete 100-kyrsequence (LPS1).  

2. Isopach mapping of both sequences reveals that eustasy and its changes dominate the 

development of sequence architecture and sediment distribution (depocentre location) 

particularly at relatively short time scales (i.e., < 20-30 kyrs), whereas tectonic deformation 

plays an increasingly important role at longer time scales of 100 kyrs or more. Four long-

lasting depocenters are identified over the forearc domain and located into four tectonically 

controlled subsiding basins (Kidnappers, Mahia, Lachlan and Motu-o-Kura basins).  

3. We confirm observations by other workers in this region that in the foothills, fluvial terrace 

aggradation occurred during phases of rapid sea level fall (terraces T1, T2, T3, T4, Salisbury) 

and climate cooling whereas river incision occurred during sea level rise and climate warming. 

The terraces are here correlated with the specific marine components of their respective 

climatic cycles. The sediment partitioning differs from classical models that predict incision 

during falling stages and aggradation during rising stages.  We consider that lengthening and 
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shortening of river profiles during rapid sea level changes modifies the accommodation space, 

whilst climatically induced changes in erosion rate and uplift tune the sediment supply. These 

processes are jointly responsible for the behaviour of the major rivers on this subduction 

margin.  

4. Estimations of mass accumulation rates reveal higher rates during climato-eustatic extremes 

and abrupt transitions as for the LST, TST-early HST (LPS2) period. We correlate this with 

the onland response to climatic and eustatic extreme changes at LGM and Holocene optimum 

and related transition. Estimated late Pleistocene mass accumulation rates are half of the 

present day estimations of the Hawke‘s Bay sediment yield. This can be attributed to sediment 

exportation out of the studied area and/or from a recent increase of sediment supply due to 

anthropogenic deforestation.  

5. Facies distribution within LPS1 and LPS2 along two key sections and hypothetical reconstructions 

of two late Pleistocene environmental extremes, corresponding to glacial and interglacial 

conditions, provide a detailed model of a 100 ka-type depositional sequence for the Hawke‘s Bay 

forearc domain. Postglacial rising sea level tends to restrict sedimentation on the shelf (from c. 0 

m to c. -150 m) whereas glacial falling sea level tends to lengthen the depositional profile from the 

onshore range front (c. 300 m) to the toe of the low stand wedge (c. -500 m).  
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TABLES 

 

Table 1: 

Characteristics of the 6 seismic units (upper and lower boundaries and seismic facies) recognised on 

seismic data covering the offshore Hawke‘s Bay forearc domain. 

 

Table 2: 

Characteristics of the 11 seismic facies recognised on seismic data covering the offshore Hawke‘s Bay 

forearc domain with description, interpretation in sedimentary facies and examples in MCS, Boomer 

and/or 3.5 KHz data. 

 

FIGURE CAPTIONS  

Figure 1:  

Tectonic setting of the active Hikurangi subduction margin. (A) Australian-Pacific plate boundary in 

the New Zealand region. Light gray shading corresponds to submerged continental crust and dark gray 

shading represents the emergent continental crust of the New Zealand micro-continent. (B) 

Arrangement of the major morphostructural elements of the Hikurangi subduction margin in the North 

Island including the Hikurangi Trough, the imbricate frontal wedge emergent in the coastal ranges, the 

Neogene forearc basin domain, the axial ranges of the Frontal Ridge, backarc basin and Pleistocene 

volcanic arc. The dashed line A-A‘ corresponds to the trace of the crustal cross section. (C) Crustal 

cross section A-A‘ modified from Beanland (1995), Begg et al. (1996) and Barnes et al. (2002) 

showing the structure of the central part of the subduction margin. RF: Ruahine Fault; MF: Mohaka 

Fault; KR: Kidnappers Ridge; LB: Lachlan Basin; LR: Lachlan Ridge; MR: Motu-o-Kura Ridge. (D) 

Map showing the main morphostructural elements in the Hawke‘s Bay region. 

 

Figure 2:  
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Location map of seismic surveys, long piston cores and wells used for this study. Seismic profiles and 

topographic sections that appear in figures (sections) are respectively in bold solid and dashed black 

lines with reference to the figure. 

 

Figure 3: 

Map showing the current onshore (Hawke‘s Bay) and offshore (Hawke Bay) morphology and the main 

tectonic structures. The bathymetry contours and digital elevation model are from Collot et al. (1996), 

Lewis et al. (1997) and unpublished data acquired by NIWA. The onshore topographic elevations and 

digital elevation model are derived from the NZTopo Map Series (Land Information New Zealand). 

Location of the calypso core MD97-2121 is provided here (Carter and Manighetti, 2006). 

 

 

Figure 4: 

Schematic sections across the submerged Hawke‘s Bay sector of the forearc domain showing the 

general geometry of the seismic units and unconformities described in this study. (A) Location map 

for cross sections in (B) and (C). Abbreviations:  KB - Kidnappers Basin; MaB - Mahia Basin; LB - 

Lachlan Basin; MoB - Motu-o-Kura Basin; LPS – Late Pleistocene Sequence; S – major 

unconformities; U – seismic unit. (B) Cross section parallel to the slope and passing over the active 

uplifting Kidnappers ridge. U6 and U5 are the only seismic units that can be traced over the ridge in 

the southern part of Hawke Bay. (C) Cross section extending around the north end of the active 

Kidnappers ridge and passing through other major subsiding basins. All seismic units, excepted U4, 

can be traced from the onshore area to the upper slope area (c. 500 m water depth). 

 

Figure 5: 

Interpretation of the inner shelf Boomer profiles from the GSR 05301 survey, showing uninterpreted 

processed data with seismic facies labels (referring to Table 2) and the corresponding interpretation 

with unconformities (S1 to S5) and seismic units (U1 to U6) for (A) line 11, (B) line 8 and (C) line 6 
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(for locations refer to Fig. 2). The vertical exaggeration is approximately x45. The legend (D) shows 

the interpretation of seismic units as system tracts and their correlation to the stratigraphic time chart. 

 

Figure 6: 

Interpretation of the outer shelf to upper slope 3.5 KHz profile from MD 152 survey (Proust et al., 

2006; see location map - Fig. 2), showing uninterpreted profile with seismic facies labels (Fs8 to Fs 

11) and the corresponding interpretation with unconformities (S1, S2, S4, and S5), seismic units (U1b, 

U2, U3, U5 and U6). The legend shows the interpretation of seismic units as system tracts and their 

correlation to the stratigraphic time chart. On the northwestern part, unconformity S1 is projected from 

multi-channel seismic profiles #05 from TAN 0313 survey and #28 from 05CM survey (Multiwave 

2005; see S1 on Fig. 9). Cores S783, S784, Q939 and Q942 (Barnes et al., 1991) are orthogonally 

projected southward on the profile of c.500m. The vertical exaggeration is approximately x35 with 

depth conversion assuming an average velocity in the water column of 1500 m.s-1. The magnification 

of the profile on the upper right shows the continuity (arrows) of some acoustic reflections through the 

―fault-like‖, weakly reflective zones.  

 

Figure 7: 

Interpretation of the inner to outer shelf 3.5 KHz profile AG#1 from AG&S survey (Conquest 

Exploration 1988; see location map - Fig. 2), showing raw data profile and the corresponding 

interpretation with unconformities (S1 to S5) and seismic units (U1 to U6). Insert shows the 

interpreted boomer line 8 that allows correlation between the inner and outer shelf. The location of 

LGM shoreline is indicative and corresponds to the lower limit of sub-aerial erosion-like features 

visible immediately westward, on which postglacial deposits show transgressive onlaps. It is also in 

accordance with the documented LGM sealevel at c. -120m, corrected from local tectonic uplift 

(Imbrie et al., 1984; Waelbroeck et al., 2002). The vertical exaggeration is approximately x100. 

 

Figure 8: 
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Lithological logs of Tollemache Orchard and Awatoto wells (for locations refer Fig. 2), modified from 

Dravid and Brown (1997). The figure depicts the evolution of the interpreted depositional 

environments, the position of dated samples, and the proposed correlation to both the seismic 

stratigraphy from Boomer interpretations and the oxygen isotope stratigraphy and curve (Lisiecki and 

Raymo 2005; Waelbroeck et al. 2002; Imbrie et al. 1984). The correlation to the oxygen isotope 

stratigraphy is based on: (1) available dated samples; (2) the succession of depositional environments 

that fit to the trends observed on the oxygen isotope curve; and (3) the occurrence of marine deposits 

at the base of the section that we assume to be last interglacial in age. 4th and 5th order sequence 

stratigraphy is proposed with black and white triangles and grey rectangles figuring respectively 

prograding, retrograding and aggrading phases. 

 

Figure 9: 

Interpretation of the outer shelf to upper slope multi-channel seismic profiles #29 (A) and #41 (B) 

from the 05CM survey (Multiwave 2005; see location map - Fig. 2), showing the migrated profile and 

the corresponding interpretation with unconformities (S1, S2, S4, and S5) and seismic units (U1, U2, 

U3, U5 and U6). Dashed and solid bold lines correspond respectively to maximum flooding surfaces 

and sequence boundaries. Landward and seaward stepping trends within LPS1 are indicated. The 

vertical exaggeration is approximately x10. 

 

Figure 10  

Geometric correlation between surface S1 identified on high resolution Boomer profiles and the 

uplifted 120 ka marine terrace overlying the Pleistocene Kidnappers Group in the southern Hawke Bay 

coastal area. (A) Map showing the isocontours of S1 as determined from Boomer profile (values in 

meters bsl), the remnants of the uplifted 120 ka marine terrace as identified from geological mapping, 

and the location of the section XX‘ (B) and the position and orientation of the picture (C). (B): XX‘ 

section showing the geometric correlation between S1 and the strath surface of the 120 ka marine 

terrace using Boomer interpretations, topographic data and geological mapping. (C) Photograph of the 

coastal cliffs of southern Hawke Bay, taken 1 km SW from Black Reef and looking to the West. The 
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photo shows the almost flat surface of the uplifted 120 ka marine terrace overlying the NW tilted 

Pleistocene Kidnappers Group (Photo by F. Paquet). 

 

Figure 11: 

Topographic sections across the foothills domain (see location map – Fig. 2) that summarize the 

occurrence of the major fluvial terraces. (A) transverse profile across major southern Hawke‘s Bay 

river valleys (Tukituki, Waipawa, Makaroro and Ngaruroro) showing: the location of age calibrated 

fluvial terraces T1, T2 and T3 (from Litchfield and Berryman 2005), the location of undated older 

terraces (T4 and Salisbury terrace), the uplift rate estimations U (from Litchfield and Berryman 2006) 

and the stratigraphic log of the Pleistocene substratum (Makaroro section) with age calibrated tephras 

(Shane 1994). (B) Longitudinal profiles of the river bed (RB) terraces, T1, T3 and T4 along the 

Ngaruroro valley and corresponding uplift rate estimations using method from Litchfield and 

Berryman (2006). 

 

Figure 12: 

(A) Age estimation of undated older terraces T4 and Salisbury, using their elevation at the same point 

of the stream profile, assuming constant uplift rates (U) and similar conditions of formation. (B) 

Correlation of fluvial aggradation periods within valleys to the oxygen isotope stratigraphy and mean 

sea level curve (Lisiecki and Raymo 2005; Waelbroeck et al. 2002; Imbrie et al. 1984) using age 

calibrated samples (Litchfield and Berryman, 2005; Litchfield and Rieser, 2006) and age estimation of 

the T4 and Salisbury terraces. 

 

Figure 13: 

Schematic sections across the Hawke‘s Bay forearc domain depicting the ―source to sink‖ 

interpretation of seismic units (U2 to U6) and fluvial terraces (T1 to Salisbury, on section B) as system 

tracts and the correlation to the oxygen isotope stratigraphy and mean sea level curve (Lisiecki and 

Raymo 2005; Waelbroeck et al. 2002; Imbrie et al. 1984). (A) Cross section parallel to the slope and 

passing over the actively uplifting Kidnappers ridge. (B) Cross section extending around the north end 
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of the Kidnappers ridge and passing through the major subsiding basins, from the axial range front to 

the upper slope area (~500 m water depth). For location of sections refer to Fig. 4.  Abbreviations in 

(C): SB: Sequence boundary; MFS: Maximum Flooding Surface; LPS: Late Pleistocene Sequence. 

 

Figure 14: 

Schematic sections across the Hawke‘s Bay forearc domain depicting the ―source to sink‖ 

interpretation of seismic units (U2 to U6) and fluvial terraces (T1 to Salisbury - section B) as 

sedimentary facies and depositional environments (See text for details). (A) cross section parallel to 

the slope and passing over the active uplifting Kidnappers ridge. (B) cross section extending around 

the north end of Kidnappers ridge and passing through the major subsiding basins, from the axial 

range front to the upper slope area (c. 500 m water depth). For location of sections refer to Fig.  4. 

 

Figure 15: 

Isopach map of the late Pleistocene sequence LPS1 (~150 to 30 ka) as identified from seismic 

interpretation. Two-way travel times were converted to depth, then thickness, using an average 

velocity of 1600 m.s-1. Isopach contours have been digitized and the map has been generated in GIS 

software. The four main depocenters are located and designated by the following abbreviations: KB: 

Kidnappers Basin; MaB: Mahia Basin; LB: Lachlan basin; MoB: Motu-o-Kura Basin. Aggradational 

terraces of LPS1 (T2, T3, T4 and Salisbury) are mapped but not differentiated. Active and inferred 

tectonic structures are superimposed in order to reveal the impact of tectonic deformation on the 

distribution of sediments. The volume of LPS1 sediments deposited and preserved reaches ~340 km
3
. 

  

Figure 16: 

Isopach map of the late Pleistocene sequence LPS2 (30 ka to present) as identified from seismic 

interpretation. Two-way travel times were converted to depth, then thickness, using an average 

velocity of 1600 m.s-1. Isopach contours have been traced from our seismic interpretation and 

completed from previous studies for the northern Hawke‘s Bay area (Wright and Lewis 1991) and the 

Poverty shelf (Foster and Carter 1997; Orpin et al. 2006). Contours have been digitized and the map 
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has been generated in GIS software. The four main depocenters are located and designated by the 

following abbreviations: KB: Kidnappers Basin; MaB: Mahia Basin; LB: Lachlan basin; and MoB: 

Motu-o-Kura Basin. Aggradational terraces (T1) are also shown. Active and inferred tectonic 

structures are superimposed in order to reveal the strong impact of tectonic deformation on the 

distribution of sediments. The volume of LPS2 sediments deposited and preserved reaches ~140 km3. 

The heavy white dashed line delineates the mid-shelf HST depocenter inboard of the Waimarama 

thrust zone, and the heavy black dashed line delineates the linked shelf to upper slope Lachlan – Motu-

o-Kura LST depocentre.  

 

Figure 17: 

Paleogeographic reconstructions for the late Pleistocene environmental extremes that integrate results 

from seismic interpretation, piston-cores, onshore and offshore wells and mapping, as well as results 

from previous studies (Ridgway 1960; Pantin 1966; Ridgway and Stanton 1969; Lewis 1973a,b; 

Carter 1974; Smale et al. 1978; Grant-Taylor 1978; Francis 1985; Hull 1985, 1986; Lewis and Barnes 

1991; Barnes et al. 1991; Dravid and Brown 1997; Carter et al. 1998; Carter 2001; Shulmeister et al. 

2001; Harper and Collen 2002; Okuda et al. 2002; Litchfield 2003; Litchfield and Berryman 2006; 

Hayward et al. 2006; Cochran et al. 2006; Proust et al. 2006; this study): (A): Reconstruction of the 

distribution of depositional environments within the forearc domain study area during the Last Glacial 

Maximum (c. 20 ka). The position of braided channels are schematically shown, based on our facies 

interpretations. (B) Reconstruction of the distribution of depositional environments within the forearc 

domain study area during the Holocene optimum (c. 7.2 ka).  Abbreviations include: KB: Kidnappers 

Basin; MaB: Mahia Basin; LB: Lachlan basin; and MoB: Motu-o-Kura Basin. 
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APPENDIX 

 

Appendix 1: 

Description of the data set interpreted or used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 









































Table 1 

Seismic  
units 

Lower boundary 
surface 

Upper boundary 
surface 

Seismic 
facies 

U1 - S1, truncation 
Fs1, Fs2, Fs3, 
Fs4, Fs5, Fs6 

U2 S1, concordant S2, truncation 
Fs2, Fs7, Fs8, 

Fs9  

U3 S2, concordant S3, truncation 
Fs3, Fs9, 

FS10, FS11 

U4 S3, onlap S4, concordant Fs3 

U5 S4, onlap S5, truncation Fs4, Fs7 

U6 S5, onlap seafloor Fs5, Fs8 

 

 







Appendix 1 

 

Survey Name Data type Length (interpreted) Operator / Country Vessel Year 

Avaliable report 

(PR) 

or publications : 

GeodyNZ Bathymetry EM12  Ifremer / France R/V Atalante 1993 

Collot et al. (1996) 

Lewis et al. (1998) 

Tan0106 Bathymetry EM300  NIWA / NZ R/V Tangaroa 2001  

GSR 05301 Boomer 175 km NIWA / CNRS Big Kahuna 2005  

CQX H90 

MCS  

(60 folds) 

1000 km NZ CQX Ltd. M/V Western Pacific 1990 

Sullivan – PR 1666 

(1990) 

05CM 

MCS 

(640/960 channels) 

720 km 

Ministry of Economic 

Development / NZ 

M/V Pacific Titan 2005 

Multiwave – PR 3186 

(2005) 

CR3044 

3.5 KHz & MCS (24 

channels) 

 NIWA / NZ R/V Tangaroa 1998 

Barnes et al. (2002) ; 

Barnes and Nicol 

(2004) 

TAN 0313 

3.5 KHz & MCS (48 

channels) 

830 km NIWA / NZ R/V Tangaroa 2003  



TAN 0412 

3.5 KHz & MCS (48 

channels) 

298 km NIWA / NZ R/V Tangaroa 2004  

CR8024 3.5 KHz 1200 km 

Conquest Exploration 

Ltd / NZ 

GRV Rapuhia 1988 

Conquest Exploration 

- PR2059 (1988) 

MD152 / Matacore 

3.5 KHz & 6 giant 

calypso piston cores 

(MD06-2995/96/97 

on the upper slope 

and MD06-2998/99 

/3000 on the shelf) 

c. 100 km (core length 

up to c. 30 m) 

IPEV / CNRS-INSU / 

NIWA / AWI / VIMS 

SIO 

R/V Marion-Dufresne 2006 Proust et al. (2006) 
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