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Single crystals of ice subjected to primary creep in torsion exhibit a softening behavior: the plastic
strain rate increases with time. In a cylindrical sample, the size of the radius affects this response. The
smaller the radius of the sample becomes while keeping constant the average shear stress across a section,
the softer the response. The size-dependent behavior is interpreted by using a field dislocation theory, in
terms of the coupled dynamics of excess screw dislocations gliding in basal planes and statistical
dislocations developed through cross slip occurring in prismatic planes. The differences in the results
caused by sample height effects and variations in the initial dislocation microstructure are discussed.
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In a torsion test, shear stress increases from the axis to
the exterior of the sample. When investigating the plastic
response of materials, this gradient is commonly viewed as
a drawback of torsion testing. It becomes beneficial when
the material behavior involves internal length scales asso-
ciated with emerging dislocation structures. The inhomo-
geneity of the boundary conditions then generates “‘excess
dislocations,” which give rise to long-range elastic stress
fields. As an hcp material with a strong anisotropy, ice is a
choice material in this respect. It deforms plastically by the
activity of basal slip systems almost exclusively [1] and it
is characterized by a low Peierls stress [2]. Anisotropy and
a low lattice friction favor long-range elastic interactions
and dislocation transport, as well as their interactions.
Indeed, as will be shown in this Letter, the creep response
of ice single crystals oriented for basal slip in torsion
exhibits size effects in the cm range. Hence, this problem
is in turn a challenging case for theories of plasticity with
internal length scales. The torsion of thin copper wires with
diameters in the range 12—-170 wm has been used in order
to probe into such theories [3], but the large strains
achieved, the polycrystalline character of the material,
the texture evolution, and varying grain size of the samples
may have complicated the interpretation. The purpose of
the present work is to describe the creep response of ice
single crystals in torsion, a much simpler material and
experimental configuration, with emphasis on the effects
of the sample dimensions on this response. Original ex-
perimental data are presented and an interpretation for the
observed behavior is proposed within the framework of a
nonlocal field theory for the dynamics of excess and sta-
tistical dislocations [4,5]. In this theory, excess dislocation
densities are regarded as being a continuous manifestation
of lattice incompatibility. They are nonuniformly distrib-
uted and associated with the development of long-range
lattice curvature and internal stress fields. In contrast,
statistical dislocations can be uniformly distributed. They
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contribute to statistical hardening through short-range
interactions, but not to internal stresses buildup. In con-
ventional (local) plasticity theories, only statistical dislo-
cations are considered. Both species contribute to plastic
flow, however. Their dynamics are coupled, for spatial
gradients in the plastic deformation due to statistical dis-
locations generate excess dislocations. The present theory
draws on seminal work by Kroner [6] and Mura [7].
Approaches similar in spirit include those in Refs. [8—12].

Laboratory grown single crystals were used for the
torsion experiments. All samples were machined from
these crystals in the form of cylinders, with radius R in
the range 13—24 mm. The samples height & was kept in the
range 57—60 mm. The grips were conveniently made from
water refrozen at the interface sample machine, and the
temperature was maintained at —11 = 1°C. A constant
positive torque M was applied to the sample. The average
shear stress across a sample section 7 = 3M/27R> was
maintained of the order of 0.1 MPa. When torsion is
uniform along the axis, the shear strain vy atradius ris y =
kr, where k = 6/h is the constant twist per unit length of
the sample. Possible deviations from macroscopic uni-
formity were checked by monitoring lines drawn on the
outer surface, parallel to the axis. The data were discarded
when significant deviations occur. Figure 1 shows creep
curves, i.e., plots of I' = kR, the strain on the outer sur-
face, vs time. Straining of the samples was interrupted at
I' = 4.5%, a value of strain still in the range of primary
transient creep. The maximum twist was then 6 = 0.2 rad.
From dimensional analysis it is seen that, for a material
devoid of internal length scales, creep curves gathered
from samples with varying radius superpose if the average
shear stress 7 is kept constant. Conversely, distinct curves
in this plot are evidence for an effect of size on the plastic
response. Figure 1 suggests that the time needed to achieve
a given strain decreases when the radius is reduced under
constant average shear stress, which indicates a softening
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FIG. 1. Creep strain on outer surface vs time, for various

diameter D values. Height and average shear stress are indicated.

effect of radius reduction on the sample response.
Dispersion in the curves exists, but is limited. It results
mainly from uncontrollable fluctuations in the initial dis-
location microstructure, which lead to uneven initial creep
strain rates. End effects due to the small variation in the
sample height were checked to be very limited.

Interpretation in terms of dislocation dynamics of these
observations will be given on the basis of the model
described below. It should be noticed at once that x-ray
diffraction analyses performed on samples extracted from
the strained cylinders show that plasticity of the samples is
almost exclusively due to excess dislocations of screw
character gliding in basal planes, with very few mobile
statistical dislocations [13]. The initial density of disloca-
tions present in the samples, mostly sessile dislocations, is
shown to be less than 10® m~2. In addition, the analyses
reveal a scale invariant arrangement of excess dislocations
along the torsion axis. The latter can be explained by the
occurrence of double cross-slip of screw dislocations
through prismatic planes [14]. Diffusion-controlled climb
of dislocation on planes normal to the basal planes should
be very limited due to the low value of diffusion coeffi-
cients in ice. Formally, however, cross-slip and climb are
treated in the same way as out-of-plane motion of disloca-
tions in the forthcoming model.

The model uses the continuum description of disloca-
tions based upon Nye’s dislocation density tensor « [15].
Operating on the normal n to a unit surface S, « provides
the net Burgers vector b = a.n of all dislocations lines
threading S, i.e., the incompatibility in displacement found
along the Burgers circuit surrounding this surface. Because
of this incompatibility, the elastic distortion tensor U, is
not a gradient. It has an incompatible part, U,*, which
results from the distribution « and is a solution to the
incompatibility equation

curlU} = o, (1

written here at small strains. Its compatible part, Uﬂ, is a
gradient. For small strains, it is the difference between the
displacement gradient U = grad u and the compatible

part of the plastic distortion, U{',. At the resolution scale
used in the present problem (the characteristic size of unit
surface §), the total plastic distortion rate Up results from
the motion of the excess dislocations «, with (averaged
over S) velocity V, and of the statistical (mobile) disloca-
tions through the conventional plastic velocity gradient
tensor L, (throughout the Letter, a superposed dot indi-
cates a time derivative)

U,=aXV+L, 2)

The incompatible part of Up feeds the increment of excess
dislocations through the transport equation for dislocation
densities

& = —curlU,. 3)

The stress tensor T is obtained from the tensor of elastic
constants C, as

T = C.: {U} = C: {Ul + U}}
= C,: {gradu — Uﬂ + UL, 4)

where {A} denotes the symmetric part of tensor A. It
satisfies the equilibrium equation

divT = 0. (5)

Complemented with constitutive relations for the disloca-
tion velocity V as a function of stress and dislocation
orientation, and for the evolution of the statistical densities
involved in the velocity gradient L, (1)—(5) form a com-
plete set of equations, of hyperbolic character, for the
evolution of stress and dislocation densities. Boundary
conditions comprise the conventional stress and displace-
ment conditions, and the specification of inward fluxes of
dislocations. A more detailed account of this overarching
framework can be found in [4,5].

Two types of solutions of Egs. (1)—(5) are offered in
what follows. First we provide a full 3D numerical solution
by using a Galerkin—Ileast squares finite element method
appropriate for hyperbolic problems (see [5,16] for de-
tails). These detailed simulations provide for the identifi-
cation of the mesoscale features at the origin of creep
acceleration. A 1D model is then applied for a twofold
purpose: to illustrate the critical aspects of the theory; to
allow for effective parametric study of size effects. In this
idealization for deformation under a gradient of simple
shear, we consider circumferential screw dislocation den-
sity of infinite extent in the (x, z) directions, line and
Burgers vector along x, and transport in y. The distribu-
tions of shear stress o,,, excess screw density «,,, and
mobile statistical density p,, along a sample radius are the
unknowns. The resulting equations, derived from the com-
plete set (1)—(5) in creep reduce to

O-XZ,X = o-XZ,Z = 0’ (6)

_(pmbv),y. (7)

Here b is the length of the Burgers vector, and a comma

QT (axxvy),y =
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TABLE I. Numerical constants used in the model. TABLE II. Initial conditions.
b Vo 09 n I ﬂ Pm Ps axx(R)
45X1079%m 36%x107m/s 0.l MPa 2 3GPa 0.1 10 m—2 108 m—2 0.32 m~!
a a a C, C,
0.133 0.666 X 1072 10° 1078 17

indicates a partial derivative. The shear stress o, cannot
be obtained from these simplified equations, and recourse
is made to approximations. Since the concern is on tran-
sient primary creep and the sample remains mostly elastic
in its central part, as will be discussed below, an elastic
approximation is used: o, = (y/R)7. It was checked that
it differs from the stress distribution expected for a fully
viscoplastic response by less than 15%. Equation (7) is a
transport equation. Here it represents the transport of screw
dislocations with a source term due to gradients in statis-
tical dislocation mobility. Account of the physics of dis-
location velocity and of straining history is now made
through phenomenological statements. Following [1], we
assume a power law relationship for the average excess and

statistical dislocation velocities (vy, v) in the form

g,,, — O n

Uy =V = vOSgn(sz - U}L)(ﬁ) (8)
with n = 2. Parameters (v, o) are reference velocity and
stress values, respectively. They are identified from the
experimental data [1,2]. An isotropic statistical hardening
is derived from the sessile density p, in the Bailey-Hirsch
form: o), = aub,/p;, where u denotes the elastic shear
modulus and & is a constant. Only a fraction (1 — ) of the
nucleated screws glides in the basal planes. They induce a
backstress, with rate of formation

v, |

e ®
where (&, &) are constants. Relation (9) is similar to the
Armstrong-Frederick law for kinematic hardening [17],
but here the backstress builds up from excess dislocation
mobility only. Note that the involved relaxation time 7, =
ab/ |vy| is inversely proportional to the excess dislocation
velocity. The complementary fraction 8 of nucleated ex-
cess screws experiences out-of-plane motion induced by
the internal stress field. Therefore the statistical sessile
density increases—due to the formation of edge segments
in prismatic planes, assumed to be proportional to the rate
of screw nucleation

O, = aua,v

Py =§|aml. (10)
In our calculations, o, remains smaller than the reference
stress 0, implying that statistical hardening is relatively
insignificant, whereas the backstress o, can be of the order
of the applied stress 7. The statistical mobile dislocation
density p,, has a very low initial value. It increases due to
dislocation sources associated with edge jogs in prismatic

planes [18]. Its nucleation rate is supposed to be propor-
tional to the shear strain rate, with coefficient C,.
Saturation of mobile dislocations results from their mutual
annihilation, with coefficient C,.

. ¢

Pm= (ﬁ - C2pm>|axxvy + pmbvl‘ (11)
Parameters and initial conditions for the 1D model are
given in Tables I and II, respectively. They are very similar
in the 3D calculations. Initial conditions on screw disloca-
tion density should be consistent with the observed initial
strain rate I". They should also enable us to reproduce the
dislocation source distribution, mostly clustered along the
sample edge. In this aim, we use a linear increase of the
screw density from axis to edge, which leads to a parabolic
source distribution. Note that out-of-plane dislocation mo-
tion and backstress buildup are automatically present in the
3D computations. Their presence in the 1D model is a
phenomenological offset for the assumed invariance in
the c-axis direction. Under a positive torque, an outstand-
ing feature of both models is the nucleation of positive
screw dislocations close to the sample edge, their transport
towards the axis and, as stress and velocity decrease in this
area, the formation of pileups. Figure 2 shows the (locally
resolved) excess screw density and the shear component of
the stress obtained from the 3D model. The excess screw
density includes the development of a radial component
[19] as a consequence of transport. Note that the 3D stress
distribution supports the assumption made in the 1D ideal-
ization. As seen in Fig. 3, the continuous increase in the
creep rate is retrieved from both models. The reverse
torsion behavior, not discussed in this Letter for lack of
space, is also fully retrieved. The excellent agreement
suggests that nucleation and transport of the excess density

FIG. 2 (color online).

Shown on left is the excess screw
density on the undeformed mesh, locally resolved to indicate
radial (R) and circumferential (C) components. At right, the
shear stress component o, is shown on the deformed mesh, with
displacements scaled by a factor of 5.
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FIG. 3. Creep curves in forward and reverse torsion from
experiments, 1D and 3D models.

are key aspects of the physical response. Further, when the
gradient in stress is increased by downsizing the sample
radius, screw nucleation is promoted and acceleration in
the creep rate follows, in close agreement with experimen-
tal data (see Fig. 4). Thus, larger screw densities due to
radius reduction do not imply hardening of the response, as
would have been expected had these dislocations contrib-
uted to hardening like statistical dislocations. Rather, they
induce softening due to larger rates of plastic distortion.
Size effects were evidenced in the creep response of ice
single crystals in torsion. Under constant average shear
stress, all other parameters being kept equal (or at least
similar when their control is hardly possible, as in the case
of the initial dislocation microstructure), reducing the ra-
dius of the sample leads to softening of the response, due to
higher gradients. This trend is well reproduced by the
model presented in the Letter. Basically, it is attributed to
changes in excess screw dislocation nucleation: smaller
radii promote screw nucleation, which in turn favors plastic
distortion and response softening. In addition, the model
asserts the role of long-range internal stresses in inducing
the out-of-basal-plane dislocation motion responsible for
the observed scale invariant dislocation structure (see
[14]). It suggests that the edge jogs formed in prismatic
planes in this process have a dual role, as they also act as
obstacles to the basal glide of excess screw dislocations. In

1.4+
1.2
1.0 X
0.8+
0.6
0.4+
0.2 X

0.0

Normalized time at 3.5% strain

25 30 35 40 45 50
Sample diameter (mm)
FIG. 4. Normalized time at 3.5% strain, experiments and mod-

eling. Experimental data from creep tests shown in Fig. 1. The
straight line suggests the trend.

velocity driven torsion testing of metals, evidence seems to
be pointing at response hardening when the sample radius
is reduced [3]. We note that observations similar in spirit to
ours were made in order to interpret this ‘“anomalous”
hardening in copper [19,20]. In these references, the re-
duction in the density of excess screw dislocations in the
center region of the sample is seen as the origin of hard-
ening. As its plastic distortion is reduced, the metal be-
haves more like an elastic solid and becomes harder in this
area. On the basis of our simulations, we believe that
dislocation transport and backstress buildup are the con-
trolling mechanisms for the rarefaction of excess screw
dislocations in the center of the sample, through excess
screw pileup formation.
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