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ABSTRACT. The Gorshkov crater glacier at Ushkovsky volcano, Kamchatka, is characterized by a large
aspect ratio and special thermodynamic conditions at the bedrock caused by a locally enhanced and
spatially varying geothermal heat flux. Furthermore, large parts of this glacier consist of firn rather than
pure ice, which alters the rheological properties (such as viscosity and compressibility) of the glacier.
We present a newly developed, thermo-mechanically coupled, three-dimensional flow model based on
the finite-element (FE) modeling software Elmer, and apply it to the Gorshkov crater glacier. By
assuming steady-state conditions, the present-day velocity field, temperature field, basal melting rate
and age distribution are simulated. We find that flow velocities are generally small (tens of centimeters
per year). Horizontal and vertical velocities are of comparable magnitude, which shows that the
shallow-ice approximation is not applicable. Owing to the spatially variable volcanic heat flux, the
thermal regime at the ice base is cold in the deeper parts of the glacier and temperate in the shallower
parts. The measured temperature profile and age horizons at the K2 borehole are reproduced quite well,
and remaining discrepancies may be attributed to transient (non-steady-state) conditions. Firn
compressibility is identified as a crucial element for the modeling approach.

1. INTRODUCTION
Glaciers which develop in volcano craters are unique
systems because of their particular morphologies (large
aspect ratio) and thermodynamic conditions (large geother-
mal heat flux). In this study, we investigate the Gorshkov
crater glacier at Ushkovsky volcano, Kamchatka (56804’N,
160828’E, 3903ma.s.l.), which is the only crater glacier for
which the bedrock topography has been determined so far.
The glacier is situated in the summit caldera of Ushkovsky
volcano and fills the concave bed of Gorshkov crater to a
maximum depth of 240m. The crater diameter is approxi-
mately 750m. The resulting aspect ratio of �1/3 clearly
indicates that the shallow-ice approximation (SIA) (Hutter,
1983; Morland, 1984; Greve, 1997) is not applicable. The
glacier surface is gently inclined towards the northern crater
rim, where the ice flows out of the crater and down the slope
of the volcano. The geothermal heat flux at the crater rim is
estimated to be as large as 10Wm–2 based on direct
measurements (Murav’yev and Salamatin, 1989), whereas
the temperature profile of the K2 borehole close to the
deepest point of the glacier indicates a far smaller heat flux of
only 0.12Wm–2 at this position (Shiraiwa and others, 2001).

An analytical, thermo-mechanically coupled model for
ice flow and heat transfer in crater glaciers was developed by
Salamatin and others (2000) based on a scaling analysis
which accounts for the particular geometry. The authors
assumed a linear-viscous rheology for porous glacier ice and
applied their model to a flowline profile of Gorshkov crater
glacier from the summit of the southern crater to the outflow
at the northern rim. They estimated that basal melt is up to
25% of the accumulation rate at the ice surface, and pre-
dicted a maximum age of the crater-glacier ice of more than

610 years. An attempt to simulate the dynamics of Gorshkov
crater glacier numerically was made by Shiraiwa and others
(2002) based on the higher-order model by Blatter (1995). In
their study, the ice was treated as an incompressible, iso-
thermal, viscous fluid, and the velocity field was computed
along the flowline mentioned above. The authors found flow
velocities of the order of 1–2ma–1, generally increasing
toward the northern outflow face, and demonstrated the non-
applicability of the shallow-ice approximation.

Here, we refine this approach by applying a newly
developed, thermo-mechanically coupled, three-dimen-
sional flow model of the glacier. This model is based on
the finite-element modeling software Elmer, developed at
CSC–Scientific Computing Ltd. (Espoo, Finland), and solves
diagnostically the full Stokes-flow equations for a non-linear
viscous fluid. Further, since large parts of the glacier consist
of firn rather than pure ice, we have implemented a
compressible firn rheology and a suitable expression for
the heat conductivity of firn. Our objective is to model
diagnostically the three-dimensional velocity, temperature
and age fields as well as the basal melting rate of the
present-day glacier. Since no surface velocity measurements
are available so far, comparison of computational results
against data is limited to the measured temperature profile
and some age horizons at the K2 borehole.

2. TOPOGRAPHY OF THE GORSHKOV CRATER
GLACIER
2.1. Digital elevation model
A geodetic and radio-echosounding survey was conducted
on the Gorshkov crater glacier (Shiraiwa and others, 2002).
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Since the data have only been accessible to us as surface
and bedrock topography maps, we have manually digitized
them in order to assemble digital elevation models of the ice
surface and bedrock at a horizontal resolution of 20m. The
result is depicted in Figure 1, which also indicates the
position of the drill site K2. A Cartesian coordinate system is
defined, where the x, y and z axes coincide with east, north
and vertically upwards. The corresponding unit vectors are
ex, ey and ez. The surface and bedrock elevations are
denoted as z ¼ hs(x, y) and z ¼ hb(x, y) respectively.

2.2. Computational mesh
Using the commercial pre-processing tool Gambit, an
unstructured mesh of the glacier domain has been created.
It consists of approximately 4� 104 nodes, connected to
form about 2� 105 linear tetrahedral volume elements and
2�104 triangular boundary elements (Fig. 2). The feature of
built-in size functions in Gambit is used to introduce mesh
refinements towards the free surface to capture compaction
effects of the firn, according to Equation (3) below.
Additional increased resolutions of the mesh around the
position of the drill site K2 as well as the bedrock are
applied. Whereas the first of these refinements is dedicated
to improvements of the post-processing steps (i.e. inter-
polation of profiles along the ice core), the latter resolves the
large temperature gradients which occur in the case of a
temperate ice base.

3. THERMO-MECHANICALLY COUPLED MODEL
EQUATIONS
3.1. Density profile
The volume fraction of ice in firn (or relative density) is
defined as

’i ¼ �

�i
, ð1Þ

where � is the variable density of the firn and �i ¼ 910 kgm–3

is the density of pure ice. The contribution of the interstitial
air to the mass is neglected. The volume fraction of ice and
the porosity (volume fraction of air) ’a total unity, so that

’a ¼ 1� ’i: ð2Þ

At the K2 drill site, close to the position of the maximum ice
thickness, the measured density profile can be approximated
by the exponential function

� ¼ �ið1� ’a, se�� d Þ, or ’i ¼ 1� ’a±, se�� d , ð3Þ

where
d ¼ hs � z ð4Þ

is the depth from the glacier surface, ’a,s ¼ 0.55 is the
porosity at the surface and � ¼ 0.038m–1 is the compaction
coefficient (Shiraiwa and others, 2001). Following Sorge’s
Law, which states that the density field is in steady state and
only a function of depth below the ice surface (Bader, 1954),
we assume that this relation is valid throughout the whole
glacier domain. Figure 1b shows the resulting distribution of
the relative density at the glacier bed. Evidently, the basal
density is close to that of pure ice everywhere except for the
near-marginal areas where the ice is thin.

3.2. Flow law
Let t be the Cauchy stress tensor which acts on an arbitrary
volume element in the firn. Like every tensor, it can be
decomposed into an isotropic part –p1, where p ¼ –(tr t )/3
is the pressure (tr denotes the trace operator i.e. the sum of
the main diagonal elements) and 1 the unit tensor, and a
traceless, deviatoric stress tensor, i.e.

tD ¼ t � tr t
3

1 ¼ t þ p 1: ð5Þ

Similarly, the deviatoric part DD of the strain-rate tensor
D ¼ 1=2[grad v+ (grad v)T] (symmetric part of the gradient
of the velocity v; the superscript T denotes tensor transposi-
tion) is obtained by

DD ¼ D � trD
3

1 ¼ D � div v
3

1: ð6Þ

Following the lines of Gagliardini and Meyssonnier (1997)
with the definition of the invariant

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðDDÞ2
að’Þ þ ðdiv vÞ2

bð’Þ

 !vuut , ð7Þ

we express the relations between the deviatoric and

Fig. 1. (a) Surface topography of the Gorshkov crater glacier (greyscale texture and contours, contour spacing 1m); (b) Bedrock topography
(contour, spacing 25m) and basal relative density (greyscale texture).
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isotropic parts, respectively, of the stress and strain rate as:

tD ¼ 2
2

að’Þ ð2EAðT
0ÞÞ�1=n �ð1�nÞ=nDD

¼ 2�ðT 0, �ÞDD, ð8Þ
and

p ¼ � 1
bð’Þ ð2EAðT

0ÞÞ�1=n �ð1�nÞ=ndiv v: ð9Þ

The quantity �(T 0, �) introduced in Equation (8) is referred to
as (shear) viscosity. The dependency of a(’) and b (’) upon
the relative density has been obtained from field data
following Gagliardini and Meyssonnier (1997),

að’Þ ¼
exp ð13:22240� 15:78652’Þ, ’ � 0:81;

1þ 2
3
ð1� ’Þ

� �
’�2n=ðnþ1Þ, ’ > 0:81

8><
>:

bð’Þ ¼

expð15:09371� 20:46489’Þ, ’ � 0:81;

3
4

ð1� ’Þ1=n

n 1� ð1� ’Þ1=n
� �

0
@

1
A2n=ðnþ1Þ

, ’ > 0:81

8>>><
>>>:

ð10Þ
(see also Fig. 3). As the stress exponent n ¼ 3 is applied, in
the limit of pure ice ’! 1 so we have a! 1, b! 0 and
div v!0, and thus the widely used Glen’s flow law
(Paterson 1994) is restored. Note also that Equation (9)
relates the total pressure to the divergence of the velocity
field (rate of volume change), contrary to the classical
description of a compressible viscous fluid, where a
thermodynamic (velocity-independent) and a viscous (vel-
ocity-dependent) contribution to the pressure can be
identified. This implies that, as long as ’ < 1, a hydrostatic
equilibrium in the presence of gravity does not exist for firn.

The flow rate factor A(T 0) is derived from the Arrhenius law,

AðT 0Þ ¼ A0e�Q=RT 0
, ð11Þ

where temperature relative to the pressure melting point
T 0 ¼ T –Tm+ T0, where A0 is the pre-exponential factor,
Q the activation energy, R the universal gas constant
(8.314 Jmol–1 K–1), T the absolute temperature and T0 ¼
273.16K the melting point of ice at low pressure. The
pressure dependence of the pressure melting point Tm
can be expressed by the linear relation Tm(p) ¼ T0 –�p
where the Clausius-Clapeyron constant � ¼ 9.7456�
10–8 K Pa–1. Following Paterson (1994), we express the

pre-exponential factor as

A0 ¼ 3:985� 10�13 s�1 Pa�3, T 0 � �10�C;

1:916� 103 s�1 Pa�3, T 0 > �10�C

(
ð12Þ

and the activation energy as

Q ¼ 60 Jmol�1 K�1, T 0 � �10�C;

139 Jmol�1 K�1, T 0 > �10�C

(
ð13Þ

which yields a continuous connection of the two regimes
with A ¼ 4.9� 10–25 s–1 Pa–3 at T 0 ¼ –108C. The flow
enhancement factor E is set by default to E ¼ 1/3. The
deviation from unity has been found to be necessary, as
otherwise the upper, low-density firn region tends to yield
with respect to compression. This results in too large a
downward convection and consequently too low tempera-
tures and young ice in the lower regions of the glacier.

3.3. Thermodynamic material equations
In pure ice, the specific heat (J kg–1 K–1) can be expressed as
a function of temperature via

ciðT Þ ¼ c0 þ c� ðT � T0Þ ð14Þ

where c0 ¼ 2127:5 J kg–1 K–1 and c� ¼ 7:253 J kg–1 K–1. A
representation of the thermal conductivity �i (Wm–1K–1) is

�iðT Þ ¼ �0 exp ð��T T Þ ð15Þ

where �0 ¼ 9:828Wm–1 K–1 and �T ¼ 0:0057K–1 accord-
ing to Ritz (1987). For firn, the specific heat of interstitial air
is negligible, so that

cðT Þ ¼ ciðT Þ: ð16Þ

A relation linking the heat conductivity of firn �fð’)
(Wm–1K–1) to the relative density has been provided by

Fig. 2. Cut through the computational mesh of the Gorshkov crater.
The black vertical line indicates the position of the borehole K2.
The three boundary areas, namely the free surface, bedrock and
outflow, are indicated.

Fig. 3. Dependency of the dimensionless functions a and b and
density � upon the relative density ’.
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Sturm and others (1997):

�fð’Þ ¼ �f0 � �f1�ð’Þ þ �f2�
2ð’Þ ð17Þ

where �f0 ¼ 0:138Wm–1 K–1, �f1 ¼ 1:010� 10�3 Wm3

kg–1 K–1 and �f2 ¼ 3:233� 10�6 Wm5 kg–2 K–1 with the
density �(’) evaluated using Equation (3). In order to include
both the temperature and the density influence, we combine
(15) and (17) and obtain

�ðT ,’Þ ¼ �fð’Þ
�fð’ � 1Þ�iðT Þ: ð18Þ

The heat flux then follows from Fourier’s law of heat
conduction

q ¼ �� grad T ð19Þ

and the specific internal energy is given by the caloric
equation of state

u ¼
Z T

T0
cð �T Þ d �T , or _u ¼ c _T : ð20Þ

In the differential form of Equation (20), the dot denotes the
material derivative with respect to time t following the
motion of the firn particles.

3.4. Field equations
Neglecting the acceleration terms in the momentum balance
yields the Stokes equation

�grad p þ 2 div ð�DDÞ þ � g ¼ 0, ð21Þ
where g is the acceleration due to gravity (9.81m s–2 in the
negative z-direction), and the pressure p and viscosity � are
as given in Equations (8) and (9). In addition, by combining
Equations (8) and (9), we obtain the volume balance

div v þ bð’Þ
að’Þ �ðT 0, �Þ p ¼ 0

or
ðdV Þ�
dV

þ �cp p ¼ 0, ð22Þ
where �cp is the volume-pressure coupling, dV an incre-
mental, material volume, and the dot denotes the material
time derivative as in Equation (20). The volume-pressure
coupling vanishes in the limit ’! 1, restoring incompres-
sibility for pure ice.

From the energy balance, Fourier’s law of heat conduc-
tion (Equation (19)) and the caloric equation of state
(Equation (20)), the heat-transfer equation can be derived:

�c
@T
@t

þ v � grad T
� �

¼ div ð� gradT Þ þD : t : ð23Þ

The production term D : t is the strain heating. Volumetric
heat sources due to radiation etc. are negligible. Since we
only consider steady-state conditions in this paper, the
advection (left-hand side) is balanced by conduction and
strain heating (right-hand side). Note that the ice tempera-
ture is limited by the pressure melting point Tm, so that the
solution of the heat-transfer equation is subject to the
constraint

T � Tm , T 0 � 0�C: ð24Þ
The age of the ice A is convected with the flow. For a given
velocity field v the dating equation is of the form

@A
@t

þ v � gradA ¼ 1: ð25Þ

As none of the material parameters depend on the age of the
ice (which would be the case if impurity layers, such as ash
from a volcanic eruption, were included in the rheological
behavior) there is no feedback to either the Stokes or the
heat transfer equation. Consequently, it can be run in a post-
processing step. Since steady-state of the flow field is
assumed, the first term on the left-hand side, @A=@t , is
dropped.

3.5. Boundary conditions
As depicted in Figure 2, boundary conditions for three
different areas must be provided. These are the free surface,
the bedrock and the outflow area at the northern margin of
the glacier.

3.5.1. Surface
Since we assume steady-state conditions and only carry out
diagnostic simulations with prescribed geometry, it is neither
required to prescribe the surface mass balance (accumu-
lation-ablation rate) nor a kinematic boundary condition for
the evolution of the free surface. The stress-free condition

tjs:n ¼ 0 ð26Þ
serves as a dynamic boundary condition, where n is the
outer normal unit vector (pointing into the atmosphere),
and the subscript s denotes values taken at the free
surface. The surface temperature is kept at the constant
value T js¼ �16:68C which represents the average tempera-
ture at a depth of 1.79m at the drill site B1 over a period of
two years measured in 1995/96 (Shiraiwa and others, 2001).

The boundary condition for the dating equation is given
by Ajs¼ 0, representing fresh snow falling on the free
surface. As the free surface is the only inflow boundary of
the volume, no other boundary condition for this variable
has to be set.

3.5.2. Bedrock
The geothermal heat flux, which enters the ice body from the
underlying bedrock, is assumed to be lowest for the deepest
areas and to increase exponentially with a previously
undetermined factormwith increasing bedrock elevation hb,

qgeoðhbÞ ¼ qmin
geo þ ðqmax

geo � qmin
geo Þ hb � hmin

b

hmax
b � hmin

b

 !m
: ð27Þ

The minimum and maximum bedrock elevations are hmin
b ¼

3640m and hmax
b ¼ 3900m. The lower limit of the geo-

thermal heat flux, qmin
geo ¼ 0.12Wm–2, is chosen to reflect

the measured temperature gradient at the bottom of the
drilled ice core at K2 (Shiraiwa and others, 2001) whereas
the highest assumed value, qmax

geo ¼ 10Wm–2 is set accord-
ing to earlier estimations (Murav’yev and Salamatin, 1989)
that have recently been validated by direct measurements at
the rim of the crater (Murav’yev, personal communication,
2006). As the exponent m was initially unknown, runs with
different values, starting from m ¼ 1 with increments of
unity up to m ¼ 7 have been conducted. From the
comparison of results with estimations of the bedrock area
covered by ice below the pressure melting point (‘cold base’)
(Shiraiwa and others, 2001), the most reasonable range of
this parameter could be constrained to 2 � m � 6. In the
case of a linear distribution (i.e. m ¼ 1) the entire bedrock is
at the pressure melting point (‘temperate base’), and the
other extreme value (m ¼ 7) leads to results with cold-base
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conditions covering too much of the bedrock up to the rim.
A detailed discussion of the results obtained with parameter
values m ¼ 2, 4 ,6 follows in Section 5.

In case of a cold base the geothermal heat flux determines
the normal derivative of the basal temperature. However, if
the pressure melting point is reached, basal melting sets in
and the basal melting rate Mb is

Mb ¼ 1
L
ðqgeo � � grad T : nÞ, ð28Þ

where L ¼ 3.335� 105 J kg–1 is the latent heat of ice and n
the outer normal unit vector (pointing into the bedrock). As
no indication of meltwater storage at the bedrock from the
K2 drilling site could be found, we assume complete
drainage. As a consequence, the volume flux Mb /� equals
the normal velocity v|b . n at the bottom (note that the outer
normal unit vector n points into the bed). Further, we impose
a constraint of positive normal velocities (i.e. re-freezing of
ice is neglected), so that

v bj :n ¼ max
Mb

�
, 0

� �
: ð29Þ

As for the tangential component of the basal velocity v|b, we
employ no-slip conditions: that is, this component is
assumed to be negligible.

3.5.3. Outflow
In view of the lack of data on the mass flux and/or the
velocity distribution of the outflow zone, the outflow
velocity is prescribed directly,

v out ¼ voutnj ð30Þ
where n � ey is the outer normal unit vector in the
horizontal plane (pointing away from the glacier). We use
the fixed value vout � 0.39ma–1 which has been deter-
mined from a balance of the average accumulation mass flux
at the free surface, js ¼ 570 kgm–2 a–1 (Shiraiwa and others,
2001), and an average of the basal melting rate (Equa-
tion (28)) obtained from an initial run (with no-flux
conditions imposed), via

vout ¼ js

Z
As

dA�
Z
Ab

MbdA
� � Z

Aout

�ð’Þ dA
� ��1

: ð31Þ

Here, the areas of the free surface, the bedrock as well as the
outflow are denoted by the symbols As, Ab and Aout

respectively. We have chosen this approach as alternative
options of prescribing an external normal stress lead to
exaggerated accumulation rates at the free surface. Exten-
sion of the computational domain beyond the crater into the
ice-covered caldera as well as including the evolution of the
density profile would reduce the uncertainty introduced by
condition (31).

For the thermodynamic boundary condition, we assume
the no-flux condition

grad T outj :n ¼ 0: ð32Þ

4. FINITE ELEMENT MODEL ELMER
The model equations detailed in the previous sections are
solved numerically with the open-source multi-physics
package Elmer (see http://www.csc.fi/elmer) which is based
on the finite element method (FEM). Since the code takes
care of scaling internally, the simulations are conducted

using SI units irrespective of the numerical values of the
several quantities.

The system is initialized by computing the flow depth d
for all nodes, which is non-trivial due to the unstructured
grid. This is carried out by applying a standard Galerkin
method (Girault and Raviart, 1986) to the elliptic boundary-
value problem

@2dðx, y, zÞ
@z2 ¼ 0, d js ¼ 0,

@d
@z

����
b, s

¼ �1 ð33Þ

which simply reflects Equation (4) (subscripts s and b refer to
the surface and the base, respectively). Thereafter, the
relative density ’(d ) is set according to Equation (3).

The iteration loop consists of solving the heat-transfer
Equation (23) and the Stokes Equation (21). By integrating
Equation (23) with a test function, � 2 H1

0 , over the whole
volume V and applying Fourier’s law of heat conduction
(Equation (19)), we obtain the weak formulation of the
problemZ
V
�cv � gradT �dV �

Z
V
q � grad�dV

¼ �
I
@V

qn�dAþ
Z
V
D : t � dV : ð34Þ

In this case we choose piecewise linear functions, i.e.
� 2 P1, which are also used for discretization of the
unknown temperatures, T ¼ �i�i Ti leading to the standard
Galerkin formulation of the problem. After discretization
and linearization, the two integrals on the left-hand side
contribute to the system matrix M. The surface integral on
the right-hand side introduces Neumann type (i.e. external
heat flux) boundary conditions into the system. Since the
solutions of the flow and the temperature field are treated
sequentially, the integral over the heat production can be
identified as the force vector F. With the solution vector T
containing all nodal values of the unknown temperatures,
the linearized system takes the simple form

M � T ¼ F ð35Þ
As the resulting diffusion-convection equation shows
tendencies towards instability for large velocities, the
Stabilized Finite Element Method (Franca and Frey, 1992)
is used to guarantee convergence.

The system given by Equation (35) still lacks the constraint
imposed by Equation (24). We would like to stress the fact
that the approach of simply resetting all entries of the
solution vector exceeding Tm obtained by solving the
unconstrained system (35) does not lead to a correct
solution for the temperature field. A consistent method of
introducing the inequality (24) is described as follows.

Nodes with values from the solution vector of the (k–1)th
iteration T (k–1) showing a value larger than or equal to the
constraint, Ti

(k–1)	Tm, are marked as ‘active’ (starting from a
complete set of ‘inactive’ nodes at the first iteration). Here
Ti
(k–1) is the i th component of the solution vector T (k–1).
An ‘active’ node is switched back to ‘inactive’ only if its

residual is (in case of an upper limit being imposed) larger
than zero (Ri > 0).

The system described in Equation (35) is assembled for
the new iteration step k : M � T (k) ¼ F. If the i th node is
identified as ‘active’, the system is manipulated such that all
entries of the i th row in the system matrix are set to zero,
except for the diagonal entry Mii to which the unit value is
assigned. Simultaneously, the i th entry of the force vector is
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set to the local pressure melting point, Fi ¼ Tm. From a
numerical point of view this is equivalent to setting a
Dirichlet condition in the bulk of the domain, leading to the
manipulated system

M 0 � T ðkÞ ¼ F 0 ð36Þ
for which the solution T (k) is computed.

The residual vector is then obtained by using the original
system matrix and force vector

R ¼ M � T ðkÞ � F : ð37Þ
If the i th node has been marked as ‘active’, its component of
the residual vector Ri can be interpreted as the additional
cooling needed to comply with Equation (24).

The iteration above is continued as long as convergence
of the solution is achieved. Compared to the previously
applied Uzawa method (Girault and Raviart, 1986), this new
algorithm proves to be faster and more robust.

The discretization of the Stokes Equation (21) is equivalent
to that demonstrated for the heat transfer equation. Contrary
to the earlier method, stabilization is introduced by the
Method of Residual Free Bubbles (Baiocchi and others,1993).

The final step consists of solving the dating Equation (25).
Since it is convection-dominated, it requires a different
numerical approach. To this end, the Discontinuous Galerkin
Method for convection-reaction equations (Brezzi and
others, 2004) has been applied. This approach treats the
system locally for each element and treats the resulting
boundary terms such that stability as well as consistency is
maintained.

The flowchart of a complete steady state solution is given
in Figure 4.

5. RESULTS AND DISCUSSION
For the reference run (m4), we have applied the compres-
sible firn model and the rheological parameters as given in
Section 3, as well as a geothermal heat-flux exponent of
m ¼ 4 (see Equation (27)). In addition, in order to obtain
some information about the robustness of our results, two
series of sensitivity studies were completed.

In the first series of tests, we varied the values of the
parameter m, heat-flux exponent, in Equation (27). In run
m2, all other variables were set as form4, but withm ¼ 2. In
run (m6), we set m ¼ 6.

The second series of tests involved variation of the
rheological behavior. For run (a), parameters were as for
(m4) but b(’) � 0 (i.e. ‘incompressible firn’). For run (b),
parameters were as for (m4) with the exception of a(’) � 1,
b(’) � 0 and E ¼ 1/(3�’) (i.e. ‘porous ice’). For run (c), the
same parameters as (m4) were employed except for a(’) � 1
and b(’) � 0 (i.e. ‘pure ice’).

Figure 5 shows the horizontal and vertical near-surface
velocities of the reference run (m4), and Figure 6 shows the
velocity field for a S-N transect through the K2 borehole.
Naturally, the viscous glacier ice is drained towards the
northern outflow. Horizontal velocities are largest where the
glacier is thick (compare with Fig. 5), whereas the largest
vertical (downward) velocities occur further upstream in the
southern part of the glacier due to firn compaction and
intensive basal melting. Absolute values of the velocity are

Fig. 4. Flowchart of the numerical simulations. Symbols behind
leftwards pointing arrows indicate the needed input variables,
whereas rightwards pointing arrows depict solution variables for the
different modules.

Fig. 5. Near-surface velocity (at 10m depth) for the reference run (m4) (a) absolute value of the horizontal (x–y plane) velocity; (b) absolute
value of the vertical velocity (z-direction).
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of the order of 10’s of centimeters per year and therefore
quite small compared to typical valley glaciers. This is partly
a consequence of the gently inclined surface, and partly due
to the drag of the trough-shaped bedrock, transferred into the
ice body by resistive longitudinal stresses. Note also that the
horizontal and vertical velocities are generally of the same
order of magnitude, which clearly demonstrates the failure
of the shallow-ice approximation for the given geometry.

The thermal conditions at the glacier bed are shown in
Figure 7. For the reference run (m4), the area of cold basal
conditions makes up approximately one-quarter of the
glacier area. The transition line between cold and temperate
basal ice follows roughly the 3765m contour of the basal
topography in the interior of the glacier, whereas close to the
outflow face, cold ice also occurs at higher bedrock
elevations. As to be expected, the extent of basal temperate
ice strongly depends on the assumed value for the heat-flux
exponent. For run (m2), the area of cold basal ice is reduced
to a small spot situated in the very deepest part of the bed
trough. By contrast, for run (m6), the area of cold basal ice
extends approximately 50m further up the bed trough
compared to run (m4). Lacking the downward convection of

cold temperatures caused by the compressibility of firn, the
runs (a), (b) and (c) produce a temperate base for the entire
glacier area.

Computed profiles of the temperature and age of the ice
as well as the northward and vertical velocity components at
the position of the K2 borehole are shown in Figure 8. The
measured temperature profile T(d) at K2 (Shiraiwa and
others, 2001), against which we check the computed
profiles, has been approximated by the piecewise-linear
function

T ðdÞ ¼

�16:6�Cþ 6:7�C
99:6m

� d
� �

; d � 99:6m

�9:9�Cþ 5:7�C
112:1m

� ðd � 99:6mÞ
� �

;

99:6m < d � 211:7m

8>>>>>>><
>>>>>>>:

ð38Þ

Fig. 6. Velocity for the reference run (m4): vertical transect in S-N
direction through the K2 borehole. Note that no vertical exaggera-
tion has been applied.

Fig. 7. Regions of cold and temperate basal ice (inside and outside
of the white contour lines, respectively) for the reference run (m4),
the run (m2) and the run (m6). The bedrock elevation is underlaid as
greyscale texture.

Fig. 8. Profiles of simulation results at the K2 drill-site: (a) temperature; (b) age profile and (c) vertical and northward velocity. Measured
temperature profile and age points by Shiraiwa and others (2001).
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Extrapolated to the base (d ¼ 240m), this yields a basal
temperature of –2.768C. Also, four age horizons are
available for the K2 borehole, which have been dated by
assigning ash layers to known volcanic eruptions (Shiraiwa
and others, 2001).

Comparing the results of runs (m2), (m4) and (m6), the
temperature profile at K2 becomes warmer with decreasing
heat-flux exponent m, and run (m2) even produces a tem-
perate base at K2 (see also Fig. 7). This is not surprising,
because a smaller value of m means that the geothermal
heat flux increases faster with bed elevation, and therefore
generally warmer conditions prevail. The shape of the three
simulated profiles is slightly concave from the top down to
approximately two-thirds of the depth, which is the normal
behavior for steady-state conditions in the accumulation
area of a glacier due to downward advection of cold firn
from the surface (Paterson, 1994). However, the measured
profile does not show any concavity in this part, and is
therefore up to 
 28C warmer. This may be a hint that the
real glacier is not in a steady state.

The simulated age profiles agree quite well with the
measured horizons, in that the four data points are within
the range of age profiles of the three runs. For the three
uppermost horizons, the agreement is best for the reference
run (m4), whereas the lowest horizon (year 1400) is closer to
the profile of run (m2). This may also be a consequence of
non-steady-state conditions. We are not able to make a
prediction for the age of the basal ice, because the
combination of steady state, a cold base and no-slip makes
the basal age unconstrained.

The velocity profiles of the three runs are similar. The
horizontal, northward velocities (towards the outflow face)
show the typical shear-flow profile and reach maximum
values of slightly less than 0.5ma–1 at the surface. The
vertical velocity profiles are almost linear below 20m depth.
By contrast, at shallower depths the gradient is much larger,
which is an immediate consequence of the large firn com-
pressibility for small densities. As discussed above, the mag-
nitude of horizontal and vertical velocities is comparable.

An important lesson to learn is that accounting for the
compressibility of firn is crucial. Runs (a), (b) and (c) all have
the property b(’) ¼ 0, which expresses compressibility in
the flow law (Section 3.2), and the resulting temperature,
age and velocity profiles at K2 fall virtually together. It is
evident that the simulated temperatures are too high, and the
simulated ages are far too large; the latter resulting from
strongly reduced vertical velocities as a direct consequence
of the now incompressible rheology. Therefore, the results of
these three runs must be discarded as unrealistic, and we
conclude that a compressible firn rheology is essential for
obtaining reasonable simulation results.

CONCLUSION
A new dynamic-thermodynamic model for glacier flow has
been presented. It is based on the finite-element package
Elmer (CSC–Scientific Computing Ltd., Espoo, Finland) and
solves the full Stokes-flow and heat transfer equations for a
non-linear viscous, compressible fluid in three dimensions.
The model has been applied to the Gorshkov crater glacier,
which is characterized by a large aspect ratio between
depth and diameter, a relatively low surface temperature
and intensive volcanic heating from below. Under the
assumption of steady-state conditions, we have simulated

the present-day velocity field, temperature field and age
distribution. Flow velocities are generally small – of the
order of tens of centimeters per year – and of comparable
magnitude in the horizontal and vertical directions. As a
consequence of the highly variable geothermal heat flux,
the basal ice is cold in the deeper parts of the glacier and
temperate in the shallower parts. The measured temperature
profile and age horizons at the K2 borehole have been
reproduced quite well, even though some discrepancies
point out that the steady-state assumption may be simplistic.
Firn compressibility was identified as a crucial element for
the modeling approach.

Future work will comprise simulating the density profile
instead of simply prescribing it. In order to do so, the model
equations need to be complemented by a three-dimen-
sional, compressible mass balance. Also, it is highly
desirable to conduct a new field campaign on Gorshkov
crater glacier and obtain measurements for the surface
velocity at different locations. Comparison of our results
against data would be very helpful for further constraining
the simulation set-up. As a long-term objective, simulations
of non-steady-state scenarios over the last 1000 years or so
should be striven for. However, this introduces the need for
the climatic forcing and basal conditions of the glacier, and
it is largely unclear how these input fields can be provided.
A possible way to tackle this problem is by applying
methods of inverse modeling, provided that sufficient data of
the state of the glacier are available.
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