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[1] The East Antarctic Ice Sheet is the largest, highest,
coldest, driest, and windiest ice sheet on Earth.
Understanding of the surface mass balance (SMB) of
Antarctica is necessary to determine the present state of the
ice sheet, to make predictions of its potential contribution to
sea level rise, and to determine its past history for
paleoclimatic reconstructions. However, SMB values are
poorly known because of logistic constraints in extreme
polar environments, and they represent one of the biggest
challenges of Antarctic science. Snow accumulation is the
most important parameter for the SMB of ice sheets. SMB
varies on a number of scales, from small-scale features
(sastrugi) to ice-sheet-scale SMB patterns determined
mainly by temperature, elevation, distance from the coast,
and wind-driven processes. In situ measurements of SMB
are performed at single points by stakes, ultrasonic

sounders, snow pits, and firn and ice cores and laterally
by continuous measurements using ground-penetrating
radar. SMB for large regions can only be achieved
practically by using remote sensing and/or numerical
climate modeling. However, these techniques rely on
ground truthing to improve the resolution and accuracy.
The separation of spatial and temporal variations of SMB in
transient regimes is necessary for accurate interpretation of
ice core records. In this review we provide an overview of
the various measurement techniques, related difficulties,
and limitations of data interpretation; describe spatial
characteristics of East Antarctic SMB and issues related to
the spatial and temporal representativity of measurements;
and provide recommendations on how to perform in situ
measurements.

Citation: Eisen, O., et al. (2008), Ground-based measurements of spatial and temporal variability of snow accumulation in East

Antarctica, Rev. Geophys., 46, RG2001, doi:10.1029/2006RG000218.

1. INTRODUCTION

[2] The development of the Earth’s climate is strongly

linked to the state of the polar regions. In particular, the

large ice sheets influence components of the climate system,

including the global water cycle by locking up or releasing

large amounts of fresh water; the radiation budget through

the high albedo of ice- and snow-covered surfaces; and the

thermohaline circulation through the amount of fresh water

released to the ocean by melting or iceberg calving. Since

the termination of the last glacial period, the only remaining

large ice sheets are located in Antarctica and Greenland.

[3] The polar ice sheets are not only active participants in

the global climate system (including being a major control

on global sea level), but they also provide the only archive

which gives direct access to the paleoatmosphere. Ice cores

collected from polar regions and analyzed for atmospheric

gases, stable isotopes, major ions, trace elements, etc.,
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enable past climate conditions to be reconstructed [e.g.,

Mayewski et al., 1993; Dansgaard et al., 1993]. (Italicized

terms are defined in the glossary, after the main text.) These

records, currently spanning as far back in time as the past

800 ka [Jouzel et al., 2007], are an important key to

identification of the causes and forcing mechanisms of

climate change.

[4] Understanding past conditions of the ice sheets and

determining their present state are essential to predict their

behavior under future climate conditions. The most impor-

tant physical variable in assessing past and current ice sheet

conditions is the surface mass balance. The current state-of-

the-art ground-based techniques used to determine surface

mass balance and its spatial and temporal characteristics in

East Antarctica are the topic of this paper. Surface mass

balance has been termed differently by many authors. Most

completely, it is described as mean net annual surface mass

balance and includes all terms that contribute to the solid,

liquid, and gaseous transfer of water across the surface of

the ice sheet. Hereafter, we will abbreviate this to ‘‘surface

mass balance’’ (SMB) while maintaining the averaging

implied by the full description. We also note that this term

is the aggregate of many processes, such as precipitation

from clouds and clear skies, the formation of hoarfrost at the

surface and within the snowpack, sublimation, melting and

runoff, wind scouring, and drift deposition.

1.1. Principal Processes

[5] Antarctica consists of West and East Antarctica,

divided by the Transantarctic Mountains (Figure 1), and

the Antarctic Peninsula. Whereas floating ice shelves form a

considerable part of West Antarctica, the largest ones being

the Filchner-Ronne and Ross ice shelves, East Antarctica is

mainly formed by the inland ice sheet plateau, roughly

comprising two thirds of the continent. Our main aim is to

present the characteristics of SMB of the East Antarctic

plateau area, which despite its apparent homogeneity shows

large spatial variability. Nevertheless, we include findings

based on data from West Antarctica and near-coastal sites as

well for a larger context.

[6] On the Antarctic ice sheet, few places display a

constantly negative SMB (e.g., blue ice areas) [e.g.,

Bintanja, 1999; van den Broeke et al., 2006b]. Unlike in

Greenland and the Antarctic Peninsula [Vaughan, 2006]

where melting is an important process, wind erosion and

sublimation are the key factors for negative SMB of the

West and East Antarctica ice sheets. On the interior plateau

of the Antarctic ice sheet, large areas have a mass balance

close to zero, and negative mass balance has been reported

for some areas [Frezzotti et al., 2002b]. Nevertheless,

annual SMB is generally positive in the long term. We

will therefore use the term accumulation or accumulation

rate synonymously to refer to a positive SMB.

Figure 1. Map of Antarctica with some topographic names, drilling sites, radar profiles, and stations
mentioned in the text (underlain by white rectangles), adapted from Mayewski et al. [2005] with
permission of the International Glaciology Society. Radarsat mosaic in the background. (‘‘Terra Nova
Bay’’ station was renamed to ‘‘Mario Zucchelli station’’ in 2004.)
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[7] Solid atmospheric precipitation (snowfall or diamond

dust) is deposited at the surface of the East Antarctic Ice

Sheet. Atmospheric precipitation is homogeneous over tens

to hundreds of kilometers. Wind erosion, wind redistribu-

tion, sublimation, and other processes during or after the

precipitation event lead to a deposition at the surface which

is spatially less homogeneous than the original precipitation.

Variations in accumulation over tens of kilometers have

been observed since the 1960s [Black and Budd, 1964;

Pettré et al., 1986]. These accumulation variations and

surface processes result in surface features including sastrugi,

longitudinal dunes [Goodwin, 1990], dunes on the 100-m

scale [Ekaykin, 2003; Karlöf et al., 2005b], and, most

impressively, megadunes on a kilometer scale [Fahnestock

et al., 2000; Frezzotti et al., 2002a]. Once the snow is

permanently deposited, further accumulation is responsible

for the submergence of surface layers. In the firn column, the

snow densifies under the overburden weight, and the inter-

play with ice dynamics like advection begins to deform the

surface layer.

[8] The spatial and temporal distribution of SMB is a

primary concern for numerous issues: for determining the

current state of the ice sheet and estimating mass balance

changes over regional, basin-wide, and continental scales

and the associated contribution to sea level change [e.g.,

Joughin et al., 2005, and references therein]; for ice flow

modeling of the age-depth relationship and subsequent

application to ice cores; for calibration of remote sensing

measurements of SMB; for understanding of the SMB–

surface meteorology–climate relationship; and for improv-

ing, verifying, and validating various types of models, in

particular, the climate models from which predictions (fu-

ture) or reconstructions (paleoclimate) of accumulation are

tentatively obtained. Unfortunately, there exists a discrep-

ancy between assumptions and needs of these applications

in terms of spatiotemporal coverage and resolution of SMB

and the actual data characteristics available. For instance,

dating of ice cores by flow modeling usually assumes rather

smooth accumulation patterns, mainly formed by larger

features, accumulation time series, and ice dynamical his-

tory. Surface accumulation, on the other hand, is not smooth

in time and space. Because of interaction with surface

features, such as varying surface slopes, significant surface

accumulation variations occur on much smaller spatial

scales than precipitation, as will be demonstrated here.

Analysis of firn cores and meteorological observations

integrated with validated model reanalysis data of European

Centre for Medium Range Weather Forecasts 40-Year

Reanalysis (ERA 40) pointed out high variability of snow

accumulation at yearly and decadal scales over the past

50 years but without a statistically significant trend

[Monaghan et al., 2006].

1.2. General Difficulties

[9] While measurement of precipitation has been a rou-

tine part of worldwide observations for more than a hundred

years, there is still no practical technique that can be used to

measure SMB in East Antarctica in realtime as part of a

meteorological measurement program. This is largely due to

the technical difficulties involved in making measurements

without disturbing natural patterns of snow drift and mea-

suring changes at depth in the snowpack. Thus, knowledge

of SMB seasonality, trends, and spatial variability is limited.

For this reason, we rely heavily on after-the-fact measure-

ments obtained from ice cores, snow accumulation stakes,

etc. Acquiring information about surface accumulation on

the ice sheets with adequate sampling intervals is thus labor

intensive. Only along a few selected profiles (ITASE,

EPICA, JARE, RAE) (ITASE, International Transantarctic

Scientific Expedition; EPICA, European Project for Ice

Coring in Antarctica; JARE, Japanese Antarctic Research

Expedition; RAE, Russian Antarctic Expedition) and in

certain areas has area-wide information on accumulation

been obtained (Figure 1).

[10] SMB observations cannot be easily extrapolated in

time and space because spatial variations in SMB amount to

considerable percentages of the absolute values, and often

exceed these; the magnitude of the temporal variations is

small compared to spatial variability, depending on the

considered timescale; and the structure of the SMB covari-

ance is unknown. To overcome these limitations, two other

important techniques are therefore used to achieve area-

wide information: satellite remote sensing and numerical

climate modeling.

1.3. Remote Sensing and Numerical Modeling

[11] Currently, there is no definitive way to determine

SMB from remote sensing data. There are signals in

some remote sensing fields that are related to SMB as

has been discussed widely by Zwally and Giovinetto

[1995], Winebrenner et al. [2001], Bindschadler et al.

[2005], Rotschky et al. [2006], and Arthern et al. [2006],

but these are not solely dependent on accumulation rate and

are thus to some extent ‘‘contaminated’’ by other factors. For

this reason, most authors have attempted to use remote

sensing fields to guide interpolation of field measurements.

The most recent attempt at this by Arthern et al. [2006], who

used a formal scheme to incorporate estimates of uncertainty

and models of covariance, probably provides the most

defensible estimate of the remotely sensed broadscale pattern

of SMB across East Antarctica (Figure 2a). The typical

footprint of these compilations is 20 km horizontally.

[12] In contrast to measuring area-wide precipitation in

situ, as attempted by Bindschadler et al. [2005], numerical

models are used to simulate atmospheric processes and

related accumulation features [e.g., Gallée et al., 2005].

The first step for successful modeling is detailed under-

standing of the physical processes involved. The second

step involves model validation. Because of computing

resource limitations, there is currently no way to explicitly

resolve processes that induce spatial variability of SMB at

kilometer scales or less (e.g., sastrugi and dunes) with an

atmospheric model run in climate mode, that is, over several

years. Such features have to be at best statistically param-

eterized, or considered as noise, when comparing field data

with model results [Genthon et al., 2005]. Although most

RG2001 Eisen et al.: SNOW ACCUMULATION IN EAST ANTARCTICA

3 of 39

RG2001



global models have spatial resolutions of 100 km and

greater [Genthon and Krinner, 2001], grid stretching in

global models [Krinner et al., 2007] and regional climate

modeling [van Lipzig et al., 2004a; van de Berg et al., 2006]

allow resolutions on the order of 50–60 km that can better

capture the mesoscale impacts of topography on SMB

distribution such as diabatic cooling of air mass along

slopes, air channeling, or barrier effects. Most of the

boundary conditions needed to run global (including

stretchable grid) and regional atmospheric models, such as

topography, sea surface temperature and sea ice, and radi-

atively active gases and aerosols, are the same. On the other

hand, regional models also need lateral boundary conditions

such as temperature, winds, and moisture. This is generally

provided by meteorological analyses for recent and present-

day climate simulations, but data from global climate

models are necessary to run realistic climate change experi-

ments. In this respect, stretchable grid global models are

self-consistent. As an example, Figure 2b shows mass

balance from RACMO2/ANT for the period 1980–2004

[van den Broeke et al., 2006a], with a horizontal resolution

of 55 km, as well as a selection of observed mass balance

values (updated from Vaughan et al. [1999b]). The model is

clearly capable of reproducing the large-scale features of the

Antarctic SMB (direct correlation with 1900 SMB obser-

vations yields R = 0.82) but cannot resolve the finer-scale

features [van de Berg et al., 2006] that are known to exist

and that are one focus of the present paper. Double or triple

nesting of models up to 3-km resolution is successfully used

to improve weather forecasts in topographically complex

regions, and could also be used to improve the model

footprint of accumulation variability, once the governing

processes (wind-driven snow redistribution) are properly

parameterized [Bromwich et al., 2003].

[13] One major use of SMB observations is to verify and

validate climate models that are used to better understand

the climate and SMB of Antarctica and to predict its future

evolution. Therefore, using climate model results for driving

interpolations and building maps of the Antarctic SMB from

the field observations [van de Berg et al., 2006] requires

more care to avoid circular reasoning than for satellite data

[Vaughan et al., 1999b; Arthern et al., 2006], as these are

more independent from ground observations. However, the

models do provide the means for hindcasting accumulation

and may be used to identify areas where additional data or

verification of existing data are most needed, such as areas

where several models disagree with field reports or with

interpolations [Genthon and Krinner, 2001; van den Broeke

et al., 2006a]. This approach has been used to select the

sites of some of the recent Italian-French ITASE surveys,

and the new data have confirmed problems with the

previous estimates [Magand et al., 2007].

[14] Despite significant advances in either discipline

(remote sensing or numerical modeling), both techniques

fail in detecting or explaining small-scale (<50 km) vari-

ability in SMB observations. The processes playing part in

the ice sheet–climate–weather interaction act on a broad

range of spatial and temporal scales. As mentioned in

section 1.1, precipitation is homogeneous on scales of

roughly 104 km2, mainly on the plateau, and is subject to

redistribution in the atmospheric boundary layer on scales

of centimeters to kilometers. The scale of temporal vari-

ability increases from a scale related to the movement,

dynamic, and lifetime of frontal systems on the order of

days to seasonal variations and interannual variability.

Partly related to larger-scale oscillatory atmospheric and

oceanographic patterns are variations on interannual to

decadal scales. Variations that occur over centuries and

millennia are of relevance for climate conditions. The

longest variations are on the timescale of glacial cycles

with a period of 104–105 years (Table 1). The different

techniques employed to observe these changes operate in a

rather limited spatiotemporal window and with limited

spatiotemporal resolution (Figure 3). Satellite sensors have

Figure 2. Examples for interpolated distributions of SMB (in kg m�2 a�1) based on point observations
(circles) in Antarctica. (a) Interpolation of SMB observations guided by passive microwave remote
sensing (adapted from Arthern et al. [2006]); (b) numerical climate modeling of SMB (solid precipitation
minus sublimation and melt) [van den Broeke et al., 2006a] with ground-based SMB data collection
indicated by circles [van de Berg et al., 2006].
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a comparably large range of footprint sizes and spatial

coverage but are usually limited in temporal resolution

and length of time series. Numerical models, in contrast,

can cover temporal scales from hours to millennia, but their

spatial coverage and resolution depend on each other in a

reciprocal manner, thus yielding either low resolution at

large spatial coverage or vice versa.

1.4. Outline

[15] With this background on surface accumulation in

mind, the purpose of this review paper is to provide the

glaciological community and those outside with a reference

to measurement techniques of SMB and characteristics

thereof in East Antarctica. We present the different types

of measurements in section 2, including point measurements

at the surface (stakes and ultrasonic sounders), point

measurements at depth (snow pits, firn cores, and ice cores),

and continuous lateral measurements (ground-penetrating

radar). Sections 2.1–2.5 each contain a description of the

mode of operation and type of analysis for the individual

measurements, the basic measurement procedure for each

technique and all required input quantities to derive the

accumulation estimate, and an account of error estimates for

each data type. We also present selected sample data to

illustrate typical results obtained from these measurements

and how the SMB data can form the input to other studies.

Section 3 summarizes findings derived from the different

measurement techniques, addresses their pros and cons, and

judges the spatial and temporal representativity and limita-

tion of SMB data. In section 4 we discuss the application of

measurement data. We provide recommendations and prin-

ciples for proper usage without stressing the data beyond

physically justified limits to avoid misinterpretations.

Additionally, we emphasize that observers in the field

should be aware of end-users’ needs.

2. MEASUREMENT TECHNIQUES

[16] Common for all measurements of SMB at the surface

is the observation of deposited mass over a certain time

period, or proxies thereof. The different methods not only

cover a wide spectrum of technical modes of operation, they

also yield information about mass balance for varying

spatial and temporal scales and resolutions, as schematically

illustrated in Figures 3, 4, and 5. SMB measurements

derived from stakes, ultrasonic sounders, snow pits, and

firn or ice cores provide information from a single point at

the surface (Figure 4). In contrast, ground-penetrating radar

(GPR) is carried out along profiles in such high resolution

that it can be considered a quasi-continuous measurement.

Whereas stakes and ultrasonic sounders have to be operated

for a longer period to obtain a time series, snow pits, firn/ice

cores, and GPR are able to provide a time series from a

single deployment. One could thus classify the measure-

ments into instantaneous and retrospective methods, with

unclear boundaries. Owing to the different variables mea-

sured, the methods provide accumulation rates on very

different timescales and resolution, as schematically illus-

trated in Figure 5. The detailed differences will be set forth

in this section. Before introducing the individual methods,

we first discuss the important role of snow density and how

it is measured.

2.1. Prerequisite: Determination of Snow Density

[17] All techniques aimed at the determination of SMB

perform some sort of difference-length measurement (height

TABLE 1. Relevance and Scales of Surface Mass Balance Measurements

Target Temporal Scales Spatial Scales

Mass balance changes 1 to 105 years basin to ice sheet
Climate-SMB relationship hours to 100 years centimeter to 100–1000 km
Climate modelsa hours to 100 years 10–100 km to ice sheet

104–105 years in snapshots
Remote sensingb hours to 30 years submeter to ice sheet
Ice flow modelingc 10 to 105 years 100 m to ice sheet

aFor (in)validation of models, the model output is compared with actual measurements. This permits judging the usability of models.
bSome remote sensing applications (altimetry, gravity, passive microwave, scatterometers, etc.) profit or even require data calibration for retrieval

algorithms at specific test sites for correct interpretation and further extensions of the measurements to other areas. Validations are likewise important.
cInput of SMB to ice flow models is especially important for interpreting deep ice cores.

Figure 3. Schemes to illustrate the (a) resolutions and (b) coverage of the different types of measurements in time (x axis)
and space (y axis) used to derive surface mass balance. In Figure 3a, the rectangles indicate the typical resolutions of the
various techniques. In addition to the characteristics of an individual measurement (e.g., a snow pit or a GPR profile), the
combination of these with groups and larger entities are also displayed (e.g., stake lines or GPR grids). In this sense, ‘‘single
snow pit’’ indicates the resolution within an individual pit, whereas ‘‘(snow pits at different sites)’’ refers to the distance
between different snow pits. Likewise for ultrasonic sounders at different sites and GPR distance between different profiles.
In Figure 3b, the rectangles indicate typical temporal and spatial coverage of measurements. For instance, stake lines may
be hundreds of meters to more than 1000 km long. The time series derived from such a line could be just a year or up to
several decades. In contrast, a single stake covers only an area of a few square centimeters. For implementing measurement
programs, the question arises as to what can be achieved by a three- to four-person team in a single season. As logistics
often impose the largest constraints in Antarctica, the resolution and coverage provided here could serve as a guideline to
which combination of methods seems most effective.
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Figure 3
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change, layer thickness, etc.) over certain time periods. To

convert this length measurement to a SMB value, knowl-

edge of the density distribution of the observed sample is

fundamental. Determination of the snow density is usually

more difficult and less accurate compared to the length

measurements for a number of reasons. One of few excep-

tions for direct snow density measurements is the only

recent adaptation of a neutron-scattering probe [Morris

and Cooper, 2003; Hawley et al., 2006].

[18] The classic method calculates density from snow

sample volume and mass; however, accurately determining

snow sample volume is a hard task under field conditions.

The easiest method is to use a sampling probe with known

volume. It is possible that each national Antarctic expedi-

tion uses different types of snow-sampling devices, which

introduces additional uncertainties in the final values. A

suitable field method for density measurements in snow pits

is proposed in the ITASE guidelines by Mayewski and

Goodwin [1997]. Because of the strong densification within

the uppermost layers, density should be sampled at high

vertical resolution. To avoid the risk of disturbing the

underlying snow during sampling, the snow can be collected

in a crossover pattern (see Figure 9c in section 2.4).

Moreover, sampling snow pits from the bottom upward to

the surface avoids the risk of contaminating the lower levels

by snow falling down from previous sampling above. Depth

control and minimizing depth error is most easily obtained

by constantly leveling the sample depth with two adjacent

rulers. Depending on the equipment used, the sample

volume error is around several percent, and the error in

the mass determination depends on the balance used. An

optimistic volume error of �1% and an accuracy of the

balance of ±1 g would yield an uncertainty of about 1.4%

for the density sampled in a snow pit [Karlöf et al., 2005b].

The balance error increases to about ±5 g if spring scales are

used.

[19] Density measurements are mainly made during the

austral summer season (December or January), which may

introduce additional errors because of seasonal changes in

snow density that can result from numerous processes. For

instance, surface density differs between snowfall events

and precipitation-free periods, as wind can cause erosion,

hardening, and redistribution of the snow. General factors

causing seasonal density variations are changing wind speed

and temperature, larger or smaller portions of low-density

fresh snow, and vapor transfer between the surface, atmo-

sphere, and deeper snow layers. It is not obvious which

seasonal (or annual) density value best characterizes the

‘‘effective’’ annual density. These effects are different for

snow density in the first meter in high-accumulation coastal

areas (density on the order of 400 kg m�3) compared to

low-accumulation inland areas (around 300 kg m�3). Sea-

Figure 4. Scheme to illustrate spatial sampling interval and sample depths of different methods: stakes
and ultrasonic sounders, at surface; snow pits, up to a few meters depth; firn cores, few tens of meters; ice
cores, up to several tens to hundreds of meters, reaching below the firn-ice transition; GPR, tens to
hundreds of meters. GPR data acquired along a 50-km profile [Anschütz et al., 2007] are shown as
background to illustrate the lateral variation. Continuous reflections present layers of equal age
(isochrones). The canceled circle indicates the horizontal distance over which SMB is determined. (Note
that ice core deep drilling is possible to some kilometers depths, but we are not concerned with that
technique here.)
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sonally varying density is especially a problem for SMB

measurements performed at the surface (introduced in

sections 2.2 (stakes) and 2.3 (ultrasonic sounders)), in

which case, density variations should be tracked in the

snow layer accumulated during the given period of time

(month or year). Unfortunately, almost no data are available

that describe the seasonal change of the near-surface snow

density and thus the actual density for the measured height

difference, e.g., in the case of ultrasonic sounders. Although

density values can be taken from adjacent snow pit studies,

the question then arises as to which depth of the surface

snow best approximates the average density. For instance,

Vostok mean annual snow accumulation is only 7 cm on

average (varying from negative values to more than 20 cm

on individual stakes). A study of density in 17 snow pits

showed that snow density does not change much with depth

in the uppermost 20 cm of the snow. Consequently, the

mean density from this layer is used for converting snow

accumulation to SMB at Vostok. Nevertheless, at Vostok the

mean density of the uppermost 20 cm changes between

310 kg m�3 in winter and 330 kg m�3 in summer, which

means that the uncertainty related to this source of errors may

be as much as 6%.

2.2. Point Measurements at the Surface: Stakes

[20] The easiest way to measure SMB is based on stakes

planted in the snow by simply measuring the amount of

accumulation over a certain time period. Despite its sim-

plicity, this method is valuable as it allows a rough estimate

of the local or regional distribution of SMB. Sources of

error include the conversion of the accumulated snow to

SMB, density measurements (see section 1.1), and the

subsidence of the stake bottom. This simple technique is

Figure 5. Data series obtained from various measurement techniques for single locations. The vertical
axis indicates depth (for measurements made at depth) and time (for measurements made at the surface:
ultrasonic sounders and stakes), respectively, increasing downward. The covered time/depth span differs
between graphs. The temporal scale of the time/depth series lengths tentatively increases to the right.
From left to right, 100 days of an ultrasonic sounder time series from the automatic weather station
AWS9 (height above surface) [van den Broeke et al., 2004b] at site DML05, near the EPICA deep drilling
at Kohnen station in Dronning Maud Land (DML), illustrating the accumulation of snow and subsequent
partly erosion; 11-year time series of measured height differences to previous year from a stake farm at
Dome Fuji [Kameda et al., 2008]. The circle indicates the average of 36 stakes, and the bar indicates the
spatial standard deviation of the measurements; the oxygen stable isotope record is from a 2-m-deep
snow pit (DML25 [Oerter, 2005, available at http://doi.pangaea.de/10.1594/PANGAEA.264585; Oerter
et al., 2004]), spanning roughly 10 years. Annual cycles are clearly visible; b activity record is from a
6-m-deep snow pit at the South Pole from 1978 [Pourchet et al., 1983] spanning several decades;
example of chemistry measurements (Na+ content) [Sommer et al., 2000b] and dielectric profiling
record (relative permittivity e0 and conductivity s) is from core B32 at site DML05 [Wilhelms, 2000]
near the EPICA deep drilling in DML. The shown depth section corresponds to an 1100-year period
from A.D. 883 to 1997.
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used by almost every nation in Antarctica. Examples are

given in section 2.2.4.

[21] In addition to single stakes, stake lines and stake

farms have also been used. Stake farms are more common at

year-round stations, whereas stake lines may be established

along traverse routes which are visited in more than one

season. A stake farm gives single measurements for a well-

defined small area, e.g., on the order of 104–106 m2 (tens of

meters to kilometer side length) which are averaged to

produce a single accumulation value. By using several

stakes the small-scale depositional noise can be reduced.

Additionally, continuous monitoring of stake farms provides

a record of the buildup of the snow cover during the year

and information on seasonal variations [see, e.g., Fujii,

1981; Mosley-Thompson et al., 1999; Schlosser et al.,

2002], an important fact further explained in section 2.2.4.

Measurements in stake farms are influenced by a slight

disturbance of the natural snow deposition through the

stakes themselves, the disturbance of the snow surface when

people have to pass through the stake farm for measuring

the stakes, and the accuracy of the height measurements

itself. Stake readings are usually done on the leeward side of

the prevailing wind direction to minimize the effect of

footprints on the snow surface.

[22] Single stakes of a stake line are usually used pri-

marily as markers for way points. They provide one value

for each stake but over a larger distance (Figure 6). These

measurements are helpful in measuring the spatial distribu-

tion of accumulation with a spacing on the order of kilo-

meters. Single measurements are still affected by small-

scale depositional noise, but because the time span for

reading these lines is normally 1 year or more, the noise

is a small source of error compared to the measured

accumulation. The use of Global Positioning System

(GPS) receivers for positioning the stakes is an important

tool to relocate the stakes. Stake locations can also be used

to calculate surface velocities. In the case of traverse routes,

the stakes are regularly replaced over the years and placed

back in the original position. Determination of the accumu-

lation rate from the stake observations consists of two types

of observations: stake height measurements (allowing to

determine the accumulation over a given time period) and

density measurements.

2.2.1. Stake Height and Correction for Densification
[23] Stake height measurements are only possible if the

stake bottom is immobile relative to the surrounding snow

layer. This can be achieved by fixing the stake bottom on a

horizontal slab, or by fixing it on a natural hard layer (wind

slab). Usually, it is assumed that the stake bottom is firmly

anchored in the snow and the stakes move down with the

snow layer on which the stake bottom is fixed. Using a light

weight stake, of which the bulk density is close to that of

near-surface snow (e.g., commonly used bamboo stakes,

250–350 kg m�3, 2–3 cm in diameter and 2.5 m in length),

this condition is fulfilled in a first approximation. In the

past, aluminum and bamboo stakes have been used, but they

frequently have failed because of blizzard winds or melting

due to solar radiation in coastal areas. Polycarbonate snow

poles (50 mm diameter, 6 mm wall diameter), which have

recently been used, are less fragile than bamboo and

aluminum poles but are more expensive. However, the

logistical costs of deployment and resurvey of stakes are

much higher, and stake loss due to extreme environmental

conditions is a critical issue. The maximum stake height for

strong wind is around 4 m, being initially buried about

1.5 m in the snow (a ratio of about 35%). Additional factors

that can cause uncertainty in reading the height appear if

wind scouring or sastrugis with strong microrelief occur

Figure 6. (a) Typical bamboo stake with a fabric flag at the top. Note the microrelief surrounding the
stake base, which complicates height readings. (b) One year (2003) of sample data from the 450-km stake
line from Neumayer station to Kottasberge, Heimefrontfjella, in DML; grey, single measurements every
500 m; bold, moving average over 5 km.
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around the stake (Figure 6a), and if a flexible stake is used,

it can become bent.

[24] Accumulation values obtained as a difference of

stake height at two moments in time must then be corrected

for snow settling (densification), illustrated in Figure 7. In

Figure 7 the same stake is shown at two moments in time. In

the beginning, the stake bottom is fixed in the snow layer A

at the depth H1, while snow layer B is located at the surface.

The stake height above the surface is h0. Some time later,

the stake has apparently sunk into the snow due to accu-

mulation, and the new stake height is h1. However, the

actual accumulation is higher than the difference h0 � h1
due to the snow densification (note the thinning of the AB

layer). The correction DB is the difference between the

thickness of the AB layer in the beginning and in the end

(H3 � H2 in Figure 7a). In order to calculate the corrected

snow accumulation, we have to define the snow mass in the

BC layer (i.e., layer accumulated during the given period of

time), which is equal to the difference of the mass in AC

layer and AB layer. The latter masses can be easily deter-

mined as soon as we know the snow density profile to the

depth of H4. This approach is only valid when two con-

ditions are met: (1) the density profile is stable in time

(known as Sorge’s law) and (2) the snow mass between two

fixed snow layers is constant (i.e., vapor mass transport is

negligible).

[25] One can derive the equation for the correction of

annual snow accumulation (the length measurement):

D Dhð Þ ¼ _b
1

r0
� 1

rb

� �
; ð1Þ

where _b is the mean annual SMB, rb is the snow density at

the depth of stake bottom, and r0 is the density of surface

snow. From equation (1) it is seen that the correction value

is positively related to the vertical gradient of snow density

(Figure 7).

[26] Similar studies have been made by Takahashi and

Kameda [2007]. They showed that the snow density at the

stake bottom should be used for SMB calculations as

_b ¼ �rbDh; ð2Þ

where Dh is the difference in stake height between two

measurements, which is the same as the change of stake

bottom depth; �rb is the average snow density between the

two depths of the stake bottom, assuming a stable density

profile.  This correction is 1 – 27% of the annual
snow accumulation at inland sites like Vostok and Dome

Figure 7. (a) Position of a stake in two moments in time. (b) Schematic diagram of the density-depth
profile at Dome Fuji with flag stake for first (1, dotted area) and second year (2-a, 2-b, 2-c) to illustrate
the effect of compaction and accumulation for determination of SMB from changes in stake height
(redrawn from Takahashi and Kameda [2007] with permission of the International Glaciology Society).
The mass accumulated in the second year is shown as the hatched areas b1, b2, and b3 (with b1 = b2 = b3)
in the second year’s panels; previous layers are labeled 1–3 from the surface downward. In diagram 2-a,
the first year’s surface is lowered by DL due to compaction. Dh is the change in stake height from first to
second year. New snow layer is labeled 1, while the first year’s layer 1 becomes layer 2, likewise for
layers 2 and 3. Accumulation is thus the layer b1 of thickness Dh + DL. In diagram 2-b, density-depth
profiles for first year (dotted) in respect to first year’s surface and first year’s layer numbering, overlaid
on profile from second year in respect to second year’s surface. Assuming Sorge’s law and a firmly
anchored stake bottom, the density-depth profiles in both years have the same shape. Accumulation is
then the (hatched) area b2 between both density profiles. 2-c: Shifting the first year’s density profile
upward by Dh to overlap with the second year’s profile to the same surface level, the accumulation
appears to be the hatched area at the stake base of thickness Dh.
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Fuji and cannot be neglected. Information on density is not

always available (particularly for older records); thus

conversion of changed snow height to mass may not be

possible or will have a large uncertainty.

2.2.2. Accumulation Uncertainties From Stakes
[27] The uncertainty of the stake-based accumulation

determination consists of two main sources: (1) measure-

ment errors, briefly described in section 2.2.1 for accumu-

lation and density measurements and (2) natural noise

predominantly caused by the small-scale relief-related spa-

tial variability of snow accumulation and density (Table 2).

Apparent accumulation uncertainties for field data are based

on all possible sources of error; however, natural noise is the

largest source of error, with all other sources at least 1 order

of magnitude less. It is worth noting that the uncertainty is

inversely related to the number of stakes and the period of

observation. As an example, the standard deviation of

accumulation, as measured at an individual stake in terms

Dh, is s(Dh) = 5.3 cm, i.e., nearly equal to the mean annual

accumulation at Vostok. The corresponding standard devi-

ation for the surface (at 20 cm depth) snow density is s(r) =

33 kg m�3, i.e., about 10% of the mean. This means that the

density is a comparatively less noisy parameter than the

height measurement. The standard error in accumulation

(calculated from the equation s( _b)/ _b = s(Dh)/h + s(r)/r)
from a single stake is thus 18 kg m�2 a�1, or about 85% of

the mean annual accumulation at Vostok. This means that a

single-stake observation in low-precipitation areas of central

Antarctica provides practically no information about the

mean accumulation rate. The standard error of annual

accumulation decreases as the period of observations

increases. One could expect that the error would follow

the known equation s( _b) = s( _bi)/
ffiffiffi
n

p
, where s( _bi) is the

standard error of accumulation for a 1-year period and n is

the number of 1-year observation periods. Thus, after

30 years of observations the error must be about 3 kg

m�2 a�1. Instead, previous research (not published) showed

that the standard accumulation rate error for a single stake in

a stake farm at Vostok after a 30-year period of observations

is as low as 1.7 kg m�2 a�1. This is related to the fact that as

the observation period becomes longer, the given stake

becomes representative for a wider area and thus the

accumulation at the adjacent stakes becomes correlated. In

this case, the uncertainty versus time function shown above

becomes closer to linear: s( _b) = s( _bi)/n. The uncertainty in

the 1-year accumulation value from the whole stake farm is

inversely proportional to the number of stakes k: sk( _b) =
s( _b)/

ffiffiffi
k

p
. For the Vostok Station stake network (k = 79) we

can expect that the error for accumulation is 0.6 cm. In fact,

this value may be slightly higher because, as we showed

before, the accumulation at the adjacent stakes is not

completely independent. Corresponding errors for density

and accumulation values are 3 kg m�3 and 2.0 kg m�2 a�1.

The error of the mean annual accumulation value from the

Vostok Station stake network is difficult to evaluate prop-

erly, but on the basis of the data discussed here we estimate

it as 1.7/
ffiffiffiffiffi
79

p
= 0.2 kg m�2 a�1. This value is less than the

0.8 kg m�2 a�1 determined from the time series of annual

accumulation values over the last 30 years, but the latter

value also includes the natural temporal variability of

accumulation. In general, only long-term observations will

result in reliable accumulation values. Spectral analyses of

accumulation measurements from single stakes with respect

to annual average accumulation of a stake farm in the

Dome C drainage area show that single stakes or cores

are not representative on an annual scale. Even for a site

with high accumulation (250 kg m�2 a�1), sastrugi with a

height of about 20 cm cause significant noise in the

individual measurements [Frezzotti et al., 2007].

2.2.3. Optimal Parameters for Stake Farms and Lines
[28] When planning to set up a stake network in Antarc-

tica, the first question to be addressed after defining the

accumulation scale aimed at, is ‘‘What are the optimal

parameters of the network (in terms of data quality, effort

needed to make the measurements) for this particular area?’’

Large networks containing more stakes will produce more

accurate results, but more time and effort are required to

make the measurements. The network size and stake num-

ber also depend on the temporal and spatial scales of

TABLE 2. Some Error Sources of SMB Estimates for

Different Methodsa

Source Type of Error Affects

Stakes
Length measurement height mass
Anchoring/submergence height mass
Surface roughness height mass
Density mass mass

Ultrasonic Sounders
Air temperature and profile sound velocity mass
Sound velocity height mass
Density mass mass
Fallen rime height mass
Anchoring/submergence height mass
Surface roughness height mass
Drifting snow height mass

Cores
Annual cyclicity ambiguities in age time
Hiatus (erosion) ambiguities in age time
Time markers time of deposition time
Density from weighing mass, core volume mass
Density from profiling mass, core volume mass
Dynamic layer thinning layer thickness mass

GPR
IRH resolution and tracking traveltime time, mass
Wave speed profile depth time, mass
Age-depth profile age time
Transfer of age to IRH age time
Density measurements mass, wave speed time, mass
Extrapolating wave speed depth error time, mass
Interpolating/extrapolating density mass mass
Dynamic layer thinning layer thickness mass

aThe source is the determined property or the assumption being made.
The type of error indicates which error is physically being made. Finally,
the affects indicate which of the three properties of SMB (mass per area and
time) are affected by the error. For stakes and ultrasonic sounders, the date
of measuring is known best, so time is not affected. For cores, the annual
cyclicity is variation in signals used for counting years. For GPR, tracking
is the uncertainty when following a reflection horizon along the profile, and
extrapolation is estimation of density and wave speed profile between
different core locations.
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accumulation one is interested in. A trade-off has to be

made between the error of the estimated accumulation mean

(decreasing with the number of stakes) and the size of the

area for which the estimate is representative. The distance

between stakes is determined by the size of the stake farm or

line and is often restricted by logistic constraints. Unfortu-

nately, the best sampling strategy for a specific area is often

made clear only after measurements of the stake farm have

already been made.

[29] As an example, optimal parameters (see Appendix A)

have been determined for the Vostok area from a stake farm

[Barkov and Lipenkov, 1978]. For comparatively small

(within first hundred meters) stake farms the accuracy of

the obtained accumulation values is muchmore dependent on

the size of the farm than on the number of stakes, which is due

to the influence of microrelief of the snow surface. Keeping

the same amount of stakes but increasing the size of the stake

network rapidly decreases the standard error of the accumu-

lation value. At the size of 500–1000 m a saturation value is

achieved. This value depends on the dominant larger-scale

glacier relief forms. For example, in the megadune areas the

saturation value must be of the order of the megadune length,

i.e., less than 5 km. Further increasing the stake network

dimensions does not significantly change the accuracy,

although it does increase the represented area.

2.2.4. Examples for Long-Term Measurements
and Current Approaches
[30] In Wilkes Land, the Indian-Pacific sector of Antarc-

tica, stake measurements have been performed for half a

century. An early overview of measurements and results is

presented by Young et al. [1982]. Stake measurements of

Antarctic SMB by the Russian (Soviet at that time) Ant-

arctic Expedition (RAE) began with the opening of the first

Russian base, Mirny (in 1956). Subsequently, stake net-

works were established at all permanent Russian stations

(Vostok, Novolazarevskaya, Molodezhnaya, Bellingshausen,

Leningradskaya; for a list of Antarctic stations see the

Scientific Committee on Antarctic Research (SCAR) Web

site http://www.scar.org), with varying network shapes, size,

and number of stakes to obtain optimal setups. The most

extensive data were obtained at Molodezhnaya (�11 stake

networks and profiles operating from 1966 to 1981) and

Novolazarevskaya. Stake lines were established along the

RAE routes (Pionerskaya–Dome C, Komsomolskaya–

Dome B, Mirny–Vostok). The best results were achieved

from the permanent 1410-km-long Mirny–Vostok traverse,

where about 800 stakes were set up in intervals of 0.5–3 km,

as summarized by Lipenkov et al. [1998]. In addition, seven

stake farms (1 � 1 km2, 20–40 stakes each) were organized

along the traverse in the 1970s and annually visited until the

1980s. The stake network at Vostok was set up in 1970 and is

still in operation. Monthly observations allow for a robust

characterization of SMB in this region and provide a proto-

type for the extremely low accumulation areas of central

Antarctica. Results were obtained on the interannual and

seasonal variability of SMB and responsible mechanisms

[Barkov and Lipenkov, 1996; Ekaykin, 2003]. Among these

results are the exclusion of temporal trends of mean accu-

mulation rate (22 kg m�2 a�1) over the observation period

and the identification of different relief forms of intermediate

scale, betweenmicrorelief andmegadunes, called mesodunes

[Ekaykin, 2003]. Migration of these mesodunes causes a

relief-related (nonclimatic) temporal variability of SMB at

a single point with periods of up to 20–30 years [Ekaykin et

al., 2002]. In eastern Wilkes Land, seasonal surface obser-

vations of stakes and relief forms were carried out by

Australian expeditions [Goodwin, 1991].

[31] Since the International Geophysical Year (1957–

1958), a variety of stake networks have been established

at South Pole Station. These include a 42-stake pentagon

and an 11-km cross consisting of six arms with a stake

interval of 300 m. Details are summarized by Mosley-

Thompson et al. [1995]. Remeasurements were carried out

at irregular intervals. In November 1992, Ohio State Uni-

versity (OSU) set up a network of 236 stakes radiating

outward from South Pole Station as six 20-km-long arms, at

an interval of �500 m. Remeasurements are performed

annually in November. Results from the first 5 years of

measurements indicate that earlier estimates, that one in

10 years has negative SMB [Gow, 1965; Mosley-Thompson

and Thompson, 1982], are probably too high. At least in

recent times at the South Pole [Mosley-Thompson et al.,

1999], less than 1% of all observations revealed zero or

negative SMB. Moreover, the same study by Mosley-

Thompson et al. [1999] reveals that the net accumulation

of about 85 kg m�2 a�1 during the period 1965–1994 is the

highest 30-year average of the last 1000 years at the South

Pole.

[32] Pettré et al. [1986] report SMB data along a transect

from the coast near Dumont d’Urville to Dome C. Most of

the data are from stakes, with the stakes from the coast to

32 km inland being surveyed over as long as 21 years (1971–

1983). During the old Dome C deep ice core drilling, a stake

farm was measured during 1978–1980 to study spatiotem-

poral variability of a single core [Palais et al., 1982; Petit et

al., 1982]. Between 1998 and 2001, at Talos Dome and along

the traverse in the Dome C drainage area [Magand et al.,

2004; Frezzotti et al., 2005, 2007], 17 stake farms were set up

by the Italian Antarctic Programme, each including from 30

to 60 stakes at 100-m intervals in the shape of a cross within

an area of 4 km2, each centered on a core site. Measurements

were carried out annually at four sites where automatic

weather stations (AWS) have been installed. Other stake

farms have been remeasured only 2–4 times. Stake farm

readings show that accumulation hiatuses (no accumulation

or even ablation) can occur at sites with average accumula-

tion rates below 120 kg m�2 a�1.

[33] In the Lambert Glacier Basin (LGB) area, stake

measurements were performed by the Australian and Chi-

nese National Antarctic Research Expeditions (ANARE,

CHINARE). Results of early stake lines (1960s and

1970s) along the ANARE LGB traverse routes are summa-

rized by Morgan and Jacka [1981] and Budd and Smith

[1982]. Later measurements included stake networks

(1983–1993) and multiannual combinations of networks

and stakes (2 km interval) (about 1989–1994), comple-
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mented by cores [Goodwin et al., 1994; Ren et al., 1999,

2002; Goodwin et al., 2003; Xiao et al., 2005]. Extension of

earlier routes with 2-km stake intervals provides a contin-

uous line over 1100 km from Zhongshan station to Dome A

(1996–1999 [Qin et al., 2000]).

[34] Farther to the west a number of stake lines and farms

have been and are still being operated along the Dronning

Maud Land coast. In eastern Dronning Maud Land, the

Japanese Antarctic Research Expeditions (JAREs) deployed

stakes since 1968 [Takahashi and Watanabe, 1997]. Stakes

spaced at 2-km intervals were set from the coastal area to

inland sites at Dome Fuji over a distance of more than

1000 km. Eleven stake farms were set en route from Dome

Fuji to the plateau (e.g., 6 � 6 at 20 m intervals, 50 rows of

stakes over 100 m; see Kameda et al. [2007] for details). Six

stake farms from the coast to Mizuho were established in

1971. Most of these stakes and stake farms have been

surveyed at least once per year. Results are given by

Takahashi and Watanabe [1997], Takahashi et al. [1994],

Fujiwara and Endoh [1971], Endo and Fujiwara [1973],

and Kameda et al. [1997, 2008].

[35] At the former Georg Forster station (GDR), three

stake lines, each 85–115 km in length with stake spacings

of 1–5 km, were operated from 1988 to 1993 in an area of

strongly differing accumulation regimes containing blue ice

areas [Korth and Dietrich, 1996]. Other examples are the

stake farm operated near the German Georg-von-Neumayer

station 1981–1993 and near Neumayer station since 1992

[Schlosser et al., 2002]. Measurements were extended by a

450-km stake line (500-m interval) between Neumayer

station at the coast and the Heimefrontfjella (Figure 6)

[see Rotschky et al., 2006] (half of the traverse route to

the EPICA deep drilling at Kohnen station), which has been

revisited annually since 1996. A stake line between the

Swedish stations Svea and Wasa was established in January

1988 [Stroeven and Pohjola, 1991] and partly surveyed

until 1998 [Isaksson and Karlén, 1994]. A new 300-km

profile was established in 2002/2003 for a long-term SMB

monitoring [Swedish Antarctic Research Programme,

2003]. Shorter lines, also partly in conjunction with GPR,

were investigated near the Finnish Aboa station [Isaksson

and Karlén, 1994; Sinisalo et al., 2005] and on Lydden ice

rise (Brunt ice shelf) [Vaughan et al., 2004]. In blue ice

areas occurring in mountain regions of East Antarctica,

stake networks were surveyed to gain information on

ablation rates and to study meteorite traps [Bintanja,

1999; Folco et al., 2002]. The data suggest that ablation

rates decrease with increasing distance from the ice sheet

edge, with values from 350 to 30 kg m�2 a�1.

[36] An example of a contemporary integrated SMB

approach is the Les Glaciers, un Observatoire du Climat

(GLACIOCLIM) Surface Mass Balance of Antarctica

(SAMBA, see http://www-lgge.obs.ujf-grenoble.fr/

�christo/glacioclim/samba) observation system, a French-

Italian cooperation. The French GLACIOCLIM glacier

observation system consists of a �1-km2 stakes network

(50-m interval) located on the coast of Adélie Land, with

year-round surveys performed monthly. Additionally, vari-

ous meteorological instruments in the area are used to study

the warm/ablating region to develop an understanding of

SMB genesis and to verify local modeling capabilities in

such a region. An �100-km stake line (interval 0.5–2.5 km

with annual observations), recently extended to 150 km

from the coast toward Dome C, is used for sampling the

coast to plateau transition and sampling spatial scales

consistent with climate models and with satellite data.

Along the stake lines, two AWS are deployed, one of which

is accompanied by a 1-km2 stake network (250-m interval).

Aiming at the sampling of both small and large scales of

accumulation (model, satellite), three 1-km2 stake networks

(40-m interval) were set up in the Dome C area in 2005/

2006, with the stake farms located 25 km apart. This

network is surveyed at least once a year and may be

surveyed more frequently now that the Concordia station

is permanently inhabited. Meteorological data are available

from the station. The focus of future projects is the short-

term variability at various sites by measuring precipitation

with spectronivometers and accumulation with ultrasonic

sounders. The observation system and monitoring are

expected to last at least 10 years. Examination of the data

should allow us to address the climate–accumulation inter-

action as well as climate–model validation on subannual to

multiannual scales, which will also enable analysis of

interannual variations and processes.

2.3. Point Measurements at the Surface:
Ultrasonic Sensors

[37] A relatively recent (�10–15 years) technique for

monitoring SMB in East Antarctica is tracking surface

height changes by way of ultrasonic height rangers. These

sensors determine the vertical distance to the snow surface

by measuring the elapsed time between emission and return

of an ultrasonic pulse. An air temperature measurement is

required to correct for variations of the speed of sound in

air.

[38] Until quite recently, ultrasonic height rangers were

mainly used to study the growth and decay of the seasonal

snowpack in the Northern Hemisphere. As the design

evolved (for instance, by including a multiple echo process-

ing algorithm that stores several reflected signals to improve

operational efficiency and to decrease the problem of

obstacles), ultrasonic height rangers also found their way

into mass balance research of high-altitude/high-latitude ice

masses, such asAlpine andArctic valley glaciers [Oerlemans,

2003; Klok et al., 2005] and the Greenland ice sheet [Steffen

and Box, 2001; Van de Wal et al., 2005; Smeets and van den

Broeke, 2008]. With rugged housing and improved low-

temperature specification (nowadays typically down to

�45�C), application of ultrasonic height rangers in Antarctic

mass balance studies has become widespread. They are

deployed in a wide range of climate settings, such as the

McMurdo Dry Valleys [Doran et al., 2002], the high accu-

mulation coastal zone of East Antarctica [McMorrow et al.,

2001] and West Antarctica [van Lipzig et al., 2004b], and

the dry East Antarctic interior [Reijmer and Broeke, 2003;

van den Broeke et al., 2004b] as well as in the intermediate
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katabatic wind zone [Helsen et al., 2005] and on the ice

shelves [Braaten, 1994].

[39] In East Antarctica and elsewhere, it is advantageous to

mount the ultrasonic height ranger on or next to an automatic

weather station (AWS, Figure 8). The AWS usually observes

a range of atmospheric variables such as air pressure, air and

snow temperature, air relative humidity, air velocity, and

occasionally also radiation components [van den Broeke et

al., 2004a]. This means that surface height changes can be

interpreted in a mass balance framework, including sublima-

tion from the surface and from drifting snow particles [Fujii

and Kusunoki, 1982; Kaser, 1982; Clow et al., 1988; Stearns

and Weidner, 1993; King et al., 1996, 2001; Bintanja, 2003].

Moreover, ultrasonic height data can be accepted/rejected on

the basis of prevailing meteorological conditions (see

section 2.3.4). Finally, the ultrasonic height ranger can be

coupled to the AWS’s power and data logging system. If

more information is required on the spatial variability of

accumulation, several ultrasonic height rangers can be

deployed in stand-alone mode, using a dedicated energy/data

logger system (Figure 8c).

2.3.1. Typical Sensor Specifications
[40] As a typical example, here we list the specifications

of a widely used ultrasonic height ranger, the SR50 pro-

duced by Campbell in Canada. Its limited dimensions

(length 31 cm, diameter 7.5 cm, and weight 1.3 kg) make

it convenient for use in AWS. With an operating tempera-

ture range down to �45�C and proven working capacity

down to �70�C [van den Broeke et al., 2004b] it is suitable

for operation in most parts of East Antarctica. The power

requirement is 9–16 Vdc (volts direct current), so that it can

be powered by the data logger’s 12-Vdc power supply that

is standard equipment on most AWS. The low power

consumption (250 mA during measurement peaks) is favor-

able for operation on unmanned remote platforms. The

measurement range (0.5–10 m) is suitable for operation in

Figure 8. (a) Picture of AWS9 (near EPICA deep drilling in DML at Kohnen station), taken 4 years
after installation, i.e., after about 1 m of snow has accumulated. The data logger and pressure sensor are
buried in the snow. (b) Rime from the mast fallen on the ground might cause artificial accumulation.
(c) Picture of stand-alone ultrasonic height meter, near AWS9. The data logger and pressure sensor are
buried in the snow [van den Broeke et al., 2004b]. (d) Sample data from ultrasonic sounders: scale on left side
is cumulative accumulation at AWS6 (Svea Cross) and AWS9 (Kohnen station) for the period 1998–2004;
scale on right side is cumulative sublimation as calculated from AWS data. Note different y axis scales.
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accumulation as well as in ablation areas. The beam

acceptance (maximum deviation from the vertical) of

�22� poses no problem, as ablation-induced tilt of the mast

normally does not occur in East Antarctica. The measure-

ment accuracy is ±1 cm or 0.4% of the distance to the

surface, whichever is greatest, and data can be stored at a

maximum resolution of 0.1 mm. To account for the tem-

perature-dependent speed of sound, a correction for the

deviation of the mean layer air temperature from a fixed

calibration temperature (273 K) must be applied.

2.3.2. Advantages of Ultrasonic Height Rangers
for Mass Balance Studies
[41] The obvious advantage of ultrasonic height rangers

in comparison to stakes, snow pits, and cores is that

individual accumulation/ablation events are unambiguously

dated. This means that the temporal variability (e.g., the

seasonal cycle or the summer and winter balance) of

accumulation/ablation can be quantified. This has important

applications in ice core paleoclimatology: if, for instance, a

significant seasonal cycle in accumulation is present that

changes in time, this introduces a bias in the climate signal

extracted from cores. Case studies of chemical and physical

anomalies in the firn can be based on individual accumu-

lation events identified in the ultrasonic time series. In

combination with AWS data, the accumulation/ablation

time series of ultrasonic height rangers can also be used

to force snowpack models at their upper boundary or serve

as a starting point for atmospheric trajectory calculations

[Noone et al., 1999; Reijmer et al., 2002; Helsen et al.,

2004]. Moreover, the temporal distribution of accumulation/

ablation events is essential for validation of meteorological

and/or mass balance models [Gallée et al., 2001; van Lipzig

et al., 2004a]. Finally, for accurate energy balance calcu-

lations from single or multilevel AWS data it is desirable to

know the exact height of the wind speed, temperature, and

humidity sensors above the surface, as well as the depth of

snow temperature sensors [van den Broeke et al., 2004b].

2.3.3. Technical Problems
[42] The ultrasonic height ranger needs to be mounted on

a rack or mast so that its beam is perpendicular to the

surface and is not obstructed. In accumulation areas, such as

in East Antarctica, the sensor needs to be kept at least 0.5 m

from the surface. This requires regular, expensive, servicing

visits, the frequency of which depends on the rate of

accumulation, the battery, and data storage capacity. In

practice, the servicing interval will typically be once per

year for coastal East Antarctica and once every 2–3 years

for the interior plateau.

[43] Ultrasonic height rangers are susceptible to failure

from ageing, corrosion, or freeze-thaw delaminating of the

acoustic membrane. Membrane failure rate has been ob-

served to increase with age. Therefore, regular replacement

of the acoustic membrane as a preventive measure should be

considered for each visit. The proximity of open sea and/or

an effective transport of sea salt to the observation site

significantly reduce the lifetime of the acoustic membrane.

In East Antarctica, this is usually not a big problem, and

lifetimes of the membranes are typically 5 years or more.

[44] A common problem that prevents correct operation

of the ultrasonic height sensor is that the acoustic membrane

becomes obstructed by snow/rime. Sometimes mounting a

cone around the sensor can prevent this, but this carries with

it the risk of spurious ice accretion on the cone and

subsequent structural failure of the mast. Riming problems

are considerably reduced on the ice sheet slopes, away from

the flat domes in the interior and the flat ice shelves near the

coast. The reason is that along these slopes, semipermanent

katabatic winds heat and dry the lower atmosphere resulting

in a continuous flow of subsaturated air past the sensor,

keeping it free of rime.

2.3.4. Data Interpretation Problems and
Uncertainties
[45] Measurements from an ultrasonic height ranger per-

formed at a single site suffer from the same problems of

poor spatial representativity as single core or stake measure-

ments (see section 2.1). These problems can be partly

solved by using the same solutions as for the other techni-

ques, i.e., operating a farm of stakes (or drilling several

shallow cores) in the surroundings of the ultrasonic height

sensor or deploying several sensors.

[46] Naturally, the measuring site should be far enough

upwind from obstacles to avoid spurious lee accumulation

or snow erosion on a flat surface. In East Antarctica, it is

usually easy to find an upwind measurement site with a

large fetch because surface conditions are usually very

homogeneous and (katabatic) wind direction is exception-

ally constant [van den Broeke and van Lipzig, 2003].

Dominant sastrugi orientation from surface or aerial surveys

or a modeled wind field [van Lipzig et al., 2004a] can help

in determining the prevailing wind direction if no local

meteorological data are available.

[47] Once a suitable spot is found, raw distance data

should be collected and the temperature-dependent speed of

sound correction applied after data collection. In-sensor

temperature measurements on older sensor types should

preferably not be used because the sensor can overheat

significantly under low wind speed/strong insolation con-

ditions, fouling the surface height data. It is best to measure

the air temperature independently with a ventilated dedicated

sensor placed approximately halfway between the ultrasonic

height ranger and the surface. A more elaborate alternative

is to measure temperature at sensor height and at the surface

(e.g., using a longwave radiation sensor), to calculate the

temperature profile (using similarity theory and appropriate

stability functions [e.g., Andreas, 2002; Holtslag and

Bruijn, 1988]) and to take the mean temperature of the air

layer. In East Antarctica, it is worthwhile to spend some

effort to correctly perform the temperature correction be-

cause the radiation balance at the surface is often negative

so that the temperature difference between the ultrasonic

height ranger and the surface in the stably stratified surface

layer can be considerable, up to 5–10 K in the first couple

of meters during calm, clear conditions.

[48] At sites where riming occurs frequently, rime col-

lected on the mast structure can fall off and collect at the

surface, leading to artificially enhanced accumulation
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(Figure 8b). This will only affect low-accumulation sites

on the interior plateau.

[49] Once the wind speed exceeds a certain threshold,

snowdrift occurs in the near surface air layer [Li and

Pomeroy, 1997; Mann et al., 2000]. This can lead to an

erroneous height reading from a reflection from a dense

drifting snow layer. Usually, AWS data can be used to detect

snowdrift events so that these readings can be discarded.

[50] The technical and operational difficulties described

in this section and section 2.3.3 (see also Table 2) reduce the

1-cm accuracy under laboratory conditions to an operational

accuracy of typically 2–3 cm. This accuracy is sufficient for

high-accumulation sites, but it is not good enough to detect

the often much smaller precipitation events that are common

on the interior plateau of East Antarctica. Here, small events

(<1 kg m�2) make up most of the total accumulation

[Reijmer et al., 2002].

[51] A large uncertainty is introduced when converting

instantaneous height changes from the ultrasonic ranger to

mass changes. In practice, continuously measured height

changes are converted to mass changes through multiplica-

tion by the average density of the accumulated snowpack

since the last visit, as measured in a snow pit or firn core

(see section 2.1). Although this yields a correct value of the

total accumulation integrated over the time interval between

the pit studies, the sometimes considerable density varia-

tions in the upper firn layers result in an uncertainty of up to

20% or worse for mass changes on the event timescale.

[52] Another problem affecting ultrasonic height meas-

urements in East Antarctica is the depth and temperature

dependence of the firn densification rate. Under idealized

steady state conditions, assuming continuous accumulation

and a constant temperature, the vertical speed in the firn

depends only on the local density (Sorge’s law). Under

these assumptions, knowing the anchor depth of the struc-

ture holding the ultrasonic height ranger and the density

profile suffices to correct for this. Unfortunately, accumu-

lation is not a continuous, steady state process: after a

stepwise increase in surface height due to an accumulation

event, the densification rate of a freshly fallen snow layer

decreases with time. In addition, the densification process

depends on temperature, causing accelerated summertime

densification of the upper snowpack [Dibb and Fahnestock,

2004; Li and Zwally, 2002] and on the microstructure

[Freitag et al., 2004]. The summer heat wave slowly

penetrates the firn, locally enhancing firn densification rates

when it passes. This implies that only time-dependent firn

densification modeling along the lines of Li and Zwally

[2004], at least taking into account temperature, can account

for the differential densification effect in a physically

realistic way.

2.3.5. A Data Example From East Antarctica
[53] The following data example demonstrates both the

great value and the problems of using ultrasonic height

ranger data in East Antarcticmass balance research. Figure 8d

shows 7 years (1998–2004) of accumulation derived from

ultrasonic height ranger data from two AWS sites in western

Dronning Maud Land (DML; left scale). The first AWS is

located at Svea Cross (74�28.90S, 11�31.00W, 1160 m above

sea level (asl)), at the foot of the Heimefrontfjella in the

katabatic wind zone. The second is located adjacent to

Kohnen station (75�00.20S, 0�00.40E, 2892 m asl, see

Figure 8) on the Amundsenisen of the flat East Antarctic

plateau. In addition to surface height changes, the AWSs

measure wind speed and direction, temperature, relative

humidity, shortwave and longwave radiation fluxes, air

pressure, and snow temperatures. The sampling frequency

typically is 6 min from which 1-h averages are calculated

and stored in a Campbell CR10 data logger with separate

memory module.

[54] The ultrasonic data (Figure 8d) have been corrected

for temperature but not for differential firn densification. To

convert height changes to mass changes, we applied a mean

density of 396 kg m�3 at Svea Cross and 307 kg m�3 at

Kohnen. Missing data, mainly due to riming (20% at

Kohnen, <1% at Svea Cross), have been linearly interpo-

lated. To remove some residual noise, a cubic spline fit was

applied to the data. Applying linear fits to the cumulative

mass balance curve yields values for the specific SMB of

243 kg m�2 a�1 at Svea Cross and 64 kg m�2 a�1 at

Kohnen. These values agree with accumulation derived

from shallow firn cores drilled at these sites.

[55] The data show that the measurement accuracy of the

ultrasonic height ranger is insufficient to unambiguously

resolve individual precipitation events at the low-accumu-

lation site Kohnen. The record rather shows a continuous,

slow accumulation interspersed with occasional larger

events. No significant surface lowering is observed between

accumulation events. At Kohnen, even during summer,

temperatures are apparently too low to force strong subli-

mation and a seasonal cycle in the densification.

[56] This is very different at Svea Cross, where the

accumulation occurs in large, well-defined events, some of

which can also be found in the record of Kohnen. In between

these accumulation events, dry periods lasting up to 8months

occur at Svea Cross. During these dry episodes, significant

surface lowering occurs in the summer period (November–

February). To determine which part of the surface lowering is

caused by sublimation, AWS data were used to calculate the

turbulent flux of latent heat [van den Broeke et al., 2004b].

The scale on the right in Figure 8d indicates the resulting

cumulative sublimation/deposition. As can be seen, sublima-

tion dominates during summer, averaging typically 25 mm

water equivalent (about 6.5 cm of snow) at Svea Cross and

about 10 times less at Kohnen. At Svea Cross, this accounts

for part but not all of the surface lowering that is observed

during summer; enhanced summer densification of the firn

layer enclosed by the AWS anchor depth and the surface

accounts for the residual surface lowering.

2.4. Point Measurements at Depth: Snow Pits,
Firn, and Ice Cores

[57] Snow pits and core drilling (Figure 9) are used to

access older snow and ice below the surface. Their deploy-

ment retrieves sequences of buried snow and ice from only a

single operation, as layers of different age are accessed at
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once. Apart from accumulation, time series for a number of

other parameters are established as well.

[58] The SMB corresponding to a sample in a certain

depth interval (and thus age interval) is most generally

derived from the ratio of mass (or water equivalent depth)

of the considered sample to the time span that the sample

range covers. As for stake and ultrasonic measurements,

determination of density is thus one important key. In

contrast to those methods, which monitor the surface and

obtain time series of surface accumulation only by repeated

observations of surface height at an accurately known point

in time, the determination of the age as a function of depth

is the other key parameter. One derives this function for

instance by interpolating discrete time markers (e.g., volca-

nic horizons) or counting of layers of known origin, like

annual signals [Whitlow et al., 1992].

2.4.1. Density Measurements
[59] The techniques presented in sections 2.4.1.1–

2.4.1.3, used to determine density as a function of depth

along cores, complement the classic surface snow density

measurement methods described in section 2.1.

2.4.1.1. Classic Technique
[60] Firn core density is most often determined by mea-

suring core length and diameter and weighing each core

section on an electronic scale directly after core retrieval in

the field [Isaksson et al., 1996; Oerter et al., 1999; Magand

et al., 2004; Frezzotti et al., 2005]. However, problems with

this simple method are that the snow in the uppermost meter

is usually poorly consolidated and loss of material is

therefore unavoidable, reducing the accuracy of volume

calculations. It is therefore common practice for firn core

retrieval that density is measured in a pit (about 2 m depth)

in direct connection to the drill site where stratigraphic

studies and snow sampling can also be performed. Another

problem is that the diameter of the core pieces changes

depending on the snow type. For instance, less dense snow

can be compacted or lost, resulting in an overestimation of

density [Karlöf et al., 2005b]. Cores with a wider diameter

(e.g., 4 inch, 10.2 cm) reduce the uncertainty in density

measurements. Core imperfections that can occur during

drilling alter the volume of the core segment and can thus

affect density measurements.

2.4.1.2. Radiation Attenuation Profiling
[61] Radiation attenuation profiling is based on the ab-

sorption and scattering of hard radiation to determine ice

density. The ratio between transmitted and received ray

intensity is a measure for absorption and scattering, which

can be related to snow, firn, and ice density. Currently, three

types of radiation are utilized: g rays, X rays, and neutrons.

In the case of g attenuation profiling (GAP) [Gerland et al.,

1999; Wilhelms, 1996, 2000] the g ray originates from a

radioactive source (e.g., 137Cs) and passes through the core

in transverse direction to a detector. For monochromatic

radiation the mass absorption coefficient is known with

0.1% relative error. The statistical intensity measurement

error is determined by free-air reference. To reduce statis-

tical errors, multiple (usually more than 10) measurements

are averaged. The calibrated detector signal has to be

Figure 9. (a) Firn core drilling. Typical drill diameters are
3 inches (7.6 cm) and 4 inches (10.2 cm). The wooden
board marks the reference level of the snow surface.
(b) Taking samples in a 3-m-deep snow pit. To avoid sample
contamination, the person wears a clean room suite.
(c) Taking density measurements with tubes in a snow pit
with a crossover pattern (visible to the left of the ruler in the
center). (d) Example from pit MC in DML on how several
different species have been used in dating the pits [Karlöf et
al., 2005b] (with permission of the International Glaciology
Society). They mainly used the oxygen isotope data with
support of ions to date the pits. Years (1992–2000) are
indicated at the top; year transitions are marked with vertical
lines.
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corrected for variations in core diameter. For high-quality

cores, the diameter is accurate to 	1 mm. The possible

influence at maximum misalignment of the core within the

measurement bench has to be accounted for, as well as

cracks from core breaks at the end of an ice core. The

precision of the GAP density measurements is typically

around 10 kg m�3 for a 100-mm-diameter core. The depth

resolution of GAP depends on the characteristics of the

radioactive source, like ray diameter and dispersion charac-

teristics. Typical resolution is on the order of 1 cm, with

measurements carried for redundancy to the subcentimeter

level.

[62] For X-ray attenuation profiling [Hori et al., 1999],

the accuracy is about 1%, the same as for the g attenuation

method. However, field measurements by the X-ray method

are difficult since a large experimental system is required. It

is therefore mostly applied in the laboratory.

[63] In contrast to these two methods, neutron probes

(Walingford probe) [Morris and Cooper, 2003] are operated

in the borehole instead of along the core. The neutron probe

method thus has the advantage that only a (reasonably

smooth) hole instead of a core is necessary for determining

density profiles. The depth resolution, however, is physi-

cally limited to 10 cm. The uncertainty of the derived

density is on the order of 10 kg m�3.

2.4.1.3. Dielectric Profiling
[64] The complex dielectric constant is expressed as e* =

e0 � ie00. In the case of ice, the real part e0, the ordinary

complex permittivity of the medium, mainly depends on

density. The imaginary part e00, the dielectric loss factor, is

related to conductivity s and radian frequency w by e00 =
s(e0w)

�1, where e0 is the permittivity of free space. Both

parts of e* can be determined with dielectric profiling

(DEP) [Moore and Paren, 1987]. A DEP device is essen-

tially a calibrated and guarded scanning capacitor. The core

is put between two semispheres. Its conductance and

admittance are determined by applying alternating current

potentials, typically at a single frequency of 10 kHz to a few

hundred kilohertz, which are then converted to e*. For

accurate devices, the real and imaginary components can

each be determined to within 1% [Wilhelms, 2000]. A

widely used formula relating the ordinary relative permit-

tivity e0 and density r is based on the approximation derived

by Looyenga [1965] from theoretical consideration of air

distributed in a dielectric medium, with spherical approx-

imations of bubbles, e0 = ((r/rice)[
ffiffi
½

p
3�e0ice � 1] + 1)3. Other

approximations were derived from comparison of density

and permittivity measurements, e.g., by Robin et al. [1969],

Tiuri et al. [1984], or Kovacs et al. [1995]. The latter refined

an empirical approximation, e0 = (1 + 0.845r)2, which is

now widely used for permittivity-density conversions

[Kovacs et al., 1995]. They obtained a standard error of

±0.031 for e0. Both of the above formulae take only the real

part of e* into account, causing a mixing of the complex

components [e.g., Barnes et al., 2002]. Recently, Wilhelms

[2005] demonstrated that neglect of complex mixing for the

density-permittivity relation could result in errors in e* and

suggested extension of Looyenga’s formula into complex

space. In general, integration of the density-depth profile to

obtain cumulative mass results in a higher accuracy, as

statistical uncertainties of abnormally high or low values are

averaged out.

2.4.2. Age Estimates
[65] Two main methods are used to date firn and ice cores

(from seasonal to century scales): counting of seasonal

variations of various parameters (physical, chemical, isoto-

pic) that show cyclic variations during the year (Figure 9d)

and identifying prominent horizons of known age, such as

acid layers from dated volcanic eruptions or radioactive

fallout from atmospheric thermonuclear bomb tests. A third

method exploits the natural decay of radioactive materials.

The method used depends on the purpose of the study and

the accumulation rate at the site; however, many studies

utilize all three methods.

2.4.2.1. Seasonal and Annual Layer Counting
[66] 1. The stable isotope (d18O and dD) stratigraphy

[Dansgaard et al., 1973] is a method commonly used to

determine annual layers [e.g., Morgan et al., 1991] in areas

with higher accumulation (above about 80–100 kg m�2a�1).

The oxygen and hydrogen isotopic composition of polar

snow is mainly related to the condensation temperature

[Dansgaard, 1964]. One advantage of the stable isotope

stratigraphy is that no special precautions during the sam-

pling procedure are necessary to prevent sample contami-

nation [Legrand and Mayewski, 1997]. However, at least

seven to eight samples per year are needed to correctly

resolve seasonal and thus annual signals. The seasonal cycle

of d18O (or dD) is usually well developed only in the upper

part (5–10 m) of the snowpack because of diffusion during

densification [Johnsen, 1977; Legrand and Mayewski,

1997] in the postdepositional process. As few studies have

been dedicated to the analysis of postdepositional effects on

Antarctic snow composition, the possibility that wind-

driven ablation [Ekaykin et al., 2002; Frezzotti et al.,

2004] as well as sublimation [Neumann and Waddington,

2004; Neumann et al., 2005; Satake and Kawada, 1997]

may induce systematic effects on isotope levels has to be

kept in mind. These could affect seasonal and annual signals

[Masson-Delmotte et al., 2008] and thus SMB measure-

ments. As suggested by Masson-Delmotte et al., systematic

measurements of water vapor and snow isotopic composi-

tion should provide a means of disentangling the effect of

depositional and postdepositional processes and, as a con-

sequence, allow a better understanding of their effect on

SMB estimates.

[67] 2. Chemistry of discrete firn/ice core samples has

been routinely analyzed for major ion content (e.g., via ion

chromatography). Over the last decade, continuous flow

analysis (CFA), high-resolution fast ion chromatography

(FIC), and continuous melting discrete sampling (CMDS)

methods have been improved such that a quasi-continuous

record of a number of different species is measured simul-

taneously along a single core [Fuhrer et al., 1993; Sigg et

al., 1994; Fuhrer et al., 1996; Röthlisberger et al., 2000;

Sommer et al., 2000b, 2000a; Udisti et al., 2000; Traversi et

al., 2002; Rasmussen et al., 2005; Osterberg et al., 2006].
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Typical markers for seasonal layer counting are methane-

sulphonic acid (MSA) and nonsea-salt (nss) sulphate (nss

SO4
2�), the main oxidation products of dimethylsulphide

(DMS), which are mainly produced by marine biogenic

activity [Saigne and Legrand, 1987]. Study of seasonal

cycles of sulfur aerosol carried out in coastal Antarctica

have shown that MSA and nss SO4
2� exhibit a strong

seasonal cycle characterized by summer maxima [Jourdain

and Legrand, 2001; Curran et al., 1998]. Another seasonal

indicator is Na+, a tracer of sea salt. Na+ concentrations

peak during the winter as a consequence of more frequent

advection of marine air masses over the Antarctic ice sheet

[Legrand and Delmas, 1984], with the strongest seasonal

signal near the coast. Among the commonly used ions,

sodium, nss sulphate, and nitrate often show well-developed

seasonal variations on the polar plateau [Isaksson et al.,

1996; Stenni et al., 2000, 2002; Traufetter et al., 2004;

Kaspari et al., 2005; Dixon et al., 2004; Karlöf et al.,

2005b]. Also for these species it is important to sample with

high enough frequency to capture their variations, i.e., at least

seven to eight samples per year [Mayewski and Goodwin,

1997]. However, it is worth keeping in mind that nitrate

diffuses and is probably reemitted from the upper layers of

the ice sheet [Wolff et al., 1995; Weller et al., 2004]. Nitrate

reemission is inversely related to accumulation rate and

usually obliterates its seasonal signature at low accumula-

tion sites. Therefore, SO4
2� and Na+ provide the most robust

annual peaks within cores. In order to avoid using occa-

sional double peaks as dividing lines for years, multiple ions

with different seasonal timings can be used to define the

annual horizons [e.g., Legrand and Mayewski, 1997].

[68] 3. Some gases also display a seasonal cycle, in

addition to isotopes and ions. One example is hydrogen

peroxide (H2O2, e.g., measured via spectrofluorimeter

methods), which is principally produced in the atmosphere

by photochemistry in summer. Its maximum concentration

occurs in the period of maximum solar radiation, from late

spring to late summer [Neftel, 1991]. H2O2 is subject to

postdepositional change, caused by reemission to the atmo-

sphere, the same as some other species. Utilization of H2O2

for annual layer counting is thus restricted to high-accumu-

lation areas (>200 kg m�2 a�1).

[69] 4. For electrical methods, the varying concentrations

of ions are a major cause of variations in alternating current

(AC) and direct current (DC) electric conductivity. Two

techniques are used to determine quasi-continuously the

variation of conductivity along a core. The electric conduc-

tivity method (ECM) [Hammer, 1980] is a measure of the

electrical current from which acidity concentration levels

may be inferred in cores. ECM is performed in a cold room

with stable temperature conditions as well as in the field. In

contemporary systems, two to seven electrodes with an

applied high voltage of several hundred volts (AC or DC)

are moved along a freshly cut ice surface, and measure-

ments are typically taken at millimeter resolution. The

original method has been modified in various ways and is

used by different groups [Isaksson et al., 1996; Kaczmarska

et al., 2004; Wolff et al., 1999; Taylor and Alley, 2004]. A

direct current flowing between the electrodes is dominated by

the acid content and the temperature of the ice [Schwander et

al., 1983; Moore and Mulvaney, 1989] but is only slightly

dependent on the salt concentration under normal conditions

[Schwander et al., 1983; Wolff et al., 1997]. For alternating

currents, salts have an increasing effect on conductivity

[Barnes et al., 2002]. The imaginary part of the dielectric

constant determined from DEP, e00, already introduced in

section 2.4.1.3 in the context of density measurements,

likewise reveals variations in AC conductivity [Moore and

Mulvaney, 1989]. As an alternating current technique, which

is nondestructive as it does not require direct contact

between the ice and the electrodes [Wilhelms et al., 1998],

it also responds to both the acidity and the total salt content

in the ice [Barnes et al., 2002]. Measurements are per-

formed in millimeter to centimeter increments. There is

evidence that the DEP and ECM electrical methods respond

to different chemical compositions. Minikin et al. [1994]

suggested that DEP peaks represent winter maxima of sea

salts, while peaks in ECM respond mostly to summer

maxima of nss sulphate and partly to high values of NO3
�,

MSA, and HCl�. Hammer et al. [1994] and Mulvaney et al.

[2002] confirm that ECM is a sufficient method for detect-

ing both volcanic peaks and seasonal changes in acidity.

Apart from identifying volcanic signals in conductivity,

ECM is also used to analyze annual peaks if conditions

are favorable enough.

[70] 5. Dating firn and ice cores via visual stratigraphy is

based on visual differences in summer and winter snow due

to changes in atmospheric conditions and radiative fluxes

[Alley et al., 1997]. To aid the identification of annual

layers, the surface of the core is prepared with a microtome

knife. The core is placed on a light table to identify seasonal

variations in transparency and scattering associated with

annual layering. Summer layers are characterized by coarse-

grained, low-density hoar layers, whereas winter layers have

higher density and finer grain size. Below the firn-ice

transition, summer layers have fewer and larger bubbles

compared to winter layers and can also be identified by the

presence of summer melt layers in coastal regions. Because

of annual layer thinning, annual layers become more diffi-

cult to identify with depth. In regions with low accumula-

tion, postdepositional processes such as drifting and melting

(e.g., near coastal blue ice areas or very low accumulation

areas on the plateau) can preclude the presence of visible

annual layers [Taylor et al., 2004]. An advantage of visible

stratigraphy is that it can also be applied in the field if

stratigraphic changes are strong enough to be identified

without preparation of the core. At least for higher accu-

mulation sites, and thus favorable conditions, visual stratig-

raphy provides an initial approximation of annual

accumulation rates [Morgan et al., 1991], useful for later

decisions on core processing (e.g., sampling resolution).

Although the visual stratigraphy is commonly applied to

derive on-site information in snow pits, accumulation rates

derived from pit stratigraphy alone involve personal and

subjective interpretation, which can lead to unreliable

results, as pointed out by Picciotto et al. [1971].
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[71] 6. New techniques build on the greater availability of

more advanced chemical analysis instrumentation, such as

inductively coupled plasma–mass spectrometry (ICP-MS),

allows the accurate determination of many tens of chemical

elements at the parts per billion, parts per trillion, and parts

per quadrillion levels. Improved instrumentation coupled

with advances in sample generation, e.g., by laser ablation

[Reinhardt et al., 2001], ultraclean sample analysis, and

continuous sampling [Knüsel et al., 2003; Osterberg et al.,

2006], will likely yield new firn and ice core dating

methods. This would be particularly advantageous for

dating ice cores from low-accumulation sites (such as the

East Antarctic plateau).

2.4.2.2. Reference Horizons
[72] There are several valuable reference horizons that

have been used in Antarctic accumulation studies for

validating the depth-age scale developed from annual layer

counting or for use as a time horizon, which can then be

used for calculating the accumulation rate between hori-

zons. Below we discuss the two most commonly used

reference horizons (volcanic peaks and artificial radionu-

clides) and suggest additional horizons that could be worth-

while to explore further.

[73] 1. For volcanic peaks, sulphate (in the form of

atmospheric H2SO4) is generally the dominant ion in

high-altitude Antarctic snow, with the dominant source from

marine biogenic emissions and sporadic input from volcanic

activity. For the Antarctic polar plateau, historical volcanic

eruptions such as Pinatubo 1991, Mount Hudson 1991,

Mount Agung 1963, Krakatau 1883, and Tambora 1815

(plus an unknown eruption 1809) have been shown to be

easily distinguishable peaks that can be used as unambiv-

alent time markers, either from chemical analysis or con-

ductivity measurements [e.g., Cole-Dai et al., 1997; Oerter

et al., 1999; Nishio et al., 2002; Stenni et al., 2002;

Traufetter et al., 2004; Dixon et al., 2004]. Because of

oxidation of SO2, H2SO4 forms within about 1 month

following the eruption [Coffey, 1996]. Once in the strato-

sphere, the atmospheric residence time of SO4
2� is a few

years, during which it can be transported to the polar

regions and subsequently scavenged by snowfall. An in-

crease of nss SO4
2� concentrations in polar snow is observed

in a period up to 3 years after a major volcanic eruption

[Cole-Dai and Mosley-Thompson., 1999]. For example, the

eruption of Tambora (located in Indonesia) occurred in

April 1815. The rise of SO4
2� above background noise is

observed in late austral winter 1816, with maximum con-

centrations during the austral summer of 1816/1817 [Cole-

Dai et al., 1997; Palmer et al., 2001] due to the lag between

the eruption and nss SO4
2� deposition in Antarctica. In

several papers from the EPICA presite and ITASE surveys,

attempts have been made to develop a useful volcanic

chronology spanning the last millennium to aid in the

correlation between cores [Karlöf et al., 2000; Traufetter

et al., 2004; Hofstede et al., 2004]. The Tambora double

peak has served as the main time horizon for the dating of

many firn cores in the ITASE program [Isaksson et al.,

1996, 1999; Oerter et al., 1999, 2000; Stenni et al., 1999,

2001; Karlöf et al., 2000; Ekaykin et al., 2004; Dixon et al.,

2004; Karlöf et al., 2005b; Frezzotti et al., 2005; Steig et al.,

2005]. The most prominent eruptions during the last mil-

lennium in addition to Tambora are the A.D. 1259 eruption

suggested to be El Chichon [Palais et al., 1992] and the

A.D. 1452 eruption suggested to be Kuwae [Delmas et al.,

1992]. These eruptions have been identified in many

Antarctic ice cores [i.e., Moore et al., 1991; Cole-Dai et

al., 1997, 2000; Watanabe et al., 1997]. However, the

volcanic signal at high-accumulation, low-elevation sites

located near the Ross Sea coast in West Antarctica has been

overwritten by large amounts of biogenic SO4 that is

released by marine organisms [Dixon et al., 2004]. This

may be a problem at other low-elevation coastal sites that

are situated close to polynyas, too. Currently, on the polar

plateau (SMB < 70 kg m�2 a�1), �2.5-m-deep snow pits

are deep enough to reach the 1991–1992 layer from the

Mount Pinatubo and Mount Hudson eruptions. Attempts

have been made to determine if dating horizons as shown in

time series of DEP, ECM, and sulfate are significant with

respect to natural and measurement-induced noise

[Cole-Dai et al., 1997; Fischer et al., 1998; Karlöf et al.,

2005a, 2006; Steig et al., 2005].

[74] 2. Time markers from artificial radionuclides are

based on radioisotopes from atmospheric nuclear weapon

tests (United States, United Kingdom, Soviet Union,

France, China, and India) carried out between 1953 and

1980. They were deposited in Antarctica after transport in

the upper atmosphere and stratosphere [Picciotto and

Wilgain, 1963; Wilgain et al., 1965; Feely et al., 1966;

Picciotto et al., 1971; Lambert et al., 1977; Carter and

Moghissi, 1977; Jouzel et al., 1979; Kamiyama et al.,

1989]. Since the signing of the Limited Nuclear Weapon

Test Ban Treaty in 1963, the number of atmospheric nuclear

weapon tests greatly decreased with tests being carried out

mainly underground. Other sources of anthropogenic fallout

post-1963 may be linked to the nuclear disaster in Cher-

nobyl in 1986 [Dibb et al., 1990]. Very sensitive analytical

techniques and procedures have been developed and im-

proved over the last 40 years to detect and measure both

artificial and natural radionuclides present in the ice sheets

[Picciotto and Wilgain, 1963; Delmas and Pourchet, 1977;

Pinglot and Pourchet, 1979, 1994]. The high solubility of

most fission products induces the formation of distinct and

stable radioactive reference horizons in areas of dry snow

facies or with moderate percolation of meltwater. Among

the radioactive fallout, 90Sr and 137Cs radionuclides (re-

ferred to gross b activity), plutonium isotopes, and 241Am

[Pourchet et al., 2003] are best suited for the formation of

distinct radioactive horizons owing to their high production

yield and their low volatility, which prevents vertical

migration in the firn layers as long as they remain dry

[Picciotto et al., 1971]. Another artificial product, tritium

(3H), behaves differently during its injection into the global

system (by thermonuclear explosions) and its deposition

than the fission products previously cited [Picciotto et al.,

1971]. Nevertheless, very distinct radioactive peaks in

continuous tritium profiles are also observed [Jouzel et
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al., 1979; Oerter et al., 1999; Stenni et al., 2002; Frezzotti et

al., 2005]. The timing of radioactive deposition from the

nuclear tests is well known in Antarctica [Wilgain et al.,

1965; Feely et al., 1966; Jouzel et al., 1979; Oerter et

al., 1999; Pourchet et al., 1983, 1997, 2003; Magand et

al., 2004], with the maximum radioactivity peaks in

1954–1955 and 1965–1966 used as convenient horizons

for dating snow and ice layers and measuring SMB. Jouzel

et al. [1979] observed the largest tritium peak at the South

Pole during 1966. On the basis of comparison between the

tritium profile in snow layers at Dronning Maud Land and

the tritium distribution at the Kaitoke (New Zealand)

International Atomic Energy Agency (IAEA) station,

Oerter et al. [1999] attributed the highest values to the

1964–1969 years. Best fit depth–time scales were used to

transform the measured depth profiles to time series similar

to the tritium content of precipitation at Kaitoke. In Ant-

arctica, total b counting remains the most frequent radio-

activity measurement [Picciotto and Wilgain, 1963;

Lambert et al., 1977; Pourchet et al., 2003]. As a conse-

quence, there is a great deal of data on the history of

artificial radioactive fallout over Antarctica since the 1950s;

thus total b activity is a well-constrained method used to

identify radioactive reference horizons for estimating SMB

in accumulation areas. In situ g ray spectrometers for ice

boreholes [Pinglot and Pourchet, 1981] enable a rapid

determination of the mean annual accumulation from

1965 to present by measuring the radioactive fallout layers.

This provides valuable information in the field to estimate

the depth range necessary to reach dating horizons (like

volcanic signals) as previously cited.

2.4.2.3. Radiochronology
[75] As in many geoscientific disciplines, the natural

decay of radioactive isotopes can be used to determine the

age of an investigated sample, commonly referred to as

radionchronology. A common example for ice is 210Pb, a

natural b emitter. It is a long-lived daughter nuclide (half-

life 22.3 years) belonging to the 238U family [Picciotto et

al., 1971]. Its presence in the atmosphere is a result of the

a radioactive decay of radon gas (222Rn). The atmosphere

is the major source of 210Pb deposited on the Antarctic ice

sheet. Many factors contribute to the low radon (and its

daughter nuclide) concentrations in Antarctica [Pourchet et

al., 1997, 2003]. These include ice that prevents the escape

of radon from the Antarctic geological basement, the

surrounding ocean without radon emission, and the time

required for air masses to move from continental areas (the

main source of radon emission) to the south polar region.

Very little 210Pb was produced by the nuclear explosions

during the 1960s.

[76] Studies carried out during this period show that the

quantity of 210Pb deposited at a given place, averaged over a

year or more, appears to be constant and not to have

changed significantly since the advent of H-bombs [Bull,

1971]. As a result, the natural 210Pb continuous flux

deposition over the Antarctic ice sheet could be used for

dating purposes over periods of the past 100 years. Because

of radioactive decay, the natural 210Pb activity decreases

with depth of the firn and ice layers. The age of a firn layer

at z meters depth is thus given by

t ¼ 1

l
ln
A0

Az

; ð3Þ

and the average rate of accumulation of snow above this

depth is given by

_b ¼ zl

ln A0

Az

; ð4Þ

where A0 and Az are the 210Pb activities per unit weight of

snow at the surface and at a depth of z meters, respectively,

and l is the 210Pb decay constant. The first attempts at

dating firn or ice layers in the polar regions with the 210Pb

method were successfully validated by other direct

measurements [Goldberg, 1963; Picciotto et al., 1964;

Crozaz et al., 1964; Nemazi et al., 1964; Crozaz and

Langway, 1966]. We have to stress that accurate dating of

snow by 210Pb is only possible with the following

assumptions: (1) The mean 210Pb activity in precipitation

has remained constant during the last two centuries, (2) the
226Ra concentrations within the firn/ice samples are

negligible, (3) no diffusion of air into the ice sheet occurs

(bearing additional 222Rn), and (4) 210Pb remains at its

initial place of deposition (no vertical transportation by

water from melting snow). Even if none of these

assumptions are perfectly fulfilled, we argue that a generally

reliable determination of SMB over the past few decades is

achievable by this method in areas exempt from melting,

i.e., in accumulation zones [Pourchet et al., 1997, 2003].

2.4.2.4. Optimal Strategies for Age Estimates
[77] Counting seasonal cyclicity of chemical/isotopic

parameters (d18O, dD, H2O2, MSA, Na+, NO3
�, nss SO4

2�,

etc.) is the most precise dating method, but it is also the

most time- and equipment-intensive method. A multiparam-

eter approach using several high-resolution chemical

records (as shown in Figure 9d) is therefore the most

reliable way to derive annual dating. Because several

atmospherically derived chemical species peak during dif-

ferent times of the year, it may thus be possible to ensure

that no year is missing [e.g., Udisti, 1996; Steig et al.,

2005]. In general, however, seasonal cycles are difficult to

observe at sites with low accumulation (below about 80–

100 kg m�2 a�1), such as the polar plateau, because the

seasonally deposited chemical or physical signals often

have been strongly erased or reworked by the action of

wind at the surface. Applying these methods to discrete

samples (as from snow pits) is ineffective in the inner part

of East Antarctica, e.g., in the Dome C area, unless a high

(subcentimeter) sampling resolution is used. At most low

accumulation areas, high-resolution continuous electric

(DEP and ECM) and chemical measurements (CFA, FIC,

CMDS) and the simultaneous analysis of multiple-parameter

records have to be performed in order to detect seasonal

signals in the physical and chemical properties of cores and

thus achieve annual dating. During the past decade, high-
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resolution continuous methods have been used in many

studies, such as for the EPICA presite surveying in Dron-

ning Maud Land [Sommer et al., 2000b]. Thus, it was

possible to perform annual layer counting back several

hundred years at several places on the East Antarctic plateau

with SMB below 80 kg m�2 a�1, e.g., at the South Pole

[Meyerson et al., 2002] or Dronning Maud Land [Sommer

et al., 2000a], and even below 50 kg m�2 a�1 from an ice

core site located approximately 600 km south of Dome A

(D. A. Dixon, personal communication). Such results imply

that wind scouring does not suffice to erode annual signals

at these sites. However, the identification of annual layers

does not unequivocally imply the possibility of resolving

accumulation history with representative values (±10%) of

annual resolution [Frezzotti et al., 2007]. When continuous

sampling is not available, reference horizon dating may be

the only available method at low accumulation sites. In such

cases, only a mean accumulation rate between two reference

horizons can be calculated. This precludes these records

from studies interested in the interannual variability in

accumulation, for instance, to assess changes in climate,

to account for flux of chemical compounds, etc.

2.4.3. Accumulation Errors From Pit and Core
Measurements
[78] Annual layer counting using seasonal cyclicity of

multiparameters can be fine tuned using atmospheric ther-

monuclear bomb test layers and volcanic peaks as fixed

time markers to achieve the best accuracy for the evaluation

of snow accumulation in cores. Dating errors may arise

from incorrect or nonidentification of seasonal signals (e.g.,

hiatus in accumulation or erosion) and from incorrect

identification or errors in identification of historical volcanic

or nuclear bomb layer markers. Dating errors could be

±1 year for the depth coincident with the marker, but they

could be higher at points that are far from dated reference

horizons [e.g., Steig et al., 2005].

[79] The associated relative errors in accumulation _b
derived from snow pits, firn, and ice cores (Table 2) can

be expressed as

d _b
_b
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

< 0:5l

Dz

� �2

þ d Dtð Þ
Dt

� �2

þ d Dmð Þ
Dm

� �2

;

s
ð5Þ

where l is sample length, Dz and Dt are the depth and age

difference between the dating horizons used, and Dm is the

mass difference of the two columns above the two dating

horizons, sometimes expressed in meter water equivalent

depth; d( ) is the uncertainty of the parenthesized variable,

e.g., the error in the date of volcanic deposition. When the

sample length is relatively large compared to the depth

between dating horizons, the first term on the right-hand

side is important. On the other hand, if the age–depth profile

is derived from high-resolution measurements like electrical

methods, the first term can be neglected. The error estimate

only applies at the identified dating horizons. Any physical

variation, i.e., change in accumulation, between the dating

horizons is not captured by this error estimate. The typical

error d _b in _b is less than 10% for both snow pits and cores.

[80] The extraction of snow accumulation values from

cores requires estimating the effects of thinning due to ice

dynamics (densification, compression, flow, etc.). Vertical

thinning of surface layers is predictable from the sum of

horizontal strain rates. As firn cores are relatively shallow

(less than 50–100 m) in comparison to the total thickness of

ice sheets (more than 1000 m), thinning could be assumed

to be less than 5%, implying negligibility. In cold, large ice

sheets like the one in East Antarctica, the strain rates are

expected to be around 10�4 a�1. On fast moving glaciers,

ice streams, and ice shelves, they can sometimes get close to

10�2 a�1, and as a result, cores that represent several

hundred years can be significantly affected by thinning.

As an example, consider a 100-year-old layer. If both

horizontal strain rates are 10�4 a�1, the 100-year-old layer

should have thinned by only 2%, but if strain rates are 10�2

a�1, the layer is thinned to 13% of its original thickness. For

a 100-m core with around 200 kg m�2 a�1 accumulation,

corresponding to 300 years of accumulation history, and at a

strain rate of 10�3 a�1, a 55% thinning of the original layer

thickness should result. Whether layer thinning takes place

or not has thus to be evaluated for each site individually.

2.5. Laterally Continuous Measurements:
Ground-Penetrating Radar

[81] GPR maps the internal structure of the firn column

along a profile from the surface. Variation in depth of

continuous internal layers of equal age along the profile

yields information about the accumulation pattern. Combin-

ing GPR with highly resolved ice core data is required to

date the internal layers.

[82] Over the last few decades, a number of methodolog-

ical studies have been carried out to investigate the suit-

ability of high-resolution GPR for mapping accumulation

rates along surface profiles. The results demonstrate that

GPR profiling of firn stratigraphy, coupled with precise

GPS measurements is capable of complementing traditional

methods like stakes, snow pits, and cores to map accumu-

lation rates and to improve the understanding of spatial

accumulation patterns. In the literature, terms like GPR

(traditionally used in engineering geophysics), ice-penetrat-

ing radar, snow radar, and sometimes radio echo sounding

are used synonymously. Here, we stick to the first term and

imply investigations with a phase-sensitive radar. Commer-

cial and easily transportable GPR systems have become

available and are widely used to survey the near-surface firn

(<100–200 m). Over recent years this had the consequence

that GPR was routinely employed during operational sur-

veys to map the internal structure of the firn column and to

determine regional surface accumulation, e.g., during most

campaigns related to ITASE and EPICA [Isaksson and

Karlén, 1994; Richardson et al., 1997; Richardson and

Holmlund, 1999; Nereson et al., 2000; Richardson-Näslund,

2001; Urbini et al., 2001; Frezzotti et al., 2002b; Frezzotti

and Flora, 2002; Sinisalo et al., 2005; Richardson-Näslund,

2004; Rotschky et al., 2004; Karlöf, 2004; Spikes et al.,

2004; Eisen et al., 2005; Frezzotti et al., 2005; Arcone et

al., 2005a, 2005b; Jacobel et al., 2005; Anschütz et al.,
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2007, 2008]. High-frequency GPR in the range of 100 MHz

to 1 GHz is capable of imaging the structure of the upper tens

to hundreds of meters of the ice column in high resolution.

On the Antarctic inland plateau, this provides a means to

derive information about the local SMB over the last tens of

years to about 1000 years. It has thus become possible to

map accumulation rates and their spatial variations along

continuous profiles within the upper parts of the snowpack.

2.5.1. Technical Background and Functional Principle
[83] Application of GPR for imaging the snow and firn

column at shallow depths usually utilizes a transmitter and

receiver moved at a fixed distance from each other across

the surface along the survey profile. This setup is called

common offset (CO), referring to the constant distance

between transmitter and receiver. The device is either towed

by hand, snowmobile, or tractor, and the geographical

position is usually obtained from kinematic GPS measure-

ments (Figure 10a). At defined intervals, either at equal

temporal or spatial increments, the transmitter emits an

electromagnetic pulse into the snow column. Distances

between consecutive measurements vary, depending on

the system performance, between about 0.1 and 10 m.

The pulse penetrates into the snow column and is partly

reflected where the complex dielectric e* constant changes.

The reflected signals travel back to the receiving antenna at

the surface. The complete signal is recorded as a function of

traveltime of the transmitted radar pulse.

[84] Three factors are known to change the dielectric

constant in firn and ice: gradients in the real part, the

permittivity, are mostly related to density; they dominate

reflections in the upper hundreds of meters. Variations in the

imaginary part are proportional to conductivity, are related

to acidity, and depend on frequency. They are the governing

reflection cause in deeper ice. A third mechanism, proposed

by Harrison [1973], involves dielectric anisotropy of the

crystal fabric, but it becomes significant only at the deeper

levels (>500–1000 m) of the ice sheet where changes in

anisotropic crystal fabrics could develop [Fujita et al.,

1999; Matsuoka et al., 2003, 2004; Eisen et al., 2007].

Other radar techniques are based on frequency-modulated

continuous wave (FMCW) transmissions or stepped-

frequency radars [Kanagaratnam et al., 2001; Corr et al.,

2002]. Although the technical details on data acquisition

and processing are different, the results are the same, an

image of subsurface reflections along a profile (Figure 4).

[85] Studies of dielectric properties of ice and internal

radar reflection horizons (IRHs, outlined in Figure 10b)

show that most processes forming electromagnetic reflec-

tors take place at the glacier surface at approximately the

same time [Gudmandsen, 1975]. (Details on physical struc-

ture and processes related to the origin of reflections in firn

are given by Kohler et al. [2003], Eisen et al. [2003a,

2003b], and Arcone et al. [2005a].) While some significant

progress in understanding this process has been made in

recent years [Eisen et al., 2003b; Arcone et al., 2005a], it is

still not entirely clear how the GPR produces a continuous

reflecting horizon in the ice, visible over hundreds to even

thousands of kilometers. At present, there remains some

uncertainty about how the material properties in firn com-

bine to form the continuous reflecting horizons. It does

Figure 10. (a) Setup of GPR measurements: For common offset surveys, a shielded antenna (left) is
pulled by a snowmobile. The GPS antenna is mounted at the rear of the vehicle (right). Common
midpoint surveys utilize separate transmitter and receiver (front). (b) Sample profile of five internal
horizons tracked in common offset GPR data over 300 km in Dronning Maud Land [Eisen et al., 2004].
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seem apparent that both density and chemical properties in

the ice contribute, but since layers are visible even where

the wavelength of the radar exceeds the annual layer

thickness, it is clear that at least in the shallow regions

some complex interference pattern is generally being ob-

served. However, the isochronity of observed reflections has

been proven heuristically by connecting firn and ice core

drill sites [Jacobel and Hodge, 1995; Spikes et al., 2004;

Eisen et al., 2004; Frezzotti et al., 2005] and by comparing

accumulation rates deduced from GPR with those measured

along surface stake lines [Vaughan et al., 2004]. The

submergence rate of an isochrone surface is determined

by interaction of the surface accumulation with the flow

field [Robin et al., 1969; Gudmandsen, 1975; Clough, 1977;

Millar, 1981; Bogorodsky et al., 1985; Moore, 1988].

Continuously moving the radar system along a surface

profile and recording individual traces at high enough

spatial repetition rates (on the order of decimeters to meters)

makes it possible to continuously image the internal reflec-

tions along the profile (Figure 10b). As the continuous

internal reflection horizon corresponds to an isochronous

layer, the spatial variation of layer depth provides informa-

tion on variations in the accumulation rate and changes due

to ice sheet dynamics. The latter can mostly be neglected in

the upper meters of the ice column in regions of slow flow

(see previous discussion on accumulation errors from cores

in section 2.4.2.3).

2.5.2. Accumulation Estimates From GPR
[86] On the Antarctic plateau, the isochronous reflections

can be followed over hundreds of kilometers. The variation

in depth of an individual reflector already provides a

qualitative picture about the variation of surface accumula-

tion along the profile. To determine quantitative accumula-

tion estimates, several processing steps are necessary

[Arcone et al., 2005a; Rotschky et al., 2004]: (1) track one

or more internal reflections along the profile; (2) convert the

radargram from time to depth domain along the whole

profile; (3) date the isochrones at one or more points (the

isochronity assures that the age can be distributed along the

profile); (4) determine the cumulative mass as a function of

depth from the surface to the reflector depth along the

profile; and (5) calculate the average SMB by dividing the

cumulative mass by the respective age of the reflector.

[87] These processing steps involve several other input

properties. We now discuss details and peculiarities of each

step.

2.5.2.1. Tracking Internal Reflections
[88] After digital data processing of the raw radar data

(horizontal stacking, filtering, gain control), continuous

reflections can be followed in the radargrams. Depending

on data processing and display, it is possible to identify a

single phase, for instance, the first break, and track that

along the whole profile, or track the maximum amplitude

when the signal envelope is used. Tracking can be per-

formed manually, trace by trace, or semiautomatically.

Semiautomatic tracking is implemented in a number of

programs, mainly based on experiences in the seismic

exploration industry. The tracking algorithm exploits the

coherency of signal features (e.g., minimum, maximum, or

zero amplitude) above noise level to automatically detect

the same feature within a prescribed time window in

adjacent traces and follows it as long as a similarity criterion

is fulfilled. The tracking process is observed by the user and

requires manual interaction in case of a low signal-to-noise

ratio.

2.5.2.2. Time-to-Depth Conversion
[89] Knowledge of the variation of the electromagnetic

wave speed with depth is necessary in order to be able to

convert the observed reflections from time to depth domain.

Some authors directly calculate water equivalent depth of a

horizon to derive accumulation [Vaughan et al., 1999b;

Spikes et al., 2004]. The wave speed is mainly a function of

density; contributions from conductivity can be neglected at

radio frequencies. Different methods were developed to

determine the wave speed–depth function. The most direct

method involves the measurement of the dielectrical prop-

erties along cores by means of DEP (see section 2.4.1)

[Moore and Paren, 1987; Wilhelms et al., 1998; Karlöf,

2004; Wilhelms, 2005], from which the interval velocities

can be directly calculated. Instead of the dielectrical prop-

erties, density profiles from snow pits, firn, or ice cores are

also often used to determine the electromagnetic wave

speed from mixture models [Robin et al., 1969; Clough

and Bentley, 1970; Kovacs et al., 1995; Richardson et al.,

1997; Urbini et al., 2001; Eisen et al., 2002; Spikes et al.,

2004; Anschütz et al., 2006]. The downhole radar technique

makes use of a drilled hole to record traveltimes as a

function of depth of a reflecting target lowered in the hole

[e.g., Jezek and Roeloffs, 1983; Clarke and Bentley, 1994].

Interval velocities can then be derived from the transmitter–

target– receiver traveltime as a function of depth. An

indirect method known from reflection seismic exploration

is the common midpoint (CMP) survey technique [Yilmaz,

1987]. It is a special case of the radar wide-angle reflection

and refraction measurement [Annan and Davis, 1976; Jezek

and Roeloffs, 1983; Morey and Kovacs, 1985; Bogorodsky

et al., 1985] and has been widely applied for radar measure-

ments in glaciology [e.g., Blindow, 1994; Hempel et al.,

2000; Murray et al., 2000; Eisen et al., 2002]. It makes use

of a special setup of linear geometry, such that the points of

reflection at a certain depth remain constant with increasing

offset between transmitter and receiver. The velocity-depth

function can be inferred from the increase of traveltime with

offset, assuming near-horizontal reflectors.

2.5.2.3. Age Estimates of Reflection Horizons
[90] Dating IRHs is achieved by transferring age-depth

distribution, as obtained from snow pit and cores as de-

scribed in section 2.4.2, to the respective depth of the IRH at

the location where the age-depth distribution was measured.

This is usually achieved by mere comparison or correlation

techniques in the depth domain. A new approach utilizes

numerical forward modeling of radargrams, based on di-

electric profiling of ice cores, to relate depth (and thus age)

to the time domain of the radar data [Eisen et al., 2004]. A

problem related to the dating of snow layers by core

analysis comes along with the spatial separation of GPR
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profiles and coring sites. In several cases, the GPR sound-

ings were not always made directly over the exact coring

point or in the same year; in some cases, the distance

between the coring site and the radar survey exceeded 10

m [Richardson-Näslund, 2001]. In other cases, it is not

possible to follow isochrones all the way to a coring site,

and thus it is not always possible to determine the age of a

snow layer by direct comparison with core or pit data. Such

a layer can still be dated indirectly using overlapping

sections of other internal layers that could be dated directly

against cores and pits. This method allows one to obtain

approximate estimates of spatial variability in accumulation

rate that would otherwise be unobtainable [Richardson-

Näslund, 2001]. Even if absolute dating is not possible, a

qualitative interpretation of spatial accumulation variability

can still be achieved [Vaughan et al., 2004].

2.5.2.4. Cumulative Mass
[91] Integration of measured density profiles yields the

distribution of cumulative mass with depth. (For more details

on density measurements, see section 2.1.) Generally, snow/

firn density increases with increasing depth. Thus, the den-

sity-depth profile influences the wave speed–depth profile

and cumulative mass value. Cumulative mass is usually

calculated from the surface down to the depth of the radar

reference layer. However, depending on the time interval of

interest, it is also possible to calculate the mass difference

between two internal reflectors to determine spatial vari-

ability of past accumulation rates, similar to firn and ice

core studies.

[92] One question coming along with the spatial extent of

radar profiles is the lateral homogeneity of density-depth

distributions. Snow and firn densities in the dry zone are

predominantly determined by overburden pressure, which is

governed by local meteorological parameters: temperature,

wind, and accumulation rate [Craven and Allison, 1998;

Kameda et al., 1994]. Depending on the study area, the

distributions can be homogeneous over hundreds of kilo-

meters on the polar plateau and in particular at ice divides

and domes [Frezzotti et al., 2004; Richardson-Näslund,

2004; Rotschky et al., 2004; Arcone et al., 2005b] or could

vary considerably at places with high spatial accumulation

variability due to strong wind erosion [Richardson et al.,

1997; Spikes et al., 2004; Frezzotti et al., 2005]. At Dome C

and Talos Dome, dedicated density profile analyses from a

number of cores and pits reveal no detectable geographical

variation in density or compaction within a 50-km diameter

of the dome areas [Frezzotti et al., 2005, 2007; Urbini et al.,

2008]. In contrast, especially in coastal regions, variations

on short distance scales can be significant [Richardson-

Näslund, 2004; Vaughan et al., 2004; Frezzotti et al., 2005;

Anschütz et al., 2006]. In the latter case, density profiles

need to be laterally interpolated to provide information

along the GPR profiles. The largest variability in density

is usually in the uppermost 3–20 m.

[93] Density data surveyed by core and pit are fitted with

polynomial or logarithmic functions, usually yielding a

correlation coefficient (R2) of more than 0.9 for measured

and computed densities [e.g., Richardson et al., 1997;

Frezzotti et al., 2005]. Because of a change of density

function with depth, the density profiles should cover the

snow radar investigation depth. The uncertainties associated

with each cumulative mass measurement vary with depth.

2.5.3. Errors of GPR-Based Accumulation Estimates
[94] A number of factors determine the final uncertainty

of an accumulation estimate based on GPR (Table 2). They

can be separated by errors related to determining the depth

of the reflector, the age of the reflector, and the cumulative

mass above the reflector. Other errors arise by spatially

interpolating or extrapolating the density information along

a radar profile. Depending on the region of investigation,

the density–depth and thus the mass–depth and wave

speed–depth distributions can be very homogeneous, e.g.,

in undisturbed regions on the Antarctic plateau, or very

inhomogeneous, as near coastal sites and slope areas.

[95] The operation frequency of the radar system and the

characteristic of the source signal determines the possible

vertical resolution of a reflector. Theoretically, a quarter of

the wavelength is the highest resolution that can be

achieved. Another consideration is the ability to separate

two neighboring reflectors. According to the Ricker criterion,

they can be separated when the traveltime difference in the

reflected signals is larger than half the cycle duration of the

signal. However, most radars transmit a source signal which

contains more than a single cycle, thus reducing the

resolution. Two signals can then be separated when the

traveltime difference exceeds half the pulse width. GPR is

usually operated in a bistatic mode, which means separate

antennae at a certain distance (dm to m, depending on

frequency) for transmission and reception of the radar

signal. This causes an error in estimated depth, especially

for reflectors close to the surface (see Pälli et al. [2002] for

a discussion).

[96] Accuracy of the traveltime–depth conversion

depends on the source of information for the velocity profile

(e.g., density measurement along a core or from common

midpoint radar). Uncertainties in the age estimate of a

reflector are caused by the initial uncertainty of the under-

lying age–depth scale (snow pit, firn, or ice core) and the

transfer of the age information for, e.g., a core to the

reflector. (For more details on age estimates, see section

2.4.2.) The error in accumulation depends finally on the

accuracy of the depth-integrated density profile. Small-scale

variations in density, like ice lenses or wind crusts, are

averaged out by the integration, and neither cause large

errors in cumulative depth or wave speed.

[97] Spikes et al. [2004] pointed out that uncertainties are

based mainly on the three components: layer thinning due to

ice advection, the procedure for depth calibration, and the

isochronal accuracy of each horizon. Their results indicate

that uncertainties at a firn depth of 10 m are about 4% of the

calculated snow accumulation and decrease to 0.5% at a firn

depth of 60 m. In general, conservative uncertainty esti-

mates of SMB derived from GPR are some 5% on the polar

plateau, most of which stems from the uncertainty in dating.

A summary of factors contributing to errors is provided in

Table 2.
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2.5.4. Spatial Variability of SMB From GPR
[98] Along the Terra Nova Bay–Dome C traverse, stan-

dard deviation of variability decreases generally from the

coast (47%) to the ice divide (3%) [Frezzotti et al., 2004].

However, sites characterized by relatively complex surface

morphology with abrupt changes in slope along wind

direction show higher standard deviation (34–47%) than

sites that have a low slope along wind direction (5–10%).

High standard deviation in spatial variability is also ob-

served inland in the areas of megadune fields (24% [Frez-

zotti et al., 2002b, 2005]). The lowest values are observed at

domes and ice divides (3–9%). Changes in spatial distri-

butions have been observed over the last few centuries

using GPR, with a decrease in SMB gradient along the wind

direction at Talos Dome and a counterclockwise rotation of

SMB distribution in the northern part of Dome C. Obser-

vations at Dome C reveal a significant increase in accumu-

lation since the 1950s, which could correlate to altered snow

accumulation patterns due to changes in snowfall trajectory.

Snow accumulation mechanisms are different at the two

domes: a wind-driven snow accumulation process operates

at Talos Dome, whereas snowfall trajectory direction is the

main factor at Dome C [Urbini et al., 2008].

[99] Along the transect that crosses Talos Dome, analysis

of spatial variability shows that in the coastal area, spatial

variability reaches 200 kg m�2 a�1 over 1 km and wind-

driven sublimation values may be as high as 260 kg m�2

a�1. In the plateau area, spatial variability reaches 40 kg

m�2 a�1 over 1 km, and wind-driven ablation is as high as

50 kg m�2 a�1 [Frezzotti et al., 2007]. Redistribution

processes are only present on a local scale; wind-driven

sublimation values represent 20–75% of solid precipita-

tion. Depositional features are very rare, related to the

formation of transverse dunes and negligible in the SMB.

The spatial variability of SMB at the kilometer scale is 1

order of magnitude higher than its temporal variability

(20–30%) at the centennial timescale [Frezzotti et al.,

2004].

[100] The spatial variability at sites very close to the coast

in Adélie Land is less than 10%. Along coastal and inland

slopes the spatial standard deviation, also based on stake

line data, increases from 20% to more than 50%. On the

plateau the spatial variability varies up to about 20%, but in

the undisturbed part of the plateau it was below 10%.

Variations of the same order in the three regimes, coastal,

transition, and plateau, are evident from stake line data

[Pettré et al., 1986], although measurements are less sound

than GPR results.

[101] On the plateau in DML, the small-scale variation in

accumulation is on the order of 5–15% of the mean

accumulation [Richardson-Näslund, 2001; Rotschky et al.,

2004; Eisen et al., 2005]. Small-scale means over distances

of 10 km compare to mean values over 100 km. In the

perimeter of the EPICA deep drilling site, accumulation

variability is less than 15% on average, but accumulation

gradients can be up to 2.5 kg m�2 a�1 over 1 km [Eisen et

al., 2005]. Averaged SMB values for the last 150 years

decorrelated over a distance of about 10 km [Rotschky et al.,

2004]. In contrast, increased variability of up to 45%

[Richardson and Holmlund, 1999] occurs on slopes and

near the coast. At Camp Victoria, Amundsenisen (2400 m

above sea level), and Camp Maudheimvidda (362 m asl),

both in DML, Holmlund et al. [2000] performed 10–20 �
20 km2 grid net studies to determine the spatial variability in

an area with rather low ice flow velocities. They mapped the

top 30–40 m and related the observed layers to the layer

depth at a drilling spot at the center of the grid. At

Maudheimvidda, the variation in layer depths amounted to

40 to 240% of the layer depth at the center of the grid.

According to radar data, the pattern seen at the surface could

be seen some tens of meters down into the snowpack. At

altitudes around 2200–2500 m, at Camp Victoria, the

variability was somewhat less pronounced but still on the

order of 10%.

2.5.5. Point Measurements Versus GPR-Based
SMB Estimates
[102] One could expect that point measurement and GPR

yield principally different results because they sample

different areas: the cores, stakes, and ultrasonic sensors

sample centimeter-scale areas (2–10 cm), while GPR works

at the meter scale. Accumulation rates derived by point

measurements and GPR methods [Richardson-Näslund,

2001, 2004; Rotschky et al., 2004; Vaughan et al., 2004;

Frezzotti et al., 2005; Anschütz et al., 2007; Frezzotti et al.,

2007] agree fairly well, the discrepancy ranged from a few

percent to 20%, and the results do not indicate any system-

atic errors. Frezzotti et al. [2005] found major differences

between point measurements and GPR (20%) along the

Terra Nova Bay–Dome C traverse in regions of large spatial

variability in SMB (47% over 15 km at maximum). At this

site, two cores were drilled a few tens of meters apart and

show a 13% difference in accumulation for the tritium/b
marker horizons [Frezzotti et al., 2005]. Detailed chemical

studies in 16 � 6 m snow pits combined with GPR

measurements on the polar plateau in DML found that the

variability of snow layer thickness at the microscale was on

average 9% [Stenberg et al., 1999]. A qualitatively good

comparison between stake line measurements and GPR

layer architecture enabled Vaughan et al. [2004] to deduce

that the observed IRH are isochrones. For layers several tens

of meters deep, covering more than a century, a problem

exists when comparing core and GPR measurements when

GPR traverses pass several kilometers away from the core.

Although values are still comparable, a detailed match is

difficult [Rotschky et al., 2004].

3. REPRESENTATIVITY AND LIMITATIONS

[103] Section 2 presented the different techniques carried

out on the ground to determine accumulation, discussed

difficulties associated with the measurements, and provided

error estimates. Once values for the SMB are available, one

asks what these values actually mean? Are they just valid

for a short period of time, or just in the very vicinity of the

measurement locations, or both? This brings us to the issue

of the representativity, which is fundamental, as the inter-
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pretation of SMB requires consideration of the climatic

context, also on larger temporal and spatial scales. In this

section we summarize important accumulation character-

istics derived from the different measurement techniques

and discuss the spatial and temporal representativity of the

data.

[104] For the application of SMB data for the different

purposes described in section 1, the three key questions are

(1) What is the temporal representativity? (2) What is the

spatial representativity? (3) Are spatial and temporal signals

linked? Related issues are the stability of accumulation

patterns in time. Do values at different locations with

different mean SMB fluctuate synchronously, i.e., do they

covary? Or do temporal changes, for instance, induced by

short- and long-term local climate changes, also change the

accumulation pattern, resulting in independent fluctuations?

Likewise, the effect of ice flow has to be taken into account

for core and GPR interpretations on longer timescales, as

advection causes mixing of temporal signals with spatial

information. For a reliable interpretation of SMB data, these

factors have to be separated.

3.1. Temporal Representativity

[105] Time series obtained from stakes and ultrasonic

measurements indicate a large interannual variability in

accumulation, with variations of up to nearly 50% with

respect to the 50-year average accumulation from firn cores

[Frezzotti et al., 2007]. Monaghan et al. [2006] combine

model simulations and observations primarily from cores.

They point out that yearly and decadal snowfall variability

at local and continental scales is very large. Comparison

between stake and core values makes it possible to measure

the frequency distribution and thus to infer the probability

of identifying missing layers and also the lowest and highest

SMB values in cores. Significant differences between core

and stake measurements have been observed at sites with

SMB < 200 kg m�2 a�1 [Frezzotti et al., 2007]. Reasons

could be the misidentification of annual layers from sea-

sonal signals and the consequent error in the definition of

high and low values (values with differences >40% with

respect to average value) or/and the slight variations in input

timing of the chemical or isotopic composition (e.g., inter-

annual variability in peak-input timing of sulphate could

vary by weeks). The misidentification could be due to large

annual peaks that could be interpreted as a double year or to

two adjacent peaks that will not be stratigraphically detect-

able because they are sufficiently narrow and could there-

fore be interpreted as a single year. Signal noise is produced

principally by postdepositional processes such as wind

erosion, drift, and redeposition. Postdepositional noise pri-

marily influences the high frequencies [Fisher et al., 1985],

and misidentification of an annual layer results in overes-

timation of accumulation in 1 year and to an underestima-

tion in the preceding or following year. Both noise and error

reduce the temporal representativeness of the time series.

[106] At the South Pole, the frequency distribution of

stratigraphic layer thicknesses in cores and in a snow pit is

not compatible with a significant number (between 1% and

5% probability) of missing layers associated with zero

accumulation years inferred from measurements of stake

heights. The original implication that a large percentage of

years (about 10%) is missing from the ice core stratigraphy

[Van der Veen and Bolzan, 1999; Mosley-Thompson et al.,

1995] has been found to be an overestimate [Mosley-

Thompson et al., 1999] (see also section 2.2.4). In general,

stake or ultrasonic measurements are the only way to detect

zero accumulation or erosion values on an annual or

seasonal scale.

[107] Analysis of Gaussian distributions of accumulation

versus SMB from stake farms shows that only sites with

SMB > 750 kg m�2 a�1 have present values that are

representative to within ±10% at an annual scale [Frezzotti

et al., 2007]. The SMB distribution shows that more than

80% of stakes at sites with low SMB around 80 kg m�2 a�1

and more than 40% of stakes at high SMB sites (�250 kg

m�2 a�1) present SMB differences of more than ±10% with

respect to the mean. The temporal representativity increases

with multiyear averages: for high SMB, values are repre-

sentative at ±10% using three cumulative years; for a SMB

of 80–150 kg m�2 a�1, using 5–7 cumulative years is

necessary [Frezzotti et al., 2007]. Goodwin et al. [2003]

propose that the 3-year running mean accumulation data

from eastern Wilkes Land cores (235–570 kg m�2 a�1) are

representative for the precipitation minus evaporation signal

rather than the local microrelief noise. The same timescale is

found to be significant by wavelet analyses of electrical

records by Karlöf et al. [2006]; that is, the correlation

between different records is highest in the 1- to 3-year

period. This is attributed to the fact that most material

emitted by volcanic eruptions is removed from the atmo-

sphere within 3 years of eruptions, including deposition on

the ice sheets. Their study implies that the temporal and

spatial representativity of SMB and the records from which

it is derived are not necessarily the same. At the South Pole,

McConnell et al. [1997] computed the average time

(310 years) required to statistically ensure that each monthly

SMB record within the year is adequately represented in the

time average. They also pointed out that the averaging of

adjacent cores would decrease the time window proportion-

ally. Van der Veen and Bolzan [1999] pointed out that noise

could be removed using a Gaussian weighting function with

a standard deviation of about 5 years. At the coastal region

of Adélie Land, reevaluation of older stake line data from

Pettré et al. [1986] indicates interannual standard variations

on the order of 45%.

[108] Genthon [2004] calculates the variability and the

radius of decorrelation of precipitation and precipitation

minus evaporation over Antarctica from climate models

and meteorological analyses. Interannual variability ranges

from 5 to 40% of the mean. On the century scale, however,

a number of GPR studies (aiming at the spatial character-

istics presented next) reveal that the accumulation patterns

are stable in time.
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3.2. Spatial Homogeneity and Variations

[109] Stake farms and lines have given an indication of

the spatial variability in SMB on various scales, e.g., the

quasi-uncorrelated annual accumulation caused by micro-

relief at low-accumulation sites on the plateau. Given the

amount of resources required to deploy and maintain stake

networks, however, the volume of data that they have

produced is generally low. The emergence of GPR techni-

ques has dramatically increased our ability to measure, and

therefore understand, the spatial variability in SMB. A

number of GPR surveys (see section 2.5.4) reveal that

spatial variability of SMB at the kilometer scale can be up

to 1 order of magnitude higher than its temporal variability

(maximum 20–30%) at the multidecadal/secular and cen-

tennial timescale. Generally, the patterns of spatial variabil-

ity are stable in time at least over a couple of decades to

centuries. Stationary features are of comparable length scales

(kilometers to tens of kilometers) [Richardson-Näslund,

2004; Vaughan et al., 2004; Frezzotti et al., 2004; Eisen et

al., 2005]. In rare cases, like the East Antarctic megadune

fields, migrating accumulation patterns occur [Frezzotti et

al., 2002b]. Recently, migrating features on the 5-km scale

were observed close to the coast [Anschütz et al., 2006],

although their variations are less pronounced and laterally

extensive than megadunes.

[110] Several authors demonstrate the dependence of

SMB on temperature, elevation, saturation vapor pressure,

and distance from the open ocean [e.g., Muszynski and

Birchfield, 1985; Giovinetto et al., 1990; Fortuin and

Oerlemans, 1990]. Although common, large-scale patterns

are not always simple [e.g., Smith et al., 2002]. The high

spatial variability of SMB on the 1- to 10-km scale is mostly

explained by wind-driven processes, being a function of

surface slope [King et al., 2004; Frezzotti et al., 2004].

Likewise, the SMB of annual stake measurements is also

related to morphology via the surface slope [McConnell et

al., 1997; Frezzotti et al., 2005]. However, Frezzotti et al.

[2004] point out that along some transects (Talos Dome,

Dome C) the maximum value of snow accumulation is

highly correlated with firn temperatures and represents the

snow precipitation minus surface sublimation (ablation not

induced by wind). The difference between the maximum

and minimum SMB values at these sites represents mainly

ablation processes driven by katabatic winds. These wind-

driven sublimation phenomena, controlled by the slope

along the prevalent wind direction, have considerable im-

pact on the spatial distribution of SMB. They sublimate and

export huge quantities of snow into the atmosphere and then

into the ocean, leading to a nonnegligible term in continen-

tal SMB studies [Frezzotti et al., 2004, 2007]. The direct

snow redistribution process is local (e.g., sastrugi forma-

tion) and has a strong impact on the annual variability of

accumulation at the annual/meter scale (i.e., noise in ice

cores).

[111] Whereas SMB based on GPR and stake lines shows

that decadally averaged spot measurements are only repre-

sentative within a small area of a few square kilometers

around the site (i.e., indicate relatively short correlation

lengths), precipitation is much more homogeneous. On the

basis of the analysis of climate models and meteorological

data, the decorrelation length of precipitation and precipi-

tation minus evaporation of about 500 km is comparatively

large [Genthon, 2004]. Nevertheless, as for SMB features,

large differences occur between the coast and the interior,

with particularly low values on the ridges and domes. The

correlation length for real SMB is much shorter than that of

precipitation or precipitation minus evaporation due to

depositional and postdepositional processes. However, by

spatially smoothing the small-scale noise (e.g., as defined

by Genthon et al. [2005]), one may expect a correlation

with precipitation at the 100-km scale.

3.3. Associations Between Spatial and
Temporal Variability

[112] The spatial scale of significance for a single firn or

ice core record is a critical issue for the interpretation of the

accumulation time series. Microrelief (sastrugis) introduces

a high-frequency, quasi-stochastic variability into core

records of annual layer thickness [Fisher et al., 1985; Van

der Veen and Bolzan, 1999]. Medium-scale undulations

(wavelengths < 20 km) in surface topography up stream

from a core-drilling site can cause variations in measured

accumulation rates. One of the earliest results on this topic

reveals that accumulation in troughs can be 30–50% more

than on exposed surface crests [Gow and Rowland, 1965].

Meanwhile, as demonstrated in section 3.2, knowledge

about the spatial variability has increased significantly.

The stratigraphic record of a core is affected by the flow

of ice, so the material at depth is slowly moved away from

the original deposition site. If topographic features capable

of changing the accumulation are located up stream of a

core site, they can generate decadal to centennial long

periods of accumulation consistently above or below the

long-term mean because layers deeper in the record will

have been deposited at these topographic troughs and crests

[Richardson and Holmlund, 1999; Kaspari et al., 2005;

Hamilton, 2004]. The only way to really understand the

significance of a core record is to know something about the

spatial field of SMB surrounding the core and also to have a

good idea of the rate of movement of the ice through this

field. Analysis of these data would allow some separation of

the spatial and temporal variability that the core represents.

This is the only way to understand the true significance of

accumulation rate histories in cores. Any core for which

these data are not available, or that is collected on fast

moving ice, or is sufficiently deep to have moved more than

a fraction of the correlation length for SMB, contains an

accumulation rate history that is a mixed signal and is likely

not interpretable.

[113] Richardson and Holmlund [1999] demonstrate the

importance of determining the spatial significance of cores

and recommend radar surveys prior to drilling, as this is the

easiest way to get this information. The timescale for which

this influence is important depends on the specific SMB and

flow velocities at the site. However, it is possible to resolve

temporal signals if the effects of local topography and ice
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flow are considered [Spikes et al., 2004]. The length of

periodic variations due to mesoscale relief and/or mega-

dunes depend on ice velocity and SMB and can therefore

vary in space and time. Frezzotti et al. [2005] point out that

in megadune areas the distortion of records is characterized

by a SMB periodicity of about 1500 years. In coastal areas

with relatively large flow velocities and significant topo-

graphic variations, spatial SMB variations can influence

temporal records on scales as short as a few decades

[Anschütz et al., 2006]. Arcone et al. [2005b] demonstrate

how the same effect is present in the GPR data themselves

and must be corrected for. Consequently, several techniques

have been developed to deconvolve spatial from temporal

effects by employing GPR data [Hamilton, 2004; Arcone et

al., 2005b; Parrenin et al., 2006].

3.4. Spatial Interpolation

[114] There are probably several different length scales

for coherence in the true field of SMB. There may be

greater complexity in places, but in general, we might argue

that the shortest length scale is governed by the sastrugi

length (0.1–100 m), the next is governed by the topography

over which the wind transport of snow occurs (10–

10,000 m), and the longest is governed by the regional

differences in the supply of precipitation governed by

synoptic climate (100–4000 km). The efforts at interpola-

tion on the continental scale have usually been focused on

producing a map of the third correlation scale, accepting

that there is variability on the other two length scales that

are not represented (see treatment by Vaughan et al.

[1999a]). Understood in this way, attempts to use local

measurements to draw a continental-scale map make some

sense, although they are fraught with pitfalls. Improved

interpolation can also be achieved by subdividing data sets

of local measurements in regions of comparable properties

(e.g., coastal areas and plateau region) and then performing

interpolation for each region separately [Rotschky et al.,

2007]. The complexity and quality of the efforts have

undoubtedly increased in the last few decades, culminating

with the explicit and formal treatment of uncertainty given

by Arthern et al. [2006]. The map presented in their study

will not be definitive in any sense but is a major step

forward, since it includes a formal assessment of the

uncertainty involved with the gridding process.

4. CONCLUSION AND RECOMMENDATIONS

[115] We have presented a summary of East Antarctic

SMB characteristics and techniques used to acquire these.

Our goal is to improve the knowledge of potential users

about the difficulties associated with interpretation of meas-

urements but also to highlight the need to perform more

measurements and to use the ones currently available. We

have demonstrated that SMB varies significantly in time

and space on various scales. None of available measurement

techniques are able to capture all scales simultaneously,

neither can they be combined to provide area-wide measure-

ments on basin scales, mainly as a result of logistical

constraints. Nevertheless, regionally confined studies pro-

vide valuable information from which a number of recom-

mendations for data acquisition and potential data users can

be proposed:

[116] 1. Decadal SMB values decorrelate on the 1- to

10-km scale but covary over length scales of hundreds of

kilometers. The recent discovery from GPR data that on

this scale, there exists a static (topographically induced)

pattern of SMB, which cannot be observed in or estimated

from sparse point measurements of SMB, is of utmost

importance. These observations clearly indicate the poten-

tial pitfalls of using isolated measurements as being

representative of a larger region. These pitfalls can be

avoided and point measurements (usually cores) given

regional significance by the simple expedient of acquiring

GPR data around the core location. Ideally, the GPR

profiles should span several ice thicknesses up flow, down

flow, and across flow and should be tuned to acquire layer

information at least as deep as the core. A well-dated core

combined with GPR data will allow independent calcula-

tion of spatial and temporal means and variations for the

region, plus their errors. These are the parameters that

need to be routinely acquired and used if we are to

substantially advance our understanding of continent-wide

patterns of SMB across the Antarctic ice sheet.

[117] 2. Spatial variability increases as topographic com-

plexity increases, caused by wind deposition/erosion. It is

important to consider aeolian processes in general but

especially when selecting sites for firn and ice coring in

areas with relatively complex topography. Slope variations

of only a few meters per kilometer have a significant impact

on wind-derived snow accumulation processes and also

therefore on the accumulation records. To fully understand

the dominant processes that affect SMB and to incorporate

these into global climate reconstructions, high-resolution

representativity of SMB from cores is needed. Statistically

meaningful reconstructions at annual and/or seasonal scale

can be produced using multiple cores for each ‘‘center of

action.’’

[118] 3. The effective use of ultrasonic height ranger data

in East Antarctic mass balance research requires that mete-

orological data are collected simultaneously and at the same

location, so that the individual components of the SMB

(sublimation, melt, snowdrift sublimation) can be quantified

or at least estimated. Because of the operational accuracy of

2–3 cm, ultrasonic height ranger data are less useful to the

study of individual accumulation events on the dry interior

plateau of Antarctica. However, they are very valuable to to

determination of intraannual variability and seasonal cycles,

which at many places are not known, not even qualitatively.

[119] 4. A considerable problem, which presently remains

unsolved, is the conversion of height to mass changes for

both stakes and ultrasonic sounders. This needs urgent

attention, especially if the use of ultrasonic height ranger

and stake data increases in the future. Moreover, the spatial

interpolation and extrapolation of density profiles require

further input.
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[120] 5. An apparently trivial aspect is documentation.

Experience with older data sets shows that documentation is

essential but, unfortunately, often neglected and partly even

missing. The documentation should contain an exact de-

scription of how the raw data sets (e.g., length measure-

ments) were obtained, which auxiliary parameters (e.g.,

density) were determined, and how measured quantities

were finally converted to SMB.

[121] 6. For subsurface measurements, it is a great ad-

vantage if one can determine in the field if a good dating

horizon has been reached. This can be achieved by several

nondestructive measurements, either in the hole, in the pit,

or along the core. Cores should be drilled to a depth

covering the period back to the eruption of Tambora in

A.D. 1815 and the unknown eruption in A.D. 1809.

[122] 7. When retrieving a firn core, there is often some

unrecoverable loss of core material. This occurs predomi-

nantly in the upper meters. A correction scheme similar to a

procedure described by Whillans and Bolzan [1988] is

recommended, with special attention to an accurate mea-

surement of diameter. To facilitate the identification of

overlap between the core and a snow pit, the pit should

be deep enough to cover one dating horizon that can also be

captured in the adjacent drilled core. This latter task,

however, is difficult and not always possible.

[123] 8. Accumulation on the plateau is, in general, more

‘‘well behaved’’ in terms of spatial representativity (apart

from megadune fields) than the transition region from the

plateau to the coastal areas, where high katabatic winds

occur frequently and the morphological variability is often

high (e.g., nunataks, valley glaciers). We need more sam-

pling in the coastal regions if we are to improve continental

average assessments.

[124] Ground truthing is essential for methods like remote

sensing and numerical modeling, which require (and pro-

vide) estimates of decorrelation lengths, covariance, and

associated uncertainties. The serviceability depends on the

type of field data and their usage (Table 3). As a suitable

combination, stake farms and GPS surveys in 1 km2 areas

provide a reference for laser altimetry. Decadal measure-

ments of stake lines provide covariance on an annual scale

for gravimetry, and ultrasonic sounders provide single

events for regional models. Pits, cores, and GPR provide

longer-term records for regional- or continental-scale mod-

eling as well as spatial characteristics for remote sensing.

[125] From the point of view of specific mass balance

estimates, the potential that with increasing precipitation,

the East Antarctic Ice Sheet could be the single largest

ameliorator of sea level rise, and could balance a few tens of

centimeters of sea level rise over the coming century, means

that setting and understanding the baseline (current rates

and trends in accumulation) are highly important. The

accounting methods reviewed in this paper to determine

the mean net annual SMB provide a significant contribution

to this aim. Although they may never be suitable to infer the

specific mass balance of the entire ice sheet, or even regions

of it, by ground-based measurements alone, the records of

SMB history and its spatial characteristics are definitely

required to determine if the ice sheet’s SMB is changing in a

secular fashion and whether or not this pattern is related to

anthropogenic climate change. Assessments of ice sheet

surface elevation changes [Davis et al., 2005; Zwally et al.,

2005] will continue to yield the most precise results for

mass balance estimates of specific drainage basins or ice

sheets as a whole. In the intermediate-term perspective,

gravity measurements and related time series may poten-

tially become more accurate than they are at present [e.g.,

Chen et al., 2006; Velicogna and Wahr, 2006; Ramillien et

al., 2006], thus providing valuable contributions to other

techniques.

[126] New airborne techniques for determining the inter-

nal layering near the surface of ice masses are currently

being developed, mainly in the context of calibration and

validation campaigns for satellite remote sensors. The

Airborne Synthetic Aperture and Interferometric Radar

Altimeter (ASIRAS) System [Mavrocordatos et al., 2004]

and the D2P (delay/Doppler phase monopulse) radar [Sten-

seng et al., 2005], for instance, do not only operate as

classical altimeters or synthetic aperture radar (SAR) but

also utilize an interferometric SAR mode. They are basi-

cally a replicate of the SAR/Interferometric Radar Altimeter

(SIRAL) instrument to be operated on board CryoSat-2. The

systems provide vertical resolution comparable to high-

frequency GPR. The larger footprints cause less horizontal

resolution than GPR but allow a higher spatial coverage. The

advantage lies in operating such a system from an airplane,

covering a relatively large area with profiles over a short

period of time. Recent ASIRAS results from the dry snow

zone [Hawley et al., 2006] and percolation zone [Helm et al.,

2007] of the Greenland ice sheet, accompanied by ground-

based measurements [Scott et al., 2006], indicate that annual

layers can be continuously detected by this system, promis-

ing extended future measurements in Antarctica. The com-

bination of satellite remote sensors with airborne surveys and

TABLE 3. Possible Usage of Ground Truth SMB Estimatesa

Source Estimated SMB Property Ground Truth Application

Stake farm decorrelation and covariance on (sub)annual and subkilometer scale laser altimetry
Stake line decorrelation and covariance on (sub)annual and kilometer scale laser altimetry, gravimetry
Ultrasonic sounders high temporal resolution of single events, covariance regional climate modeling
Snow pits high-resolution time series regional climate modeling, microwave radiometry
Cores high-resolution and long-term record regional climate modeling, microwave radiometry
GPR temporally averaged decorrelation altimetry, gravimetry

aAll methods provide estimates of SMB. Specific properties, however, can only be determined by specific methods.
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dedicated ground measurements will likely remain the pri-

mary line of action for the next decade to obtain mass balance

estimates for large parts of the ice sheet.

APPENDIX A: OPTIMAL ESTIMATION OF
STAKE INTERVAL

[127] By studying the accumulation correlation of nearby

stakes as a function of distance, Barkov and Lipenkov

[1978] evaluated the optimal distance between stakes (put-

ting the stakes too close to each other will not significantly

increase the accuracy due to accumulation correlation at the

adjacent stakes) using a ‘‘structural function’’ bDh(l) as a

measure of correlation:

bDh lð Þ ¼ 2s2
Dh 1� rDh lð Þð Þ; ðA1Þ

with snow buildup Dh, its spatial variability sDh, distance

between stakes l, and the correlation coefficient between

snow buildup at two stakes rDh. The optimal distance is

reached as soon as the correlation turns insignificant (and

bDh reaches a saturation value). They found that at Vostok

Station the annual accumulation at two points is practically

not correlated at the distance of 65 m. Thus, Vostok stake

farm with its distance between adjacent stakes of 25 m is

close to optimum and even slightly oversampled. This

implies that for studies aiming at smaller scales, stake

distances on the order of several tens of meters are

sufficient. However, both optimal distance and the satura-

tion values vary over Antarctica.

[128] The structural function is used to determine optimal

parameters (stake farm size/profile length and amount of

stakes) of the stake farm/profile [Barkov and Lipenkov,

1978]:

s2
�Dh
¼ s2

Dh �
1

n2

Xn�1

i¼1

n� ið ÞbDh iDlð Þ ðA2Þ

where s �Dh
2(l, n) is the total error of snow buildup

depending on the length of the route (l) and amount of

stakes (n); sDh
2 is the spatial variability of snow buildup

(standard deviation); i is the index number of a given stake;

Dl is the interval between adjacent stakes; and bDh(iDl) is

the value of the structural function for the distance iDl. The

optimal parameters of the stake farm correspond to the

minimum value of s �Dh
2(l, n). This method is well suited for

a series, members of which are not independent, which is

the case for the snow buildup spatial distribution.

GLOSSARY

Ablation: Negative surface mass balance.

Accumulation: Positive surface mass balance.

Antarctic ice sheet: Grounded part of the Antarctic

polar ice cap, divided in the East and West Antarctic ice

sheets.

Blue ice area: Area of negative surface mass balance,

where ice formed up stream emerges to the surface. Because

of the higher density of the ice this appears blue. Surrounding

areas with positive mass balance appear white because of the

lower density of firn and snow compared to ice.

Firn core: Core extracted from the upper tens of meters

from the firn, above the pore close-off depth, where no

bubbles are yet present.

Ground-penetrating radar: Geophysical tool that

emits electromagnetic waves from the surface into the

ground; measures the round-trip traveltime of the wave that

is returned from reflecting horizons.

Ice core: Core extracted from below the pore close-off

depth, where bubbles have formed and are enclosed by ice.

Mean net annual surface mass balance: Summary of

terms contributing to the solid, liquid, and gaseous transfer

of water across the surface of the ice sheet; commonly

normalized to kg m�2 a�1 but often given in millimeters

water equivalent.

Radiochronology: Determination of age from the

natural decay of radioactive species.

Snow pit: Trench excavated in the snow, often of

rectangular cross section, with a vertical wall on one side to

investigate the stratigraphy and to take samples.

Stake: Pole put into the snow (often bamboo, some-

times aluminium or similar). The height above snow or ice

surface is measured at intervals to determine mass balance.

Stake farm: Combination of stakes in a two-dimen-

sional setup, often as a rectangular grid.

Stake line: Combination of stakes along a one-

dimensional line, often hundreds of kilometers long.

Surface mass balance: Short for mean net annual

surface mass balance.

Time marker: Unambiguously identifiable feature of

known age in time series records.

Ultrasonic sounder: Device to measure the distance to

the surface. Operates with sound wave at ultrasonic

frequencies.

Volcanic horizon: Deposits from volcanic eruptions

(acids, ash) identifiable in layers, which were deposited at

the ice sheet surface, buried, and submerged over time.
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(2003), First results of trace element analysis in ice cores using
Continuous Ice Melting (CIM) Inductively Coupled Plasma Sec-
tor Field Mass Spectrometry (ICP-SFMS), J. Phys. IV Fr., 107,
doi:10.1051/jp4:20030399.

Kohler, J., J. C. Moore, and E. Isaksson (2003), Comparison of
modelled and observed responses of a glacier snowpack to
ground-penetrating radar, Ann. Glaciol., 37, 293–297.

Korth, W., and R. Dietrich (1996), Ergebnisse geodätischer
Arbeiten im Gebiet der Schirmacheroase/Antarctica 1988–
1993, Publ. Ser. B Angew. Geod., vol. 301, Dtsch. Geod. Komm.,
Bayer. Akad. der Wiss., Munich, Germany.

Kovacs, A., A. J. Gow, and R. M. Morey (1995), The in-situ di-
electric constant of polar firn revisited, Cold Reg. Sci. Technol.,
23, 245–256.

Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J.-L.
Dufresne (2007), Simulated Antarctic precipitation and surface
mass balance at the end of the 20th and 21st centuries, Clim.
Dyn., 28, 215–230, doi:10.1007/s00382-006-0177-x.

Lambert, G., B. Ardouin, J. Sanak, C. Lorius, and M. Pourchet
(1977), Accumulation of snow and radioactive debris in Antarc-
tica: A possible refined radiochronology beyond reference levels,
in Symposium Isotopes et Impuretés dans les neiges et glaces,
Colloque de Grenoble, IAHS Publ., 118, 146–158.

Legrand, M., and R. J. Delmas (1984), The ionic balance of Ant-
arctic snow: A 10-year detailed record, Atmos. Environ., 18,
1867–1874.

Legrand, M., and P. A. Mayewski (1997), Glaciochemistry of polar
ice cores: A review, Rev. Geophys., 35, 219–243.

Li, J., and H. J. Zwally (2002), Modeled seasonal variations of firn
density induced by steady-state surface air-temperature cycle,
Ann. Glaciol., 34, 299–302.

Li, J., and H. J. Zwally (2004), Modeling the density variation in
the shallow firn layer, Ann. Glaciol., 38, 309–313.

Li, L., and J. W. Pomeroy (1997), Estimates of threshold wind
speeds for snow transport using meteorological data, J. Appl.
Meteorol., 36, 205–213.

Lipenkov, V. Y., A. A. Ekaykin, N. I. Barkov, and M. Pourchet
(1998), O svyazi plotnosti poverhnostnogo sloya snega v Antark-

tide so skorost’yu vetra (On the relationship of surface snow
density in Antarctica and wind speed), Mater. Glyatsiol. Issled.,
85, 148–158.

Looyenga, H. (1965), Dielectric constant of heterogeneous mix-
tures, Physica, 31(3), 401–406.

Magand, O., M. Frezzotti, M. Pourchet, B. Stenni, L. Genoni, and
M. Fily (2004), Climate variability along latitudinal and long-
itudinal transects in East Antarctica, Ann. Glaciol., 39, 351–
358.

Magand, O., C. Genthon, M. Fily, G. Krinner, G. Picard,
M. Frezzotti, and A. A. Ekaykin (2007), An up-to-date quality-
controlled surface mass balance data set for the 90�–180�E Ant-
arctica sector and 1950–2005 period, J. Geophys. Res., 112,
D12106, doi:10.1029/2006JD007691.

Mann, G. W., P. S. Anderson, and S. D. Mobbs (2000), Profile
measurements of blowing snow at Halley, Antarctica, J. Geo-
phys. Res., 105(D19), 24,491–24,508.

Masson-Delmotte, V., et al. (2008), A review of Antarctic surface
snow isotopic composition: Observations, atmospheric circula-
tion and isotopic modelling, J. Clim., in press.

Matsuoka, K., T. Furukawa, S. Fujita, H. Maeno, S. Uratsuka,
R. Naruse, and O. Watanabe (2003), Crystal orientation fabrics
within the Antarctic ice sheet revealed by a multipolarization
plane and dual-frequency radar survey, J. Geophys. Res.,
108(B10), 2499, doi:10.1029/2003JB002425.

Matsuoka, K., S. Uratsuka, S. Fujita, and F. Nishio (2004), Ice-
flow induced scattering zone within the Antarctic ice sheet re-
vealed by high-frequency airborne radar, J. Glaciol., 50(170),
382–388.

Mavrocordatos, C., E. Attema, M. Davidson, H. Lentz, and
U. Nixdorf (2004), Development of ASIRAS (Airborne SAR/
Interferometric Altimeter System), in Geoscience and Remote
Sensing Symposium IGARSS ’04, vol. 4, pp. 2465–2467, IEEE
Int., New York, doi:10.1109/IGARSS.2004.1369792.

Mayewski, P. A., and I. D. Goodwin (1997), International Trans-
Antarctic Scientific Expedition (ITASE), PAGES Rep. 1997-1, 48
pp., Past Global Changes Proj., Bern.

Mayewski, P. A., L. D. Meeker, S. Whitlow, M. S. Twickler, M. C.
Morrison, R. B. Alley, P. Bloomfield, and K. Taylor (1993), The
atmosphere during the Younger Dryas, Science, 261(5118), 195–
197, doi:10.1126/science.261.5118.195.

Mayewski, P. A., et al. (2005), The International Trans-Antarctic
Scientific Expedition (ITASE): An overview, Ann. Glaciol., 41,
180–185.

McConnell, J. R., R. C. Bales, and D. R. Davis (1997), Recent
intra-annual snow accumulation at South Pole: Implications for
ice core interpretation, J. Geophys. Res., 102(D18), 21,947–
21,954.

McMorrow, A. J., M. A. J. Curran, T. D. van Ommen, V. Morgan,
I. Allison, and M. J. Pook (2001), Intercomparison of firn core
and meteorological data, Antarct. Sci., 13(3), 329–337.

Meyerson, E. A., P. A. Mayewski, K. J. Kreutz, L. D. Meeker, S. I.
Whitlow, and M. S. Twickler (2002), The polar expression of
ENSO and sea-ice variability as recorded in a South Pole ice
core, Ann. Glaciol., 35, 430–436.

Millar, D. H. H. (1981), Radio echo layering in polar ice sheets and
past volcanic activity, Nature, 292, 441–443.

Minikin, A., D. Wagenbach, W. Graf, and J. Kipfstuhl (1994),
Spatial and seasonal variations of the snow chemistry at the
central Filchner–Ronne Ice Shelf, Antarctica, Ann. Glaciol.,
20, 283–290.

Monaghan, A. J., et al. (2006), Insignificant change in Antarctic
snowfall since the International Geophysical Year, Science,
313(5788), 827–831, doi:10.1126/science.1128243.

Moore, J. C. (1988), Dielectric variability of a 130 m Antarctic
ice core: Implications for radar sounding, Ann. Glaciol., 11,
95–99.

Moore, J. C., and R. Mulvaney (1989), Dielectrical stratigraphy of
ice: A new technique for determining total ionic concentrations
in polar ice cores, Geophys. Res. Lett., 16(10), 1171–1179.

RG2001 Eisen et al.: SNOW ACCUMULATION IN EAST ANTARCTICA

35 of 39

RG2001



Moore, J. C., and J. G. Paren (1987), New technique for dielectric
logging of Antarctic ice cores, J. Physi. Colloq. C1), 48(3), 155–
160.

Moore, J. C., H. Narita, and N. Maeno (1991), A continuous 770-
year record of volcanic activity from East Antarctica, J. Geophys.
Res., 96(D9), 17,353–17,359.

Morey, R. M., and A. Kovacs (1985), Analysis of wide-angle
reflection and refraction measurements, CRREL Spec. Rep., 85-
5, 53–60.

Morgan, V. I., and T. H. Jacka (1981), Mass balance studies in East
Antarctica, in Sea Level, Ice, and Climatic Change, edited by
I. Allison, IAHS Publ., 131, 253–260.

Morgan, V. I., I. D. Goodwin, D. M. Etheridge, and C. W. Wookey
(1991), Evidence from Antarctic ice cores for recent increases in
snow accumulation, Nature, 354, 58–60.

Morris, E. D., and J. D. Cooper (2003), Density measurements in
ice boreholes using neutron scattering, J. Glaciol., 49(167),
599–604.

Mosley-Thompson, E., and L. G. Thompson (1982), Nine centu-
ries of microparticle deposition at the South Pole, Quat. Res., 17,
1–13.

Mosley-Thompson, E., L. G. Thompson, J. F. Paskievitch, M.
Pourchet, A. J. Gow, M. E. Davis, and J. Kleinman (1995), South
Pole snow accumulation has increased in recent decades, Ann.
Glaciol., 21, 131–138.

Mosley-Thompson, E., J. F. Paskievitch, A. J. Gow, and L. G.
Thompson (1999), Late 20th century increase in South Pole
snow accumulation, J. Geophys. Res., 104(D4), 3877–3886.

Mulvaney, R., H. Oerter, D. A. Peel, W. Graf, C. Arrowsmith, E. C.
Pasteur, B. Knight, G. C. Littot, and W. D. Miners (2002), 1000
year ice-core records from Berkner Island, Antarctica, Ann. Gla-
ciol., 35, 45–51.

Murray, T., G. W. Stuart, P. J. Miller, J. Woodward, A. M. Smith, P.
R. Porter, and H. Jiskoot (2000), Glacier surge propagation by
thermal evolution at the bed, J. Geophys. Res., 105(B6), 13,491–
13,507.

Muszynski, I., and G. E. Birchfield (1985), The dependence of
Antarctic accumulation rates on surface temperature and eleva-
tion, Tellus, Ser. A, 37, 204–208.

Neftel, A. (1991), Use of snow and firn analysis to reconstruct past
atmospheric composition, in Seasonal Snowpacks, NATO ASI,
Ser. G, vol. 28, edited by T. D. Davies, M. Tranter, and H. Jones,
pp. 385–415, Springer, Berlin.

Nemazi, M., G. Lambert, C. Lorius, and J. Labeyrie (1964), Me-
sure du taux d’accumulation de la neige au bord du continent
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