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ABSTRACT

Rainfall estimation in semiarid regions remains a challenging issue because it displays great spatial and
temporal variability and networks available for monitoring are often of low density. This is especially the
case in the Sahel, a region of 3 million km2 where the life of populations is still heavily dependent on rain
for agriculture. Whatever the data and sensors available for rainfall estimation—including satellite IR and
microwave data and possibly weather radar systems—it is necessary to define objective error functions to
be used in comparing various rainfall products. This first of two papers presents a theoretical framework for
the development of such an error function and the optimization of its parameters for the Sahel. A range of
time scales—from rain event to annual—are considered, using two datasets covering two different spatial
scales. The mesoscale [Estimation des Pluies par Satellite (EPSAT)-Niger (E-N)] is documented over a
period of 13 yr (1990–2002) on an area of 16 000 km2 covered by 30 recording rain gauges; the regional scale
is documented by the Centre Regional Agrometeorologie–Hydrologie–Meteorologie (AGRHYMET)
(CRA) dataset, with an annual average of between 600 and 650 rain gauges available over a period of 8 yr.
The data analysis showed that the spatial structure of the Sahelian rain fields is markedly anisotropic,
nonstationary, and dominated by the nesting of two elementary structures. A cross-validation procedure on
point rainfall values leads to the identification of an optimal interpolation algorithm. Using the error
variances computed from this algorithm on 1° � 1° and 2.5° � 2.5° cells, an error function is derived,
allowing the calculation of standard errors of estimation for the region. Typical standard errors for monthly
rainfall estimation are 11% (10%) for a 10-station network on a 2.5° � 2.5° (1° � 1°) grid, and 40% (30%)
for a single station on a 2.5° � 2.5° (1° � 1°) grid. In a companion paper, this error function is used to
investigate the differences between satellite rainfall products and how they compare with ground-based
estimates.

1. Introduction

The possible long-term modification of the Sahelian
precipitation regime (e.g., Lebel et al. 2003) makes hy-
drologists and climatologists ask themselves two major
types of questions: 1) How and to what degree of ac-
curacy can Sahelian rainfall be monitored in real or
near–real time to meet the needs of a large community
of users faced with the effects of persistent drought
(seasonal crop monitoring, water resource manage-

ment, food aid programs)? 2) How and to what degree
of significance can the interannual fluctuations of Sa-
helian rain fields and possible modifications of the pre-
cipitation regime be characterized? Considering the de-
terioration of rain gauge networks (Fig. 1), data access
problems, and the significant variability in time and
space of Sahelian rainfall, satellite estimates are looked
to as a substitute for—or complement of—ground-
based network estimates, particularly as satellite-borne
sensors become increasingly efficient. This problem is
not specific to the Sahel: the past decade has seen the
development of rain products intended for a large com-
munity of users aiming to summarize as well as possible
the information from ground-based networks and sat-
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ellites for a given region. Monitoring rainfall perfor-
mance is nevertheless a particularly sensitive issue in
the Sahel.

The vulnerability of West Africa to the drought that
has been prevailing since the 1970s has resulted in the
creation of regional institutions to manage better its
effects. The Agrometeorologie–Hydrologie–Meteorologie
(AGRHYMET) Regional Center (CRA), based in
Niamey, Niger, is one of the major bodies among them
and currently uses many tools for operational activities:
systems for early warning, resource water management,
and hydrological and agronomic monitoring. Areal
rainfall is the main input data for these tools. Whatever
the sources of information and procedure used for es-
timating this rainfall are, the associated error is seldom
evaluated with rigor and is less often used in the models.

This work aims at developing an objective method
for evaluating the quality of rainfall estimates over the
region. The emphasis is on the determination of an
error function, inferred from analysis of several years of
data—years that can be considered to be representative
of the region’s current climate—and analysis on a range
of scales meeting the needs of a large community of
users. The requirements to be met by a climatological
product are different enough from those of products
that will be described here as “hydrological,” in the
sense that they should especially serve as input data for
water balance or water resource quantification models.
Yet, it is intuitive that—as is clearly shown in this
study—the errors depend heavily on rain field variabil-
ity, and this variability is far from being consistent from
one year to the next. Moreover, this variability natu-
rally depends on the time scale on which our work is
based.

Thus, this series of two articles deals with two closely
related issues. The first, which is the subject of this
article, consists of determining an error function used
1) to develop reference rain fields by minimizing this
function and 2) to provide criteria for the intercompari-

son of various rain products. The second issue is ad-
dressed in a companion paper and relates to the inter-
comparison of various rain products while focusing
more on error distributions than on mean values.

The main objective of this paper is thus to provide a
general framework for users who need to build or to
evaluate rain products. In this respect, the results are
felt to extend beyond the Sahelian region itself and to
apply to most semiarid regions of the intertropical belt.
Great care is paid to account for all of the information
provided by various sources of rain gauge data, whether
from operational origins or research origins. Using the
wide conceptual possibilities of geostatistics, a refined
characterization of the Sahelian rain fields is used to
compare several estimation methods. This, in turn, pro-
poses a coherent interpolation approach and an opera-
tional set of metrics for the evaluation of rain products
that are presented in the companion paper.

Section 2 briefly reviews the general question of rain-
fall estimation and the methods available for a quanti-
tative evaluation of the errors associated with any esti-
mation procedure. The application of these methods to
the interpolation of Sahelian rain fields (characterized
by a strong intermittency in time and space) is then the
object of section 3. Section 4 presents a comparison of
results between different formulations of kriging, show-
ing that the nonstationarity and anisotropy of the Sa-
helian rain fields heavily influence the performance of
these methods. This result leads, in section 5, to the
derivation of an error function associated with the
choice of an optimal model of covariance. Conclusions
are in section 6.

2. Rainfall estimation from ground data

a. General framework

For the problem treated here, stochastic interpola-
tion methods are the most relevant, because they pro-
vide an error evaluation of the estimation made. Apart
from some empirical–statistical studies (e.g., Huff 1970;
Rudolf et al. 1994; Huffman 1997), almost the entire
group of statistical methods refers more or less to the
concept of optimal interpolation, initially promoted by
Gandin (1965). Matheron’s (1971) theory of regional-
ized variables expands the framework of optimal inter-
polation by taking into account the uncertainties re-
lated to sampling over a necessarily limited area. As a
matter of fact, the empirical mean and spatial variance
(i.e., inferred from data) may be highly biased estima-
tors of the mean and variance of the process. Geostatis-
tical methods are widely recognized as performing bet-
ter than conventional methods (Creutin and Obled
1982; Boussières and Hogg 1989; Philips et al. 1992;

FIG. 1. Evolution of the mean number of CILSS network gauges
providing monthly values (averages over 5-yr periods) between
1950 and 2002. After a maximum of over 700 stations at the end
of the 1980s, the average number of monthly values has decreased
over the past 15 yr.
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Zimmerman et al. 1999). This fact is particularly true
with anisotropic data, as shown by Collins and Bolstad
(1996) in comparing kriging with the inverse-distance
method.

Very often, the choice of an interpolation method is
not so much a question of interpolation per se but
rather is a question of evaluating as precisely as pos-
sible the errors associated with the interpolation pro-
cedure. Geostatistical methods are deemed optimal, in
the sense that they seek to minimize an error function
derived from a representation of the spatial covariance
function of the process being studied, with rainfall
treated as a bidimensional random process P. This er-
ror function is the variance of estimation error. It
should be noted that because rain fields are not linear,
nonlinear kriging (Matheron 1976; Journel 1983;
Rivoirard 1994; Chica-Olmo and Luque-Espinar 2002)
could improve the quantification of the estimation vari-
ance. However, nonlinear kriging has its own inconve-
niences. Nonlinear methods require assumptions for
which no methods of verification are currently avail-
able, and they can yield solutions that are computation-
ally complex (Cressie 1993; Huang et al. 2002). Also,
the mathematical rationale underlying the indicator
kriging is flawed, as mentioned by Moyeed and Papritz
(2002), which explains why linear kriging remains a
good compromise between the search for optimality
and the requirements of simplicity.

b. Structural analysis and inference of the space
covariance function

To filter out any bias in the estimation of the mean
and variance of the random process under consider-
ation, its spatial structure is represented by the vari-
ogram, defined as

��x1, x2� � �1�2� Var�P�x1� � P�x2��, �1�

where x1 and x2 are two points in the 2D space.
Nonstationarity (e.g., Sampson and Guttorp 1992)

and anisotropy (Ecker and Gelfand 2003) may imply
that the field variance and/or the decorrelation distance
change according to the directions considered. They are
thus two important factors to take into account in the
inference process.

To infer the mean structure of the rainfall process, a
mean variogram (Guillot and Lebel 1999; Furrer 2002)
will be computed as follows:

�*m�x1, x2� �
1

2K��k�1

K

�P�x1k� � P�x2k��2�
�

1

2K2��
k�1

K

�P�x1k� � P�x2k���2, �2�

where x1 and x2 ∈ ℜ2 and K is the number of rain
events.

For large time steps (e.g., month), because of the
nonhomogeneity of the rain fields and the presence of
a drift (Ali et al. 2003), the variogram considered is the
mean variogram of the residual 	*. The model used for
the interpolation is obtained by grouping the K � N
available data (N is number of stations) into distance
classes:

�*m�h� � �*m�h�

�
1
K �

k�1

K � 1
2n��

i,j�1

n

��*�xik� � �*�xjk��2�� ,

�3�

where n is the number of couples of points xi and xj

separated by distance h 
 �h.

c. Kriging estimators

Consider

PS �
1
S �S

P�x� d�x�, �4�

where PS is the areal rainfall to estimate over a given
domain S, with x being a point in the 2D space. Based
on the available measurements at N stations located in
xi, the linear estimator is

P*S � �
i�1

N

�iP�xi�. �5�

Linear estimators are distinct from each other in the
way they compute the weighting coefficients �i. In krig-
ing, the weighting coefficients are computed in such a
way that the estimate is unbiased:

E�P*S � PS� � 0 �6a�

and its variance (the kriging variance) is minimized:

min�Var�P*S � PS��. �6b�

Whereas at small time scales rain fields may be treated
as a purely stochastic process, at larger time scales
(daily and over) a deterministic component—m(x)—
may be present (linked to the topography or any other
geographical forcing factor) along with a stochastic
component—	(x):

P�x� � m�x�  ��x�. �7�

The stochastic component is assumed to be second-
order stationary and E[	(x)] � 0. The various formu-
lations of kriging depend on the nature of m(x).

If m(x) is constant and known, the kriging formula-
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tion is called simple kriging (SK); if it is constant but
unknown, the kriging formulation is called ordinary
kriging (OK). One can refer to Cressie (1993) and
Chilès and Delfiner (1999), for example, for a full pre-
sentation of these methods. The kriging variances of
estimation error at point x0 for SK and OK are

�SK
2 � �

i�1

N

�SKi
���xi, x0� and �8�

�OK
2 � �

i�1

N

�OKi
���xi, x0�  �OK, �9�

where �	 is the variogram of the underlying process 	,
which in this case is also the variogram of P; �OK is the
Lagrange multiplier accounting for the constraint on
the weights of the OK system.

If m(x) depends on the 2D coordinates x, nonstation-
ary geostatistical methods must be considered
(Matheron 1969). Two methods, universal kriging and
regression kriging, are tested1 here.

Universal kriging (UK) was first formulated by
Matheron (1969), was further developed by several au-
thors (Journel and Huijbregts 1978; Papritz and Stein
1999), and is based on a global resolution of the kriging
system, assuming a polynomial form for the drift, that is
to say:

m�x� � � al f
l�x�. �10�

The estimation variance of the UK is obtained as fol-
lows:

�UK
2 � �

i�1,N
�i

UK���xi, x0�  �
l

�UKl � f l�x0�.

�11�

In the UK system the variogram �	 of the underlying
process 	 is not known in practice, because the coeffi-
cients of the drift [m(x)] model are not known. Several
authors (Cressie 1993; Goovaerts 1997; Chilès and
Delfiner 1999) draw attention to the biased behavior of
the variogram used in the universal kriging system.

The second approach, in the case of nonstationarity,
is regression kriging (RK; Ahmed and de Marsily 1987;
Odeh et al. 1995; Goovaerts 1997). Here the predictions
are made separately for the drift and the residuals and
then are added back together. The method consists of
three steps: 1) subtracting the drift values [m(xi)] from

the observations [P(xi)], 2) kriging the obtained residu-
als [	*(xi)], and 3), for each point x0 for which an esti-
mation is sought, combining the estimated value of the
drift m̂(x0) to the kriged residual 	̂(x0):

P̂RK�x0� � m̂�x0�  �̂�x0�. �12�

The drift model coefficients are optimally estimated us-
ing the generalized least squares so as to account for the
spatial correlation of residuals (Cressie 1993; Hengl et
al. 2003). This idea resolves the problem mentioned for
UK, because only the variogram of the residuals is re-
quired, which can be estimated from the experimental
residuals. However, the experimental residuals contain
the drift estimation error, which produces a nugget ef-
fect on the residual variogram:

�̂RK � ��  �m
2 , �13�

where �2
m is the regression error variance, assumed to

be stationary over the study area.
In numerical terms, residual kriging is thus compa-

rable to kriging data affected by a measurement error.
The residual kriging variance represents the global er-
ror associated with the estimation by the RK system,
that is, the sum of two errors—one linked to the regres-
sion estimation and the other to the undersampling of
the underlying process 	:

�RK
2 �x0� � �2�m̂�x0��  �2��̂�x0��, �14�

where �2[m̂(x0)] is the regression variance error and
�2[	̂(x0)] is the kriging variance of the stochastic pro-
cess component due to the sampling.

It is important to specify that whichever kriging
method is used, the estimation error does not depend
on an eventual bias of the point measurements. Also, as
can be noted from above, all of the kriging variances
are expressed from the variogram and the drift, which
implies the importance of inferring them properly.

3. Structural analysis of the Sahelian rain fields
and scale considerations

a. Data used for calibration and validation

The data used in this work come from two networks
covering two different scales. One is the Estimation des
Pluies par Satellite (EPSAT)-Niger (E-N) mesoscale
network, described in D’Amato and Lebel (1998). This
network covers an area of 16 000 km2 in the region of
Niamey, Niger (Fig. 2a), and has been in operation
since 1990. It consists of digitized recording rain gauges
providing time series of 5-min rainfall at 30 stations.
From 1990 to 1993, a greater number of stations (107
stations in 1992 and 1993) were available, which, be-

1 Note that only the univariate form of kriging is considered
here because the Sahel is a fairly flat region and no direct relation
between vegetation and rainfall is known; bivariate kriging, such
as cokriging (Wackernagel 1998), may be more suitable in other
contexts.
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cause of a nested pattern, allowed for a characterization
of the spatial structure of the rain fields at a 1-km reso-
lution. The data from the 1990–2002 period are used
here. They correspond to a total of 548 rain events,
associated with mesoscale convective systems. These
rain events represent 90% of the total rainfall over the
area covered by the network. This dataset was mainly
used for the identification of the structure function at
small spatial scales and for validation on very dense
networks.

The second dataset used here comes from CRA. It
was used for both calibration and validation (using a
cross-validation procedure) at the regional scale. This
database includes the daily rain data collected by the
national rain gauge networks of the Comité Inter-Etats
de Lutte Contre la Sécheresse au Sahel (CILSS) coun-
tries. These networks cover more than 3 million km2

and total more than 1200 stations. There are, however,
significant fluctuations in the number of stations pro-
viding data each year. Over the period of 1990–2000
there are less than 800 stations available each year. At
the daily scale, a consistent dataset of 8 yr (1990, 1992,
1994, and 1996–2000) was retained: 914 stations have at
least 1 yr of data over the period of 1990–2000, the
minimum number of gauges is 704 (for 1990 and 2000)
and the maximum is 760 (for 1997 and 1999, and 427
stations have full data for the entire period. At the
monthly scale, there must be less than 10% of missing
daily data to keep the station. For larger time scales (10
days and more), all years of the 1990–2002 period were
used. The localization of this network (hereinafter re-
ferred to as the “CILSS” network) and its pattern for
the year 2000 are shown in Fig. 2b.

The E-N network allows the computation of areal

rainfall over areas ranging from 1000 to 10 000 km2,
with an average error of less than 5% at the monthly
scale and 10% at the event scale (Lebel and Amani
1999). In particular, this allows an objective definition
of rain events, which makes the calibration of some
integrated approaches in modeling Sahelian rain fields
possible, because the number of events is the major
factor of rain-field variability.

The CILSS network provides relatively good cover-
age at the regional scale with an average density of one
station per 3500 km2 (in comparison with one station
per 400 km2 of the E-N network); however, the stations
are unevenly distributed. Although the number of rain
gauges is, on average, 15 gauges per 2.5° � 2.5°, 5% of
the 2.5° � 2.5° cells are without any gauge and 30% of
the 1° � 1° cells are without any gauge. This situation
(medium density and uneven distribution of stations) is
atypical of cases in which optimal interpolation per-
forms better than other methods (e.g., Delhomme 1978;
Lebel et al. 1987).

b. The Sahelian rain fields and scale-related
considerations

There are three important characteristics of the Sa-
helian rain fields to consider for interpolation purposes.
The first is the existence of a strong intermittency in
space, linked to the convective nature of rain in the
region; it involves a significant spatial variability at all
time scales. At the rain-event scale, D’Amato and
Lebel (1998) have estimated the intermittency in space
to be 0.26, which means that, on average, over an area
of 1° � 1°, 26% of the surface area is not touched by
rain. A second important factor is that the rainfall pro-
cess may be considered stationary at the event scale,

FIG. 2. (a) Mesoscale: the EPSAT-Niger network is made of recording rain gauges covering 16 000 km2, with a denser network ()
of 107 stations (1990–93) and a long-term network (circles) of 30 stations (1990–2003). (b) Regional scale: the CILSS dataset in 2000
covering approximately 3 � 106 km2, with 680 daily reading rain gauges; also shown is the synoptic network, which includes 87 stations.
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whereas at higher time scales, the process is nonstation-
ary, with the mean and variance presenting a north–
south and east–west drift. The third characteristic to
consider is the existence of two anisotropic directions:
an east–west direction associated with the dominant di-
rection of movement of convective systems and a
north–south direction associated with the number of
events, with the probability of occurrence being greater
in the south than in the north. Depending on the time
scale considered, one direction of anisotropy has a
greater effect than the other.

c. Structural analysis

1) MESOSCALE

The characterization of the spatial structure of Sa-
helian rain fields at the event scale for distances smaller
than 150 km is based on the E-N dataset. Over an area
of 16 000 km2, the mean of the spatial variance of the
events is 120 mm2, whereas the point variance com-
puted on the 548 rain events is 205 mm2. It is obvious
that the area covered is too small for the integral vari-
ance to reach the variance of the process as confirmed
when analyzing the daily CILSS data (daily rain fields
have a structure comparable to that of the event rain
fields), showing a decorrelation range of 1000 km in the
east–west direction. This situation led Guillot and
Lebel (1999) to propose a nested variogram, which is
the only way to account for both the mesoscale struc-
ture and the regional structure of the rain process. This
model was fitted to the E-N data by Ali et al. (2003),
using two anisotropic exponential functions with an an-
isotropy coefficient of 1⁄2 for the first structure and 1⁄3
for the second structure. At larger time scales (10-day
to seasonal), the nonstationarity of the rain fields re-
quires one to infer separately a drift and the variogram
of the residuals to this drift (see appendix A for de-
tails).

2) REGIONAL SCALE

The CILSS data are used to analyze the spatial struc-
ture at larger distances and for time steps ranging from
the daily to seasonal scale. To verify that the modeling
of the event rain-field structure carried out with the
E-N data alone was reasonably extrapolated for dis-
tances larger than 150 km, a comparison of the daily
variograms obtained from the E-N data, on the one
hand, and from the CILSS data, on the other hand, was
made (see Fig. 3a).

The decorrelation distance of the CILSS daily vari-
ogram is larger than 1000 km, with a spatial variance of
150 mm2. The point variance of the daily E-N data is
180 mm2. The CILSS variogram displays an anisotropy

comparable to that of the E-N variogram. Accounting
for the differences in sampling and of the sensors, the
CILSS data and the E-N data provide a coherent pic-
ture of the variability of the daily rain fields. The dif-
ference between the spatial variance and the point vari-
ance is likely to be linked to the assumption of a ho-
mogeneous population of rain events not being fully
verified, thus adding some variance in the interevent
dimension. The daily variogram is represented by a
model similar to the one used for the event variogram,
with identical parameters for the decorrelation distance
and anisotropy of the first structure, and a larger range
and stronger anisotropy of the second structure at the
daily scale.

At the monthly scale, the raw variograms (whether
computed as the mean or as the climatological case) are
highly biased by the drift. When subtracting only the
north–south drift, the east–west residual variogram still
displays a drift, even though somewhat smaller. This
fact allows the identification of an east–west drift. Sub-
tracting both the north–south and the east–west drifts
produces a mean variogram devoid of any apparent
drift, as can be seen in Fig. 3b. The mean monthly drift
(correlation coefficient � 0.97) is the following:

m�x, y� � �0.75y2 � 9.62y � 2.44x  412, �15�

where x and y are the longitude and the latitude coor-
dinates, respectively, in degrees and m is in millimeters.

The decorrelation distance of the monthly residual
variogram is of the same order as that of the event
residual variogram (more than 1000 km) and is also
strongly anisotropic (1⁄3). An important point to under-
line is that, from the daily scale to the seasonal scale,
the raw variograms are biased by the north–south and
east–west drifts. This drift is, in fact, a function of the
number of rainy days, as shown in Fig. 4. Therefore, RK
is a good candidate for interpolating these fields.

d. A model of spatial structure based on scale
considerations

Ali et al. (2003) have developed a scale-invariant for-
mulation of the structure function used for kriging in-
terpolation. This formulation uses the structure func-
tion of the event rain fields as the kernel from which the
structure functions at larger time scales are derived.
This approach avoids the computation of a specific vari-
ogram for each time step of interest and guarantees the
overall coherence of the structure functions over a
broad spectrum of time scales. Rather than identifying
an average variogram for the 10-day or monthly rain-
fall, for instance, rain fields are treated as the accumu-
lation of N event rain fields, characterized by an N-
event variogram. The scaling procedure is based on the
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analysis of the field of the number of events N(x), the
spatial structure of which may be represented through
the variogram of the indicator function I: Ik(x) � 0 if no
rainfall is recorded at point x for event k, and Ik(x) � 1
if rainfall is recorded at point x for event k. Scale-
invariant kriging will be considered here as a possible
alternative to traditional OK, UK, or RK, so as to ob-
tain an optimal error function.

4. Optimal interpolation of the Sahelian rain fields

a. Possible interpolation functions

Five formulations of kriging are considered in what
follows for selecting an optimal interpolation function
of Sahelian rain fields. The trade-off between ordinary
kriging and more sophisticated methods is that the lat-
ter usually imply a greater number of parameters to

FIG. 3. Variograms computed from (a) 8 yr of the CILSS dataset for daily rainfall and (b) 13 yr (1990–2002) for
monthly rainfall. (a1) Mean east–west (E–W) variogram; (a2) mean south–north (S–N) variogram; (a3) residual
variogram of the daily rain field in the E–W direction. (b2) Mean monthly E–W variogram with only the S–N drift
subtracted. In (b1) (S–N variogram) and (b3) (E–W variogram), the drift is subtracted both in the E–W and S–N
directions. We can note a high anisotropy between the E–W (decorrelation distance � 10°) and the N–S (decor-
relation distance � 4°) variogram for both the daily and the monthly scale.
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infer, which, in turn, means a lack of robustness of the
estimated parameters.

The first two formulations retained for the compari-
son are thus two ordinary kriging methods (correspond-
ing to a stationarity assumption, assumed to hold only
at the event scale and to a lesser extent at the daily
scale): 1) ordinary kriging with a simple climatological
variogram (no anisotropy and no nesting), denoted
OK-NAN (see appendix B for a list of this and other
nonstandard abbreviations used in this paper), and 2)
ordinary kriging with a nested and anisotropic mean
variogram, denoted OK-NA.

Three formulations are retained for the nonstation-
ary case, with all three using a nested and anisotropic
variogram (NAV) corresponding to the main features
of the empirical variograms (Fig. 3b). As already men-
tioned, the number of rain events varies from month to
month (or from one season to another), which makes
the cumulative monthly (or seasonal) rain fields inho-
mogeneous with respect to the underlying stochastic
process. To overcome this problem, the NAV is scaled
for the two first nonstationary methods (UK and RK)
using the classical approach proposed by Delhomme
(1978); that is, the mean variogram NAV is normalized
by the mean variance. This method allows one to ac-
count for the variability of the number of events. Be-
cause kriging utilizes this normalized variogram in this
case, the “true” kriging variance is obtained for a given
rain field by multiplying the estimated (normalized)
kriging variance by the spatial variance of the field con-
cerned. In the application of RK, the drift is computed
month by month. Also, recent analyses show that there
are differences in the average rainfall pattern between
the eastern and the western Sahel. As a consequence,

the drift model that is used reflects these differences.
The last formulation selected for the comparison is the
scaling approach, referred to hereinafter as SC. Note
that the above-mentioned problem of nonhomogeneity
does not arise in this scaling approach because the num-
ber of events is explicitly and directly taken into ac-
count in its formulation (Ali et al. 2003). For the re-
gional comparison, the SC formulation was used in a
simplified way by assuming that the number of events is
equal to the number of rainy days, because at this scale
only daily rain gauges are available.

b. Cross validation and criteria used for the
intercomparison

A cross-validation procedure (Seaman 1983) is car-
ried out to determine which of the five formulations
under consideration can produce 1) the best interpola-
tion and 2) the more realistic value for the associated
errors. Several statistical indicators will be used to that
end, referring to the work of Willmott (1984), who used
five statistical criteria to evaluate the performances of
various interpolation methods. The rmse is sensitive to
extreme values, though this problem is attenuated in
this study by the extremely large size of the samples
used. It was underlined that the relationship between
the correlation coefficient (r2) and model performance
is not well defined and the magnitudes of r2 are not
consistently related to the accuracy of prediction. It was
suggested that, in conclusion, the rmse and mean bias
error (ME) are among the “best” overall measures of
model performance for intercomparison.

The ME and the rmse will thus be used here as in-
dicators of the overall coherency between the fields
under comparison. Defining ei as the difference be-

FIG. 4. The drift along progressive time scales. Each curve represents the conditional (on nonzero values) mean rainfall for the
cumulative number of rainy days by band, normalized by the corresponding overall mean rainfall. The bands are either of width 0.5°
in latitude or 1° in longitude. We can note a progressive augmentation of the rainfall gradient with an increasing number of rainy days,
in both (left) latitude and (right) longitude. The drift exists at all of the cumulative time scales, though the gradient is smallest at the
1-day scale. The gradient is stronger as a function of latitude (from around 6% at the 1-day scale to 23% for 80 cumulative rainy days)
than as a function of longitude (from around 0.13% at the 1-day scale to 3% for 80 cumulative rainy days).
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tween the estimated value P*i and the observed value of
rainfall Pi,

ei � �P*i � Pi�. �16�

The mean error is

ME �
1
N �

i�1

N

�ei�, �17�

with

N � NSNf , �18�

where NS is the number of stations (cross validation)
and Nf is the number of fields. As an example, for the
8 yr of the CILSS network and a monthly time step, NS

� 600–650 and Nf � 24 (8 � 3), so that N ≅ 15 000.
The rmse is computed as

rmse � � 1
N �

i�1

N

�ei�
2�1�2

. �19�

The rmse is of special interest to this study because it
provides a mean value of the estimation error that can
be directly compared with the average of the theoreti-
cal standard deviation of the kriging estimation error
(ksd). This rmse is considered to be the observed error.

Two additional criteria are computed to quantify
how close the theoretical errors are to the empirical
errors. The first, denoted I, is the quadratic mean of the
relative errors:

I � � 1
N �

i�1

N � ei

ksdi
	2�1�2

. �20�

The closer to 1 that I is, the better the agreement is
between the empirical error and the kriging theoretical
error. The other additional criterion is a comparative
measure of the dispersion of the theoretical error and
the dispersion of the empirical errors:

P1 � Nb��ksdi � ei � ksdi; i � 1, N� and
P2 � Nb��2 � ksdi � ei � 2 � ksdi; i � 1, N�,

�21�

where Nb means “number of times that.”

c. Results of the intercomparison

The intercomparison is carried out for the two scales
covered by the two available networks: the mesoscale
and the regional scale. At the mesoscale (E-N net-
work), a direct determination of the number of rain
events is possible, with the drawback being that the
area covered is small in comparison to both the corre-
lation distance of the rainfall process and the resolution
of the satellite products (typically 2.5° � 2.5°). The re-
gional scale (CILSS network) is more relevant in the

perspective of satellite product validation, and the in-
tegral range of the process is well covered, with the
drawback being that only daily values are available.

At the mesoscale, all three nonstationary methods
provide similar and realistic values of the estimation
error, provided that the variance of the point series is
used as an estimate of integral range of the variogram,
instead of using the empirical spatial variance com-
puted from the observations. As already underlined by
Guillot and Lebel (1999), this variance largely under-
estimates the variance of the process, and the theoret-
ical errors largely underestimate the observed errors of
the cross-validation procedure. At the monthly time
step, the value of I is 1.02 for SC, 1.08 for RK, and 1.09
for climatological UK. These results mean that, with a
direct and precise quantification of the number of rain
events, SC is the method providing the best evaluation
of the estimation errors, whereas RK and UK tend to
underestimate slightly the estimation errors.

The second step of the intercomparison procedure is
to work at the regional scale. Table 1 provides a syn-
thesis of the results obtained for the four time steps
considered and the various statistical criteria. Differ-
ences in these statistical criteria are significant because
of the size of the samples (8 yr of data and cross vali-
dation on 600–650 stations, on average). There are
three main results: 1) even though ME and rmse for RK
are the smallest, the rmse of the different methods are
generally very similar, meaning that the CILSS network
is dense enough2 for every kriging estimate to perform
similarly in terms of interpolation [Vicente-Serrano et
al. (2003) also find that RK performs a little better in
their intercomparison of interpolation methods applied
to annual precipitation in Spain]; 2) the theoretical es-
timation error is far more sensitive to the approach
under consideration, with, for a given time step, differ-
ences of more than 60% in the average ksd and differ-
ences of more than 100% in the values of I; and 3) the
RK method provides the best estimates of the errors,
with I being close to 1 and ksd and rmse differing by
less than 5%. One obvious reason for the good behav-
ior of RK is that the drift and the variogram of the
residuals are inferred separately, because of the large
size of the multiannual dataset. Another reason to con-

2 A test, carried out by reducing gradually the number of sta-
tions of the network considered, showed that the differences be-
tween the results of the various methods become very significant
when the number of stations is lower than 100. For the synoptic
network (80 stations), the RK error becomes 55.4 mm (an in-
crease of 1.5 mm with respect to the 600-station network) and the
UK error becomes 70 mm, which is an increase of 16 mm with
respect to the 600-station network. For a 25-station network the
errors become 61 mm for RK and 124 mm for UK.
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sider is the fact that the residuals are more Gaussian
than the raw values, because linear kriging performs
best for multi-Gaussian processes. A multivariate Sha-
piro–Wilk normality test (Royston 1982) applied to raw
monthly data of the 130 rain gauges (which have full
data since 1950) was rejected. When a simple Shapiro–
Wilk normality test is applied gauge by gauge and
month by month (July, August, September), the test
was accepted for 35% of the samples, at the level 0.1.
When subtracting the drift (inferred by a generalized
least squares method), the test was accepted for 82% of
the gauges at the same level.

The scale-invariance method does not perform as

well as expected, which is obviously linked to the algo-
rithm used to estimate the number of events from the
number of rainy days. A not-surprising though impor-
tant conclusion arising from Table 1 is the fact that
using an inadequate structure function leads to unreal-
istic theoretical values of the estimation errors, strongly
underestimating the observed errors. This is illustrated
in Fig. 5, reporting the distribution of the ME values at
the monthly scale on the left and the distribution of the
ksd values on the right. Caution is thus required when
using a kriging error directly as an estimate of the
ground-based error in the evaluation of satellite algo-
rithms.

TABLE 1. Intercomparison of interpolation methods at the regional scale. Regression kriging performs the best, with rmse close to ksd
and a value of I that is nearest to 1 at all time scales. The other methods strongly underestimate the observed errors (ksd � rmse, and
I � 1).

Mean
(observed)

Std dev
(observed)

ME
(mm)

Ksd
(mm)

Rmse
(mm) I P

Daily scale OK-NAN climatological variogram 15.66 17.01 0.015 7.75 11.08 2.21 0.78
OK-NA mean variogram 0.008 10.02 10.62 1.40 0.84
RK 0.002 10.1 9.63 1.01 0.85

10-day scale UK 53.94 43.27 0.05 25.72 29.73 1.26 0.72
SC �0.10 21.47 28.38 1.13 0.61
RK 0.02 26.82 26.98 1.01 0.74

Monthly scale UK 158.60 103.17 0.08 33.69 54.11 1.61 0.56
SC 0.10 37.15 54.62 1.41 0.60
RK 0.06 52.33 53.92 1.07 0.73

Annual scale UK 493.42 208.12 0.33 77.62 99.39 1.28 0.65
SC 0.52 64.93 101.04 1.50 0.57
RK 0.212 101.02 101.23 1.006 0.76

FIG. 5. (a) Distributions of the observed errors obtained by three different kriging estimates, computed by a cross-validation
procedure over the 600–650 observations available each month (Jul, Aug, Sep) of an 8-yr period. (b) Distributions of the theoretical
kriging standard deviations computed with the same four methods. The kriging interpolation value is not significantly different, as
shown in (a); in contrast, the kriging estimation variance is more sensitive to the method under consideration, as shown in (b).
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5. Adaptation of the scaling approach and
derivation of the error function

The intercomparison of the various kriging formula-
tions presented in section 4 was carried out through a
cross-validation procedure comparing measured and
reconstituted point values. Most users are interested
rather in evaluating the error associated with an areal
estimation. This is especially true when it comes to the
evaluation of satellite estimates computed over grid
cells of typical size 1° � 1° or 2.5° � 2.5°. In many
circumstances, most linear interpolators that take the
geometry of the measurement network into account
(which is not the case for the arithmetic mean) produce
similar results (Weber and Englund 1992). In our case,
this is clear from the results of Table 1. Differences in
rmse of point interpolation are small, and they would
be still smaller for areal values (because there are no
“observed” areal values, the intercomparison of section
4 cannot be carried out for areal estimates) given the
smoothing out of errors produced by spatial averaging.
On the other hand, using a nonoptimal method gener-
ates unrealistically low theoretical errors, as shown in
section 4. Based on this, Lebel and Amani (1999) de-
rived an error function analytically that could be ap-
plied to evaluate the errors associated with areal rain-
fall estimation independent of the estimation method
used, providing that it makes a reasonable use of the
information available on the structure of the phenom-
enon. This method is based on the time-scaling prop-
erties of the rain fields and was successfully validated at
the mesoscale. The general expression of the function
giving the relative error is the following:

e�A, Ng, KT, PT� �
C1

�Ng�KT

�PT

KT
	�0.2

� �C2  C3 log� A

Ng
	� C4,

�22�

where A is the area (km2) for which the estimation is
performed, Ng is the number of gauges over this area,
KT and PT are the number of rain events and rainfall
total, respectively, over the period considered, and C1,
C2, C3, and C4 are parameters whose values may de-
pend on the area A considered.

Rather than providing standard errors for 10-day or
monthly rainfall estimates, this error function yields the
error associated with the estimation of a PT cumulative
rainfall produced by KT rain events. As seen in section
4, the direct application of the scaling approach at the
regional scale does not perform so well, which is likely

to be due to a poor evaluation of the number of rain
events (it was shown that SC was the best method at the
mesoscale when the number of rain events was directly
and precisely quantified). Following a procedure pre-
sented in Ali (2004), the SC method was thus adapted
to handle situations in which only daily data are avail-
able. The resulting values taken by the parameters C1,
C2, C3, and C4 of Eq. (22) are as follows. For a 1° � 1°
grid cell, C1 � 1.05, C2 � 0.25, C3 � 0.11, and C4 � 0.03,
which leads to

e�A, Ng, KT, PT� �
1.05

�Ng�KT

�PT

KT
	�0.2

� �0.25  0.11 log� A

Ng
	� 0.03.

�23a�

For a 2.5° � 2.5° grid cell, C1 � 1.05, C2 � 0.28, C3 �
0.17, and C4 � 0, which leads to

e�A, Ng, KT, PT� �
1.05

�Ng�KT

�PT

KT
	�0.2

� �0.28  0.17 log� A

Ng
	�.

�23b�

The distribution of errors obtained with these two error
functions is close to the corresponding reference RK
distributions of errors (Fig. 6). The error function [Eqs.
(23a) and (23b)] can thus be used as a realistic approxi-
mation to compute the uncertainty of areal rainfall es-
timation in this region. One factor that is not explicitly
accounted for in this formula is the spatial distribution
of the gauges inside the cell of interest. However, be-
cause the parameters C2 and C3 were optimized using
the current Sahelian network, their values implicitly in-
corporate the diversity of situations ranging from an
almost uniform distribution in some cells to much more
uneven distributions in other cells.

Typical error values for average months of Septem-
ber and August are given in Table 2. Figure 7 shows
how the estimation error for a cumulative rainfall of
210 mm (average August rainfall) decreases when the
number of stations increases, depending on the number
of events. For instance, on a 2.5° � 2.5° cell, a similar
error of about 15% is obtained for the four following
configurations: 5 events–7 stations, 10 events–5 sta-
tions, 15 events–4 stations, and 25 events–3 stations.
Another result worth noting in Table 2 stems from the
comparison of the errors computed for one station on a
1° � 1° cell with those computed for six stations on a
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2.5° � 2.5° cell (italicized numbers in Table 2). These
two configurations correspond to approximately the
same density of observations. However, the errors are
far smaller for six stations on a 2.5° � 2.5° cell than for
one station on a 1° � 1° cell; the spatial integration over

large areas significantly reduces the effect of the vari-
ability of the phenomenon.

Equations (23) take into account the time structure
of rainfall through the parameter KT and will thus in
general provide more accurate values of the estimation
errors than do methods that do not take into account
this time structure. A simplified climatological formu-
lation considers that all of the rain events bring the
same amount of point rainfall me, meaning that when
PT is known then KT � PT /me. Assuming this mean
event rain depth me to be 14 mm (as determined from
the E-N observations), then Eq. (23a) may be written as

e�A, Ng, KT, PT� �
1.05�14

�Ng�PT

�14�
�0.2

� �0.25  0.11 log� A

Ng
	� 0.03.

Replacing A by its value for a 1° � 1° cell (12 000 km2),
it then becomes

e�Ng, PT�1	 �
0.232

�Ng�PT

�1.28 � 0.11 log�Ng��  0.03.

�24a�

In a similar way, for a 2.5° � 2.5° cell (75 000 km2),

e�Ng, PT�2.5	 �
0.232

�Ng�PT

�2.19 � 0.17 log�Ng��.

�24b�

The errors computed using the climatological for-
mula in Eqs. (24) are reported in Fig. 7 (thick dashed
line) for the month of August (15 events bringing 14
mm each), showing that, in the case of rain events that
are stronger than average (meaning a smaller number
of events), using the climatological formula leads to a
significant underestimation of the estimation error. In
reality, the most common situation is when one or two
very strong events occur. This will not necessarily
change by much the total number of rain events, but it
will produce a similar effect to having a smaller number

FIG. 6. Comparison of the distribution of errors obtained with
the error function [Eqs. (23)] and with a full application of the
reference kriging algorithm (regression kriging). The errors are
computed over the 6720 1° � 1° and the 1152 2.5° � 2.5° cells
covered by the CILSS network. The two distributions are very
similar. However, for the 1° � 1° cells, the error function tends to
overestimate slightly the frequency of the larger errors (between
35 and 60 mm).

TABLE 2. Estimation errors (%) for average months of Aug
(210 mm in 15 events) and Sep (70 mm in 6 events)—climato-
logical values for the region of Niamey. See text for explanation of
italicized numbers.

1 station 3 stations 6 stations 10 stations

Aug 1° � 1° 23.5 13.7 10.1 8.2
2.5° � 2.5° 35 18.5 12.3 9.1

Sep 1° � 1° 36.6 20.6 14.6 11.5
2.5° � 2.5° 57.3 30.3 20.1 14.9
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of events because there will be a large error associated
with the strong events [this effect was studied in Lebel
and Amani (1999)].

In Fig. 8 the errors obtained for the three most rainy

months (July, August, September) with the climatologi-
cal formula are compared. If one considers the average
situation of three stations on a 1° � 1° cell and 15
stations on a 2.5° � 2.5° cell, then the climatological

FIG. 7. Estimation error (for an Aug mean rainfall of 210 mm) as a function of the number
of available stations; the errors are computed using the error functions in Eq. (23a) (1° � 1°)
and Eq. (23b) (2.5° � 2.5°) for different time distributions of the monthly rainfall (the time
distribution is represented by the number of events KT having produced the monthly total of
210 mm). The simplified formulas correspond to a mean event rainfall of 14 mm, or 15 events
for a monthly rainfall of 210 mm [Eqs. (24a) and (24b)].
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errors range from 14% to 20% on the 1° � 1° cell and
from 7% to 12% on the 2.5° � 2.5° cell. With a more
favorable—but much less representative of the average
situation—density of six stations on a 1° � 1° cell, the
climatological errors decrease to 10% in August and
14% in September. Note that, after correction for dif-
ferent densities and area of integration, these values
remain larger by about 15%–20% than those computed
in Lebel and Amani (1999) for an area of 10 000 km2.
For instance, Lebel and Amani (1999) gave an error of
9% for a four-station network on 10 000 km2, as com-
pared with 10.8% computed here with Eq. (24) for a
five-station network on a 1° � 1° cell (11 800 km2). This
is due to the second nested structure in the variogram
that was neglected in Lebel and Amani (1999).

6. Conclusions

The ultimate goal of the work presented here was to
develop and validate an error function to be used as a
tool in the evaluation of the performances of satellite
rainfall products over the Sahel. This development was
carried out in three steps, each of which produced its
own results.

The first step led to the identification of the average
structure of the Sahelian rain fields at five time steps
(rain event, daily, 10 day, monthly, and seasonal).
These fields are all characterized by a strong anisotropy
and, for time steps larger than daily, are spatially non-
stationary. It is therefore necessary to identify the cli-
matological drift before inferring the structure function

of the stationary residuals to the drift. This structure
function is made of two nested structures. The first cor-
responds to the convective scale. The decorrelation dis-
tance (0.2°) and anisotropy coefficient (0.5) are invari-
ant with the time step considered. The second structure
is related to the general organization of the mesoscale
convective systems and is characterized by a decorrela-
tion distance increasing from 4° for daily rainfall to 5°
for annual rainfall. The anisotropy (0.3) coefficient is
larger than the anisotropy coefficient of the first struc-
ture.

The second step used two networks representing dif-
ferent scales (E-N, 16 000 km2; CILSS, 3 � 106 km2) to
intercompare five kriging algorithms, whose optimality
depends on the relevance of the structure function
used. At the regional scale more than 600 rain gauges
were available to carry out a cross-validation study fo-
cusing on 3 months (July, August, September) and 8 yr.
All methods perform similarly in terms of estimation
bias with an average error of 54 mm at the monthly
scale, for instance. Regression kriging appears to be the
best method in the sense that its theoretical errors are
the closest to the observed errors, as computed from
the cross-validation procedure. The superiority of re-
gression kriging is attributed both to an accurate rep-
resentation of the drift and to the residuals being more
Gaussian in distribution than the raw values are.

The last step was the derivation of an error function
to be applied for computing relevant estimation errors
when rainfall is estimated over grid cells (in the previ-
ous step, the cross validation relates to the estimation of
point values). The analytical formulation allows the
computation of the error associated with rainfall esti-
mation over an area A with a number Ng of gauges over
this area. For the CILSS network—the best network
possibly accessible today in the region—80% of the
monthly estimation errors over the 280 1° � 1° cells of
the region range from 8% to 28% and 80% of the
monthly estimation errors over the 48 2.5° � 2.5° cells
of the region range from 5% to 22%. Typical errors for
the average situation of three stations on a 1° � 1° cell
and 15 stations on a 2.5° � 2.5° cell were also com-
puted. The climatological errors range from 14% for
the month of August to 20% for the month of Septem-
ber on the 1° � 1° cell and from 7% for the month of
August to 12% for the month of September on the 2.5°
� 2.5° cell. The theoretical errors given here, taking
into account the anisotropy and nested structure of the
Sahelian rain fields and extensively validated on obser-
vations using a cross-validation procedure, are deemed
to be more accurate than those previously computed by
Lebel and Amani (1999).

The logical follow up of this work—that is, using the

FIG. 8. Estimation errors for the three most rainy months (Jul,
Aug, Sep). The errors are computed for the average monthly
rainfall and number of events of the period 1990–2000 in the
region of Niamey (Jul: 155 mm in 11 major events; Aug: 210 mm
in 15 major events; Sep: 70 mm in 6 major events).
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error function for the intercomparison of satellite rain-
fall products—is the object of a companion paper (Ali
et al. 2005).
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APPENDIX A

On the Different Variogram Models Used for
Different Times Scales

All variograms apply to the residuals (	) from the
drift (m), apart from the event and daily variograms.
They all have the same form:

��h� � �0  �1�1 � exp��
h

S1
	�

 �2�1 � exp��
h

S2
	�. �A1�

The two main axes of anisotropy are oriented east–west
(EW) and south–north (SN). The anisotropy is ac-
counted for by computing a non-Euclidian distance, us-
ing the following formula:

h2 � �h2
EW  �hSN


 	2�1�2

, �A2�

where � is the anisotropy coefficient.
The parameters of the variograms inferred from the

E-N and CILSS datasets are reported in Table A1.

APPENDIX B

Some Nonstandard Notation Used in the Text

OK-NAN Ordinary kriging with a simple climatologi-
cal variogram (no anisotropy and no nest-
ing)

OK-NA Ordinary kriging with a nested and aniso-
tropic mean variogram denoted

NAV Nested and anisotropic variogram
Ksd The theoretical standard deviation of the

kriging estimation error
I Quadratic mean of the relative errors
SC “Scaling” kriging
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TABLE A1. Parameters of the variograms inferred from the E-N and CILSS datasets. Note that the first structure is very stable at all
time steps (S1 � 0.2 and �1 � 0.5 or 0.6).

Spatial scale Temporal scale

Exponential nested and anisotropic model parameters [�0: nugget, �1:
sill first structure, �2: sill second structure (mm2), S1: range first structure,

S2: range second structure (km), and �1 and �2: anisotropy coefficients]

Mesoscale (E-N) Event �0 � 0, �1 � 100, �2 � 105, S1 � 0.2, S2 � 2, �1 � 0.6, �2 � 0.5
10-day �0 � 20, �1 � 380, �2 � 500, S1 � 0.2, S2 � 3, �1 � 0.5, �2 � 0.6
Monthly �0 � 60, �1 � 1200, �2 � 900, S1 � 0.2, S2 � 3.5, �1 � 0.5, �2 � 0.52
Annual �0 � 300, �1 � 3000, �2 � 4000, S1 � 0.2, S2 � 3.5, �1 � 0.5, �2 � 0.52
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