Description and first results of an explicit electrical scheme in a 3D cloud resolving model
Résumé
The three-dimensional non-hydrostatic mesoscale model MésoNH of the French community offers the numerical environment to develop a cloud electrification scheme in a consistent way with the original mixed phase microphysical scheme. The charge separation mechanisms are entirely due to non-inductive processes and result from elastic ice–snow, ice–graupel and snow–graupel collisions. The electric charges carried by each of the five hydrometeor categories are transported along the airflow and are exchanged according to the various microphysical mass transfer rates but assuming a power law distribution of the individual charges as a function of the particle size. The electric field is diagnosed at each time step after integrating the electric potential induced by a net charge density in the Poisson equation. Finally, a lightning ash is triggered when the electric field locally steps over a given threshold. It propagates in two opposite directions until the magnitude of the electric field falls below a prescribed value. A fractal branching algorithm is then activated to extend lightning streamers away from the main channel and toward cloudy regions where substantial charge densities are present. Charges are neutralized along the tortuous lightning path with a simple procedure that preserves total charge conservation. The complete electrification scheme tested for an ideal case of vigorous supercellular storm shows an intense electrical activity all along its lifecycle. We show that the model is able to produce a direct tripolar structure of the charges as the result of a temperature charge reversal of − 10 °C and of the different sedimentation rates of the hydrometeors.