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ABSTRACT

Many performance indexes have been proposed to assess the quality of predicted rainfall fields. Each new
index is generally tested on schematic cases or on case studies. A quality index of predicted rainfall fields
is proposed based on the evolution versus scale of the correlation between observed and predicted areal
rainfalls, for different scales of integrating surfaces. The authors examine this quality index with both an
analytical and a numerical approach. The geostatistical structure of the rainfall field is assumed known. The
index generally shows a fast increase around a scale, which is called “critical scale.”

The effect on this index of a bad localization of the predicted field is to change the critical scale, and there
is a simple link between the shift and this critical scale. This link depends on the short-range structure of
the rainfall field for small shifts.

The effect of having a reference known only by point measures and interpolation is a decrease of the
index. An even repartition of the rain gauges improves the index. The critical scale for a perfectly localized
simulation corresponds to a surface containing one rain gauge. If the simulation is badly localized, the index
cannot see the bad localization if the shift is smaller than the distance between two rain gauges.

1. Introduction

This paper deals with the multiscale validation of
predicted regionalized variables, for example, the rain-
fall fields simulated by meteorological models. The
validation of simulated fields requires a reference, such
as the readings from a rain gauge network, and the
definition of a performance index, measuring the dis-
tance between the simulated and the reference fields.
Many methods for assessing the performance of models
have been proposed. Each index measures a part of the
difference between the simulated and the reference
fields. For example, the bias measures the tendency to
over- or underestimate. The correlation measures the
ability to reproduce the structure. The probability of
detection (Ducrocq et al. 2002) evaluates the ability of
the model to predict how often a threshold is reached.
The false-alarm ratio (Mason 1989) detects if the model

reaches a threshold too often. Some more refined am-
plitude-based performance indexes take into account
both the mean and the variability of the fields, such as
the universal image quality index (Wang and Bovik
2002). Others are particularly adapted to the specific
properties of the rainfall fields and are based on the
distance between observed and simulated patterns of
rainy zones, such as the Hausdorff distance (Hutten-
locher et al. 1999). Venugopal and Foufoula-Georgiou
(2005) propose the forecast quality index, which com-
bines amplitude-based and distance-based measures.
The present paper focuses on the structure of the field,
and therefore the correlation is used to compare the
reference and the simulation.

As shown by Zepeda-Arce et al. (2000), a multiscale
comparison is sometimes needed, as simulations may
be considered poor when compared to a reference at
the scale of the grid mesh or the point measurements,
but may be considered satisfactory when the compari-
son is made on the basis of averages over larger areas.
Such a distinction between scales is of importance, for
example, for hydrologic purposes, in relation to the ag-
gregating role of the watersheds on the rainfall field. In
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a previous paper, Yates et al. (2006) used a quality
index based on the evolution versus scale of the corre-
lation coefficient to evaluate two simulations of intense
precipitation events.

The indexes proposed in the literature are often
tested on simple schematic cases or on case studies. In
the present paper, an analytical approach (completed
with a numerical solving of the results) is proposed to
evaluate the impact of a geographical shift on the simu-
lated rain pattern and the impact of the quality of the
rain gauge network on this quality index. We present
the formulation of the index in section 2. The aim of
section 3 is to point out the signature of a bad geo-
graphical localization of the simulated field. This is a
usual problem observed with rain fields predicted by
meteorological models. Section 4 deals with the effects
of using a reference field kriged from point measure-
ments when rain gauge readings are used as reference.
Tustison et al. (2001) show that the representativeness
errors (i.e., the error in representing data at a scale
other than their own inherent scale) produced by using
point measurements to validate areal rainfalls, need to
be known at each scale. In this section we show first the
signature of the density of the rain gauge network on
the quality index. We finally illustrate the possibility of
detecting bad localizations with a kriged reference.

2. The quality index

We consider rain fields as realizations of a random
function that verify the intrinsic hypothesis (see ap-
pendix A). We define two rain fields, a reference field
z and a simulated field �, on a domain D. The surface
area of D is D, and its limits are 0 � x � �D and
0 � y � �D. The domain D can be paved with square-
shaped surfaces Sk (k ∈ {1, . . . , Ns}), identical to a
generic S. The domain is entirely covered by these sur-
faces; therefore, the surface area of each surface is s �
D/Ns. The areal rainfall over each of these surfaces, that
is, the mean of the rain field over these surfaces, is z
(Sk) for the reference and � (Sk) for the simulation. As
k varies in {1, . . . , Ns}, it generates two families of areal
rainfalls, zs and �s. The correlation between these two
families can be computed. It is a function of the scale s,
within the domain D,

Rz,�
2 �s |D� � � Cov�zs, �s |D �

��zs |D ����s |D ��2

. �1�

Here Cov stands for the covariance and �2 for the vari-
ance. This function R2

z,�(s |D) defines a scale-dependent
quality index of areal rainfall prediction.

3. Signature of a bad localization

a. Expression of the index as a function of the
variogram of the rain field

In this section, we deal with the case of a mere geo-
graphical shift between the simulated field and the ref-
erence field. The “simulated field” is the rain field ob-
tained by shifting the reference field. If the shift is de-
noted d, the simulated field is derived from the
reference field by �(x) � z(x � d), with z(x) and �(x)
the rain fields at the position x. Therefore, z and � share
some statistical properties, namely, both verify the in-
trinsic hypothesis and they have the same variogram
�z(h) � ��(h) � 1⁄2E{[z(x 	 h) � z(x)]2}. The variogram
allows computing the variances of the zs’s within D,
thanks to the basic formula (Matheron 1965, p. 135;
Chiles and Delfiner 1999, p. 131)

�2�zs |D � � �z�D, D � � �z�S, S�, �2�

with, for instance,

�z�D, D� �
1

D2 ��
�x,y�∈D 2

�z�y � x� dx dy.

The variance of the simulated areal rainfalls can be
written similarly, as z and � have the same variogram

�2��s |D� � �z�D, D � � �z�S, S�. �3�

The covariance of the observed and simulated areal
rainfalls can be written

Cov�zs, �s |D� � E
�zs � zD���s � �D��

� E
�zs � zD��zs,�d � zD,�d��,

with zs,�d the family of areal rainfall on surfaces shifted
by �d. This can be developed in terms of the variogram
(Matheron 1965, p. 133). The covariance is finally

Cov�zs, �s |D� � �z�D, D�d� � �z�S, S�d�. �4�

The insertion of Eqs. (2)–(4) in Eq. (1) yields

Rz,�
2 �s� � ��z�D, D�d� � �z�S, S�d�

�z�D, D� � �z�S, S�
�2

. �5�

b. Behavior of the index for various variograms of
the rain field

We compute numerically the index for different shift
values, following Eq. (5). For this purpose, we use three
isotropic variogram models (Fig. 1) (Chiles and Del-
finer 1999). Let r be |h |. The spherical variogram is given
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by Sph(r) � (3r/2a) � (r3/2a3) if r � a, else Sph(r) � 1,
the exponential variogram by Exp(r) � 1 � e�3(r/a), the
Gaussian variogram by Gau(r) � 1 � e�3(r2/a2) (a is the
practical range of the variogram). The computation is
made on an infinite domain. That means that the terms
�z(D, D�d) and �z(D, D) are equal to one (the asymp-
totic value of the variogram).

Figure 2 displays the index curves computed follow-
ing Eq. (5) for different geographical shifts. The plots
use adimensional shift values (based on the range a)
and scale values (based on a2). All the curves have the
same shape throughout the different shifts; there are
two sills for small and large scales, separated by a zone
with a fast increase of the correlation. This zone con-
tains an inflexion point of the curve at a scale, which we
call the “critical scale.”

Figure 3 displays some of the results of Fig. 2, but it
allows a comparison between the variogram types. For
large scales, the correlation hardly depends on the vari-
ogram model. But for small scales, the correlation is
better when the variogram is lower for short distances
(Gaussian model, then spherical model, then exponen-
tial model; see Fig. 1). This result is intuitive: the short-
range behavior of the variogram is sensitive only on
small scales.

The dependence of the critical scale on the shift is
shown in Fig. 4 (the critical scale is defined as the in-
flexion point, which is found by twice differentiating
the index with respect to its abscissa, i.e., the logarithm
of the scale). It must be noted that the spherical model
produces two inflexion points for small shifts (up to
more than a quarter of the range), which is difficult to

interpret, especially in terms of practical consequences
for the validation process. Then the smaller inflexion
point disappears. More important, the critical scale
strongly depends on the variogram type for shifts
smaller than about 0.8a (where a is the practical range
of the variogram). Therefore, if the shift is smaller than
0.8a, it can be determined through the index only if the
type of the variogram is known.

For shifts greater than 0.8a, the critical scale versus
shift log–log curve is well approximated by a straight
line (see Table 1). The slope is greater than 2, which
means that the side length of the critical scale must
grow faster than the shift. The slope is not very differ-
ent from one variogram type to another. Therefore,
the index can be used safely when the shift is greater
than 0.8a, without knowing about the type of the vari-
ogram.

4. Signature of the kriging errors

a. Expression of the index as a function of the
variogram of the rain field

In this section, we call z* the reference rain field
obtained by extracting nr point values of the observed
field and by block-kriging these point values (see ap-
pendix A for explanation).

The simulated field remains the original field shifted,
as in section 3. Equation (1) becomes

Rz*,�
2 �s |D� � � Cov�z*s , �s |D �

��z*s |D����s |D��2

. �6�

FIG. 1. Variograms.
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For clarity, the developments and final formula are
given in appendix C to appendix E.

b. Behavior of the index for regular rain gauge
networks, with a perfect simulation (no shift)

We compute the index numerically following Eq.
(E1). The results are presented in Fig. 5. We use only

the spherical variogram model because of the large
computation time. For the same reason, the square do-
main has a side length limited to eight ranges. We use
four regular rain gauge networks, with different dis-
tances (d) between the gauges.

Again, we observe two sills, a sill of low correlation
for small scales and a sill of high correlation for large

FIG. 2. Index for different shifts between the simulated field and the reference field for the
three variogram types: (top) spherical, (center) exponential, and (bottom) Gaussian. The
crosses indicate the critical scale.
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scales. Nevertheless, this is barely visible for the coars-
est rain gauge networks because there is no surface
large enough. These sills are separated by a fast in-
crease of the correlation. This increase occurs at scales
where the surfaces contain about one rain gauge (this is
clear at least for the two best networks). This can be
interpreted as follows: when the surfaces contain less
than one rain gauge, the variability of the reference
field is not caught by the rain gauge network, but, as the

simulation is perfect, it reproduces this variability; the
correlation is therefore weak. But if the interest is on
surfaces containing at least one rain gauge, the rain
gauge network is able to catch the variability, and a part
of the variability of the simulation is erased due to the
averaging on surfaces, and therefore the correlation is
better.

The curves present peaks for surfaces containing 1
[i.e., (s/a2) � 0.25 for d � (a/2), (s/a2) � 1 for d � a . . .],

FIG. 3. Index for three different shifts between the simulated field and the reference field for
the three variogram types. The ratio shift/range is 0.1 in the top diagram, 0.5 in the center
diagram, and 1.5 in the bottom diagram. The crosses indicate the critical scale.
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4, 16 . . . rain gauges. This might be due to a special
position of the integrating surfaces on the rain gauge
network. This effect can be partially studied with non-
regular networks.

c. Behavior of the index for nonregular rain gauge
networks, with a perfect simulation (no shift)

In this section, the density of rain gauges is the same
as the one with a distance between the gauges equal to
the range of the variogram in section 4b, but the gauges
are not localized on a regular grid. Figure 6 shows sche-
matically the design used for the networks. The net-
work presented in Fig. 6a is the regular one used pre-
viously. The network presented in Fig. 6f is obtained by
taking random coordinates for each rain gauge. The
other networks leave one-quarter (Fig. 6b), three-
quarters (Fig. 6e), or one-half, with different distribu-
tions (Figs. 6c and 6d) of the domain without any rain
gauge.

The index is shown in Fig. 7. An even distribution of
the rain gauges improves the correlation and maintains
this improvement until the largest scales; the result is
better when the network is spread over the whole do-

main (network a) rather than on three-quarters (net-
work b), even better than on a half (networks c and d),
and even better than on one-quarter (network e). This
effect seems to be less important than multiplying the
distance between the gauges by two, since the worse
network (e) gives better results than the coarser net-
work with a distance equal to two ranges in Fig. 5.

The networks c to e show a decrease of the correla-
tion for the largest scales (this same phenomenon is not
clear with the network b). For the small scales, the
effect of the empty zones of the domain is partly bal-
anced by the local higher resolution of the network.
The variability is in general not reproduced, but it is
better reproduced where there are rain gauges. As the
scale increases, the effect of the empty zones is not
balanced anymore; the local better description of the
variability is erased by the aggregation.

The networks c and d, which are spread over half of
the domain, have very similar results. There is a small
difference for the largest scales, where the network d
seems to be a little better. The network d’s being a little
better than c can be explained as follows: there is less
overlap between the influence zone of each rain gauge
in d than in c. There is, therefore, a larger zone of the
domain covered by the influence of the network d.

The peaks for 1, 4 . . . rain gauges per surface remain
for the networks using a grid (a to d at least). They
disappear for the “random” network (f). This confirms
that this is an effect of a special position of the inte-
grating surfaces on the rain gauge network. When dis-
cussing about the index, we can therefore make as if
these peaks did not exist. For this particular “random”

TABLE 1. Linear regression of the 14 last points (shift/range �

0.8) of the critical scale vs shift log–log curve.

Type of variogram Slope Correlation coefficient (�2)

Spherical 2.48 0.994
Exponential 2.70 0.989
Gaussian 2.46 0.989

FIG. 4. Evolution of the critical scale with the shift.
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network, the results are similar to the results with half
of the domain covered by the rain gauges, at least for
the smallest scales. This might be different for another
random network.

d. Behavior of the index with a shifted simulation
and a kriged reference

In this section, several shifts are applied to the field
to obtain the simulated fields. The reference field is
obtained by kriging. A regular network is used. The

distance between the gauges is equal to the range of the
variogram. As we discuss only the shape of the index
(not the critical scale), we also use some shifts that
might produce two inflexions points. The correlation
is computed numerically, and the results are shown in
Fig. 8.

As stated before, the peaks in Fig. 8 must not be
taken into account. The comparison between Figs. 8
and 2 shows an overall reduction of the correlation
when the reference is kriged (an infinite domain was
used to obtain the results shown in Fig. 2, but the re-

FIG. 5. Evolution of the index for four rain gauge densities.

FIG. 6. The six nonregular rain gauge networks.
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sults, not shown, are very similar with a domain with a
size that equals eight ranges). If the shift is smaller than
the distance between the rain gauges, the critical scale
corresponds to surfaces containing one gauge [i.e.,
(s/a2) � 1, since the distance between two gauges is the
range]. Therefore, the index is not sensitive to the shift
of the simulations, as the critical scale is the same as if
there were no shift. If the shift is larger than the dis-
tance between the rain gauges, the pattern of the curves
is quite the same as in Fig. 2. This shows that the quality
of the observing device (in that case, the spacing of

sampling) limits the use of this index, and therefore
limits the capacity to properly validate a simulated rain
field.

5. Conclusions

We propose a quality index based on the evolution
versus scale of the correlation coefficient between ref-
erence and simulated areal rainfall fields integrated on
surfaces of increasing size. The behavior of this scale-
dependent index is analyzed with a theoretical ap-

FIG. 8. Index for different shifts with a kriged reference. The crosses indicate the index
without shift.

FIG. 7. Evolution of the index for the six nonregular rain gauge networks.
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proach considering mere geographical shifts between
the tested field and the reference. The reference is con-
sidered as perfect or derived from a rain gauge network
by kriging. The more general shape taken by the index
is a flat “S” with a fast increase of the correlation for a
size of the averaging surfaces, which we call “critical
scale.” This critical scale depends both on the shift and
on the structure of the rainfall field if the shift is smaller
than 0.8a (where a is the practical range of the vari-
ogram). The critical scale depends only on the shift
when it is larger than 0.8a.

The use of a kriged field as a reference to evaluate a
badly located simulated field is informative only if the
bad localization exceeds the distance between the rain
gauges. The amplitude and the level of the “S” shape
vary with different configurations and densities of the
rain gauge network. The representativeness errors de-
crease when the integrating surfaces contain at least
one rain gauge. The shape of the index is less affected
by the configuration of the network than by the density
of the rain gauge network.

The proposed index is well suited to this type of
quasi-analytical approach. It provides equations that
can be solved numerically and allows testing simple er-
rors of a simulation model. The most severe limitation
concerns the types of error produced by a meteorologi-
cal model. The proposed approach assumes known er-
rors that can be mathematically formulated. Geo-
graphical shifts are obviously good candidates, being
mathematically tractable and meteorologically mean-
ingful. Other simple geometrical transformations like
rotations and scaling are less realistic. More complex
alterations of the rain patterns could be represented by
random error fields, provided that their properties can
be assessed realistically.

The present study explores a rather limited set of
possibilities in terms of rain gauge network geometry,
rainfall field structure, and simulation errors. Other
network geometries could be tested in a straightfor-
ward manner through the same approach. The pre-
sented results could be extended to anisotropic rain
fields through a mere geometric transformation of the
coordinates. More sophisticated descriptions of the rain
field structure, combining for instance intermittency
and intrinsic variability (Barancourt et al. 1992), would
be more difficult to implement, adding complexity to
the various covariance descriptions. Considering these
difficulties, the test of the index could be based on real
fields, as it is sometimes done in the literature. Perform-
ing tests on fields generated stochastically could be an-
other solution; moreover, it would allow a statistical
study, since such field simulators can generate a huge
number of fields.
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APPENDIX A

Kriging

Kriging is an interpolation system that sees the rain
field as a realization of a random function. If the intrin-
sic hypothesis (Chiles and Delfiner 1999) is verified
{i.e., the temporal mean does not depend on the loca-
tion and the variogram �(d) � (1⁄2)E{[z(x 	 d, k) � z(x,
k)]2}, E being the expectation and k the realization of
the random function, does not depend on the location
x}, kriging allows interpolating point measurements to
obtain means over surfaces. It is a linear interpolator,
which means that each rain depth can be written (the
realization, or time, being fixed)

z*�S� � 
i�1

nr

�i�S�zi,

with nr the number of rain gauges, zi the measurement
of the ith rain gauge located at xi, and �i (S) the weight
associated to the ith rain gauge to compute the rain
depth z*(S) over the surface S.

Kriging is an optimal, nonbiased estimator. These
two attributes yield the kriging system

�
�11 · · · �nr1 1

···
·
·
·

�ji
·
·
·

·
·
·

···
�1nr · · · �nr nr 1

1 · · · 1 0

��
�1�S�
·
·
·
�j�s�
·
·
·
�nr

�S�

� ��S�

� � �
��x1,S�
·
·
·
��xi,S�
·
·
·
��xnr

,S�

1

�,

that is, using a matrix notation

KL (S� � ��S�. �A1�

In the matrix K , �ji � �(xj � xi) (K is therefore sym-
metric). In the vector �(S), �(xi, S) � (1/s)�x∈S �(x � xi)
dx. Here �(S) can be shown to be nr

i�1
nr
j�1�i(S)�j(S)�ji �

nr
i�1�i(S)�(xi, S).

APPENDIX B

Some Useful Results

Here are some useful results used in the paper:
{Sk, k � 1 . . . Ns} being a perfect paving of D yields
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1
Ns


i�1

Ns

��i,Sk� �
1

Ns

i�1

Ns 1
s �x∈Sk

��x � xi� dx

�
1
D �

x∈D

��x � xi� dx � ��i, D�.

�B1�

As a consequence

1
Ns


i�1

Ns

��Sk� � ��D� �B2�

and, using Eq. (A1)

1
Ns


i�1

Ns

L�Sk� � K�1
1

Ns

i�1

Ns

��Sk� � L�D�. �B3�

This yields

��D� �
1

Ns

k�1

Ns

��Sk� �i�D� �
1

Ns

k�1

Ns

�i�Sk�,

and the kriging of D is the average of the krigings of
the Sk’s

z*�D� �
1

Ns

k�1

Ns

z*�Sk�.

APPENDIX C

Variance of the Kriged Areal Rainfalls

By definition, the variance of the kriged areal rainfall is

�2�z*s |D � � E� 1
Ns


k�1

Ns


z*�Sk� � z*�D ��2�
� E� 1

Ns

k�1

Ns �
i�1

nr

�i�Sk�zi � 
i�1

nr

�i�D �zi�2� .

�C1�

The expression can be developed, in terms of the vari-
ogram

�2�z*s |D � � �
1

Ns

k�1

Ns


i�1

nr


j�1

nr


�i�Sk� � �i�D ��
�j�Sk�

� �j�D���i,j.

Using Eq. (B3) in appendix B yields

�2�z*s |D � � 
i�1

nr


j�1

nr

�i�D��j�D��i, j

� 
i�1

nr


j�1

nr

�i, j

1
Ns


k�1

Ns

�i�Sk��j�Sk�.

Equation (A1) in appendix A and appendix B yields

�2�z*s |D� � ��D � �
1

Ns

k�1

Ns

��Sk� 	 
i�1

nr

�i�D ���i,D�

�
1

Ns

k�1

Ns


i�1

nr

�i�Sk���i,Sk�.

Using a matrix notation and Eq. (B3) in appendix B

�2�z*s |D � �
1

Ns

k�1

Ns

LT�Sk�
��D � � ��Sk��.

Finally, Eq. (A1) in appendix A yields

�2�z*s |D � �
1

Ns

k�1

Ns

�T�Sk�K�1
��D � � ��Sk��.

�C2�

APPENDIX D

Covariance between the Kriged and the Shifted
Areal Rainfalls

The covariance Cov(z*s , �s |D) can be written, since
the simulation is obtained by shifting the actual rain
field,

Cov�z*s ,�s |D� �
1

Ns

k�1

Ns

E�
z*�Sk� � z*�D��
z�Sk�d
�

� z�D�d���.

The estimated rain depth is a linear combination of the
measures; therefore,

Cov�z*s ,�s|D� � E� 1
Ns


k�1

Ns


i�1

nr


�i�Sk� � �i�D��zi

�1
s �x∈Sk�d

z�x� dx �
1
D �

x∈D�d

z�x� dx�� .

This can be developed in terms of the variogram

Cov�z*s , �s|D� �
1

Ns

k�1

Ns


i�1

nr


�i�Sk� � �i�D��
��i,D�d� � ��i,Sk�d
��

�
1

Ns

k�1

Ns


i�1

nr

�i�Sk�
��i,D�d� � ��i,Sk�d
�� � 

i�1

nr

�i�D����i,D�d� �
1

Ns

k�1

Ns

��i,Sk�d
��,
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where the second term is zero.
Equation (B1) in appendix B yields, using the matrix

notation,

Cov�z*s ,�s|D� �
1

Ns

k�1

Ns

LT�Sk�
��D�d� � ��Sk�d
��.

Finally, Eq. (A1) in appendix A yields

Cov�z*s ,�s|D� �
1

Ns

k�1

Ns

�T�Sk�K�1
��D�d� � ��Sk�d
��.

�D1�

APPENDIX E

Index for a Kriged Reference and a
Shifted Simulation

As shown in section 3a, �2(�s|D) can be written fol-
lowing Eq. (3). As shown in appendix C, �2(z*s |D)
can be written following Eq. (C2). As shown in appen-
dix D, Cov(z*s , �s|D) can be written following Eq. (D1).
The insertion of Eqs. (3), (C2), and (D1) in Eq. (6)
yields

Rz*
2

,��s� �

�
k�1

Ns

�T�Sk�K�1
��D�d� � ��Sk�d
���2

Ns 
�z�D,D� � �z�S,S��
k�1

Ns

�T�Sk�K�1
��D� � ��Sk��

. �E1�
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