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[1] The majority of inversion methods used for inferring past ground surface temperatures
(GST) from borehole temperature-depth profiles rely on the assumption that heat flow is in
the vertical direction only. This means that accounting for certain effects caused by the
local terrain of a borehole is not possible and consequently, many borehole profiles cannot
be used with confidence. Here, we describe a methodology to avoid this problem by
solving the heat conduction forward problem in 3-D using finite elements (FE). In order to
make the inversion approach computationally tractable, we reduce the dimensions of this
FE model using proper orthogonal decomposition. The inverse problem is cast in a
probabilistic Bayesian framework for which the posterior probability distribution of the
past GSTs is sampled using a reversible jump Markov chain Monte Carlo algorithm. This
allows the resolution of the GST history over time to be explored by varying the
parameterization of the GST model. Synthetic examples calculated with moderate
topographies demonstrate the efficacy of the Bayesian 3-D inversion method, and the
results are compared with those using a 1-D approach. For moderate topography, the latter
can lead to spurious GST reconstructions. A further synthetic example demonstrates that
the effect of incorrectly assuming lateral geological homogeneity is negligible. The
inversion method is also compared with a more standard inversion method. A significant
advantage of the Bayesian approach is that uncertainties in all of the model parameters can
be accounted for, leading to a more realistic interpretation of the range of GST histories
supported by the data. The methods presented here should allow a broader range of
geothermal data to be used for paleoclimate reconstruction purposes in the future.

Citation: Hopcroft, P. O., K. Gallagher, C. C. Pain, and F. Fang (2009), Three-dimensional simulation and inversion of borehole

temperatures for reconstructing past climate in complex settings, J. Geophys. Res., 114, F02019, doi:10.1029/2008JF001165.

1. Introduction

[2] Past ground surface temperatures (GST) can be esti-
mated by inverting borehole temperature-depth profiles
[e.g., Lachenbruch and Marshall, 1986; Huang et al.,
2000; Pollack and Huang, 2000; Harris and Chapman,
2001; Beltrami, 2002; Pollack and Smerdon, 2004]. Devia-
tions from the equilibrium thermal regime can, in the
absence of other perturbing factors, be related to past
changes in ground surface temperatures through the law
of heat conduction. As the thermal diffusivity of groundrock
is low and of the order 10�6m2s�1, important information
on the last 500–750 years can be derived from temperatures
measured in boreholes of around 500 m depth. However,
this low thermal diffusivity also means that the resolution

over time of the derived reconstructions is very low and
decreases rapidly with time before the present. Nonetheless,
the reconstructions from borehole temperatures provide
important constraints for past surface temperatures because
there is no empirical calibration required (in contrast to
other proxy data for example) and because the methods and
data used are independent of these proxy data reconstruction
methods.
[3] In order to find an appropriate GST history given a

measured present day borehole temperature depth profile,
an inverse problem is typically solved whereby the fit
between the simulated temperatures in the borehole to the
measured temperatures is minimized by changing the GST
history (which is the upper surface boundary condition of a
diffusion forward problem). Typically this is solved using
either a Bayesian least squares method [e.g., Shen and Beck,
1992] or a singular value decomposition of a matrix of
analytical solutions of the heat conduction equation [e.g.,
Mareschal and Beltrami, 1992]. The common assumptions
to both methods are (1) convective heat transport is negli-
gible, (2) heat flow at the borehole site is purely vertical and
(3) the rock surrounding the borehole is laterally homoge-
neous; i.e., it consists of a series of horizontal layers of
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possibly differing thermal properties. However, the impor-
tance of accounting for three-dimensional effects has been
highlighted in a number of geothermal studies [Šafanda,
1994; Shen et al., 1995; Kukkonen and Šafanda, 1996;
Kohl, 1999; Kohl et al., 2001; Bense and Beltrami, 2007].
Two factors that may be important in many situations are
the effects of subsurface thermal conductivity variations and
the subsurface thermal signatures of varying surface topog-
raphy [Lachenbruch, 1969; Blackwell et al., 1980; Šafanda,
1999]. In many real data case studies, these two factors have
been identified as potentially significant influences on
subsurface temperatures [e.g., Kukkonen and Šafanda,
1996; Kohl, 1999; Şerban et al., 2001]. For example, out
of 194 temperature profiles analyzed by Chouinard and
Mareschal [2007], 34 were rejected for climate reconstruc-
tion purposes on the grounds of topography alone.
[4] Surface topographic variations cause departures from

vertical heat flow through the slope of the ground surface
and the temperature distribution on this surface. This can
lead to curved isotherms and in extreme cases, nearly
horizontal heat flow. The variation of air temperature with
altitude leads to lateral heat flow across hills and around
valleys and differences in solar insolation amounts across
mountains and hills cause further asymmetries in under-
ground temperature profiles [Blackwell et al., 1980]. Kohl
[1999] compared a variety of methods for evaluating the
subsurface effects of topography and found that finite
element methods are best suited to simulate heat transfer
in 3-D. Kohl [1999] also demonstrated that 1-D inversions
for past GSTs of synthetic temperature-depth profiles show
pronounced cooling and reduced warming when the tem-
perature-depth profiles are located at topographic peaks, and
the opposite effects for profiles located in topographic
troughs. For a sinusoidal topography of amplitude 100 m
and wavelength of 20 km, the topographically induced
effect leads to an error in the GST reconstruction (compared
with a flat surface) of 1 K at 200 years before present for a
box car shaped GST model of +1 K from 200 to 100 years
before present. This effect is clearly of importance when
inferring GST histories for the last few hundred years in a
range of natural settings.
[5] To our knowledge only one study has focused on

incorporating these effects into an inverse scheme for
reconstructing past GSTs [Kohl and Gruber, 2003], and
other GST reconstruction methods rely on the assumption of
purely conductive 1-D vertical heat flow. As a result many
borehole data sets are excluded from paleoclimate investi-
gation, as the assumption of purely 1-D heat flow may lead
to spurious GST reconstructions.
[6] In this work we outline an inversion method for

dealing with these issues by developing a scheme which
utilizes a reduced-order transient 3-D finite element (FE)
heat transfer forward model. This numerical approach has
the advantage that it allows incorporation of complex
subsurface conductivity structures as well as arbitrary sur-
face topographies, by suitable refinement of the FE mesh.
Moreover, the discretization in space can be made coarser at
depth and more refined near the surface where the GST
effects are largest and where accurate representation of the
surface is required. Additionally known geological struc-
tures or faults can be dealt with by increasing the number of

nodes at appropriate locations such as known boundaries
between layers.
[7] This 3-D forward model has been integrated into a

Bayesian trans-dimensional inverse approach for inferring
GST histories introduced by Hopcroft et al. [2007]. This
statistical method utilizes reversible jump Markov chain
Monte Carlo (rj-MCMC) sampling [Green, 1995], so that
the number of variables in the model can be varied. Here the
number of points used to parameterize the GST history is
also a variable, so that the resolution of the GST history
over time can be inferred. This also avoids the need to apply
ad-hoc regularization, relying on the natural parsimony of
the Bayesian approach, whereby simpler models which can
adequately fit the data are automatically preferred over more
complex models. The Bayesian framework also allows for
uncertainty in all model parameters and so for example, the
thermal conductivity can be treated as unknown in all or
part of the volume (e.g., data are more likely to be available
at the borehole from cores). This has the advantage that the
specified range of plausible conductivity values will be
taken into account in the reconstruction of past GSTs rather
than relying on a single set of values.
[8] The rj-MCMC method requires many different sam-

ples of the GST history to be generated and the associated
forward model evaluated. In order to make this computa-
tionally tractable as an inversion approach, a reduced-order
model is derived from the full FE simulation using the
method of proper orthogonal decomposition (POD) (also
known as principal component analysis, Karhunen-Loéve
decomposition or empirical orthogonal functions). In this
method output from a full-scale FE model is subject to an
eigenvalue decomposition. The leading eigenvectors are
then used to construct a reduced model [Sirovich and Kirby,
1987; Sirovich, 1987a, 1987b] which preserves the domi-
nant behavior of the original output. Because the dominant
modes are generally contained in just a few of the eigen-
vectors, the reduced-order model is of much lower dimen-
sion compared to the original simulation. The degree to
which the first few eigenvalues dominates the complete set
of eigenvalues determines the accuracy of the reduced-order
model and the errors introduced by reducing the forward
model can be monitored (a comparison of full and reduced-
order model output is given in section 3).
[9] Detailed descriptions of both the full forward and the

reduced forward models are given in sections 2 and 3.
Subsequently we give examples of reduced models and
compare reduced-order calculations with their full model
counterparts. This is followed by an introduction to Bayes-
ian inference and the reversible jump Markov chain Monte
Carlo algorithm used to sample the posterior probability
distribution of the model parameters. In section 6, synthetic
examples are shown to demonstrate how the inverse method
performs on realistic data in 3-D settings. Comparisons
between GST reconstructions obtained with a standard 1-D
method are shown to illustrate the strength of the topo-
graphic influence on the GST reconstructions. Further
examples demonstrate the effects of incorrectly assuming
lateral geological homogeneity. Comparisons between
results obtained using the reversible jump Markov chain
Monte Carlo inversion and those obtained using a more
standard inversion method (nonlinear conjugate gradient)
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are also given. This paper concludes with suggestions for
future research in this field.

2. Finite Element Forward Model

[10] In this section we develop a reduced-order transient
3-D FE heat conduction model to simulate underground
temperatures. Linear basis functions are used in the space
domain and a q time stepping method is used. For q = 1/2
(as used in this work), the method is the familiar Crank-
Nicholson times stepping scheme. The boundary conditions
are applied at the upper and lower surfaces, with zero heat
flux at the side boundaries. For the upper surface a Robin
boundary condition is applied which accounts for heat
transfer between the air and the ground. The coupling
between the two is determined by a transfer coefficient, b.
In all simulations presented, b is kept constant and takes the
value of 5.0Wm�2K�1. The effect of varying this parameter
is not explored here, but see Stieglitz and Smerdon [2007]
for examples in 1-D settings.

2.1. Formulation

[11] In order estimate the climatic signal, the transient
signal must be separated from the steady state thermal
regime. This is achieved by solving Fourier’s law subject to
a heat flux and a long-term equilibrium surface temperature.
This latter parameter encompasses climatic fluctuations at the
site which occurred prior to the chosen reconstruction length.
For a steady state calculation, Fourier’s law in 3-D is

r � kcrT½ � ¼ 0; ð1Þ

where kc is the thermal conductivity tensor (allowing for
anisotropy) and T is temperature. The boundary conditions
are then defined by two constants: the surface equilibrium
temperature Teq and the basal heat flux qb,

q ¼ bðT � TeqÞjG1
ð2Þ

�kcrT ¼ q0jGb
ð3Þ

where Gb is the lower surface, G1 is the upper surface in
contact with the air and qb is the basal heat flux. In the FE
method, the temperature field is approximated by the nodal
temperature values:

Tðx; tnÞ ¼
XN
j¼1

NjðxÞTn
j ð4Þ

where Nj are a set of piecewise linear basis functions. The
FE approximation of equation (1) is

K T ¼ q; ð5Þ

where T and q are the vectors which contain the nodal
temperatures and heat flux values respectively.
[12] The matrix K has elements:

Kij ¼
Z
W
kcrNj � rNi dV ð6Þ

where the integration is over the volume of each element.
The steady state solution of equation (5), Tst is then used as
the initial condition for the transient finite element
simulation.

2.2. Transient Finite Element Formulation

[13] The diffusion equation is given by

r � ½kcrT � ¼ rc
@T

@t
ð7Þ

where r and c are the density and specific heat capacity
respectively. This equation is solved subject to two
boundary conditions:

q ¼ bðT � T1ðtÞÞjG1
; ð8Þ

�kcrT ¼ q0jGb
ð9Þ

and the initial conditions T = Tst, where T1(t) is the surface
air temperature (varying over time). Applying the FE
method to equation (7) subject to these two boundary
conditions leads to the time stepping FE model [e.g.,
Zienkiewicz and Morgan, 1983]:

M

4t
q Tmþ1 � Tm
� �

þ ð1� qÞ Tmþ1 � Tm
� �� �

þKð1� qÞTm

þ KqTmþ1 ¼ ð1� qÞfm þ qfmþ1 ð10Þ

where the superscript m refers to the time level, q (0  q 
1) controls the combination of forward and backward finite
differencing schemes used, K is given in equation (6) and
the entries of M are given by:

Mij ¼ rc
Z
W
NjNidV ð11Þ

where r and c are assumed constant within W. The forcing
vector f is given by:

f ¼
Z
G1

b ðT � T1ÞNi dG1 þ
Z
Gb

Niq̂bdGb ð12Þ

and for which the bT term is subsequently moved over to
the left hand side and incorporated into the matrix K. The
time stepping equation can be rearranged to give:

ATmþ1 þ BTm ¼ ð1� qÞfm þ qfmþ1 ð13Þ

where A and B are given by:

A ¼ M

4t
þ qK

� �
ð14Þ

B ¼ � M

4t
þ 1� qð ÞK

� �
ð15Þ
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Equations (5) and (13) then constitute the full 3-D FE
model.

2.3. Computational Issues

[14] The FE mesh is generated over a horizontal spatial
domain covering 1000 m � 1000 m and a vertical extent
that depends on the topography used. For the typical
scenario the model depth is 500 m with 90 divisions in
the vertical direction and 12 each horizontal direction. The
total number of FE nodes produced by the mesh generation
software is around 20,000. The time step is 1 year and in the
synthetic examples there are 700 steps. The matrix equa-
tions in the full FE model are solved by the method of
conjugate gradients whereas in the reduced model a partial
pivoting Gaussian elimination scheme is used because of
the smaller size of the matrices in the reduced-order model.

2.4. Validation of the Forward Model

[15] Solutions from the transient 3-D FE model have been
compared with those obtained analytically for a model with
a flat surface. The analytical solution for a step increase in
surface temperature applied to a semi-infinite half-space is
given by Carslaw and Jaeger [1959]. For a 1�C step
increase applied 150 years before present and with a time
step of 1 year and a spatial discretization of 50 m in the x-y
plane and 10 m in the z (vertical) direction the maximum
difference between the FE and analytical solutions was
found to be 3.7 � 10�3 K.

3. Model Reduction Using Proper Orthogonal
Decomposition

3.1. Proper Orthogonal Decomposition

[16] Proper orthogonal decomposition (POD) was inde-
pendently discovered by Kosambi [1943], Loéve [1945],
and Karhunen [1946]. It provides a method for describing
large data sets using a small number of dominant eigenvec-
tors or principal components. The method has the advantage
that it is completely data-dependent. An important innova-
tion in use of POD for large problems in fluid dynamics
involves using a series of snapshots, which consist of a set
of solutions of the governing equation(s) evaluated at
different time instants and determined from the evolution
in time of the full model [Sirovich and Kirby, 1987;
Sirovich, 1987a, 1987b]. The snapshots are used to compute
the POD basis vectors to yield an optimal representation of
the data (here the output solutions of the full model) so that
for any given basis vector size, the two norm of the error
between the original and reconstructed snapshot is mini-
mized. Output data from a particular computer model are
used to derive a reduced description of that simulation. The
solutions obtained in this way can be shown to be optimal
representations in a least squares sense and the accuracy can
be controlled by calculating the energy percentage
contained in the reduced representation. A mathematical
analysis of POD is given by Rathinam and Petzold [2003]
and an application of POD model reduction to ocean
modeling can be found in the work of Fang et al. [2009].
[17] In general the snapshot data Si 8i 2 {1,. . .m} con-

sisting of solutions to the full model, is an n dimensional
vector which has been sampled m times, where n is the size

of the state space, for example the number of grid points in a
numerical model. The mean vector is found from this data
set:

�Sj ¼
1

m

Xm
i¼1

Si;j; 8j 2 f1; . . . ng ð16Þ

and S is then modified to give a zero mean set of numbers.
Thus a new ensemble is formed by subtracting this mean
from the values in each vector:

Yij ¼ Sij � �Sj; 8j 2 f1; . . . ng ð17Þ

An optimal (in a least squares sense) representation Fij, of
this data set can be found using the following relation:

Fj ¼
Xm
i¼1

aijYij;8j 2 f1; . . . ng ð18Þ

where aij are the POD coefficients and correspond to the
unknown values which are solved for by the forward model.
The basis functions, Fj must maximize

1

m

Xm
i¼1

Xm
j¼1

ðYijFjÞ2; ð19Þ

subject to Xn
j¼1

ðFjÞ2 ¼ 1: ð20Þ

Singular value decomposition is used to find the optimal
basis functions Fj, by decomposing the matrix Yij,

Yij ¼ UDVT ; ð21Þ

where U are the singular vectors and the diagonal entries of
D are the singular values. Singular value decomposition is
equivalent to the eigenvalue decomposition in this case. The
POD basis functions are then given by the singular vectors
corresponding to the k largest singular values of the
decomposition:

F ¼ YijUi=
ffiffiffiffi
li

p
; 8i 2 f1; . . . kg ð22Þ

Here k must be large enough that the majority of the
information in the original set is captured in the model
reduction procedure. The ratio of the sums of the first k
singular vectors to the sum of all of the singular values must
be kept close to 1, i.e.,

Pk
i¼1 DiiPn
i¼1 Dii

� g: ð23Þ

where the value of g is usually chosen to be 0.99 or larger
and so k an be estimated accordingly. The ratio in equation
(23) is referred to as the energy content.
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3.2. Model Reduction

[18] Consider the numerical model in section 2, the
relation is of the form:

ATmþ1 þ BTm ¼ fm ð24Þ

where Tm are the nodal temperature values at time step m.
This model can be reduced using the POD basis function Fj

to give

Âa0 þ B̂a ¼ f̂ ð25Þ

where

Â ¼ FTAF; ð26Þ

B̂ ¼ FTBF; ð27Þ

f̂ ¼ FT f ; ð28Þ

and a are the POD coefficients. Applying this to the 3-D FE
heat transfer model, Â, B̂ 2 R

k�k and a 2 R
k. The solution

of the reduced-order model, a can then converted back to
the FE nodal temperatures using the relation

T ¼ Fa: ð29Þ

[19] Since k � n (the number of nodes in the FE grid),
the POD model has a much smaller dimension than the FE
model. Both equations (24) and (25) are of the same form so
that the number of time steps in the reduced model is the
same as in the full simulation. In the following section
examples of model reduction are given for 1-D and 3-D FE
simulations where k is of the order 8. In contrast the number
of nodes in the original model n, is typically 10,000–
20,000.

3.3. Reduction of the 3-D FE Model

[20] In this example the reduced-order and FE steady
state and transient models are compared for 3-D implemen-
tations. In both cases, the full-scale 3-D FE model is
reduced using POD with the basis vectors found using
singular value decomposition method [Lehoucq et al.,
1998]. The domain is 1000 � 1000 m with a laterally
symmetric surface topography, which ranges from 600 m to
525 m, with a central 200 m wide plateau at 550 m (see
Figure 1). The full model has 18,949 nodes and the transient
model is run for 330 time steps of 6 years, the reduced
model has the same number of time steps, but is constructed
using just 8 of the leading singular vectors. The applied
boundary condition is a linear increase in surface tempera-
ture of 1 K over the model duration of 1980 years.
[21] For the steady state formulation, a series of full FE

models are evaluated over a range of the two controlling
model parameters, basal heat flux (q0) and equilibrium
surface temperature (Teq). The ranges used are from 55 to
65 mWm�2 in 35 increments and 8.5 to 9.5�C in 10
increments, respectively. The steady state snapshot data

are therefore generated by 350 steady state FE model
forward evaluations. The transient snapshot data are col-
lected at every time step of a single evaluation of the
transient FE model with an applied oscillatory surface
temperature boundary condition of time period 700 years
and amplitude of ±0.25�C.
[22] The difference in �C, between the full and reduced

model outputs for the steady state calculations and for
values chosen to lie outside of the range used in the
snapshot data (50 mWm�2 and 10.0�C respectively) is
small. The mean and maximum absolute errors for this
simulation are 9.90 � 10�10 K and 9.02 � 10�9 K
respectively. This magnitude of error is insignificant for
geothermal forward modeling. Clearly, the POD reduced-
order steady state model is an extremely good approxima-
tion of the full FE steady state model.
[23] The POD-FE discrepancy for the transient compo-

nent is calculated for the case of 330 snapshots. In the
transient case the maximum absolute error is found to be
2.05 � 10�3 K while the average absolute error is 9.40 �
10�4 K. This magnitude of the error will vary with the GST
history applied to the reduced model. The size of the error is
relatively insensitive when the temperatures are kept ap-
proximately within around two or three times the range of
the GST history used in the training set, but the error values
quoted here can be up to double for larger applied GST
values. In both cases, the maximum magnitude of the POD-
FE error is either smaller than or comparable to the error
introduced by the FE discretization (compared to analytical
solutions), and so we are confident that the POD model is
suitable for our purposes.
[24] If the number of singular vectors in the transient

POD model is reduced from 8 to 4, the mean absolute error
is slightly larger, 2.82 � 10�3 K. Approximating the
complete eigenvalues series by the largest 15 values only,
then equation (23) can be used to calculated the energy
content of these model reductions. In this case the POD
model calculated using the 4 principal eigenvectors has a
value of 99.13%, whereas the model with 8 principal
eigenvectors leads to a value of 99.98%. These energy
values are unchanged if the complete eigenvalue set is
approximated by the 20 largest eigenvalues rather than
just 15.
[25] From the theory, the choice of the number of snap-

shots dictates how well the reduced-order model reproduces
the behavior of the full scale FE model. The choice of POD
rank will only adversely affect any inverse solutions for
GST if it is chosen to be too low, in which case the accuracy
of the POD reduced forward model will be poor and large
systematic errors in the calculated temperature profile will
become evident. In the above case the errors from using the
POD approximation have been found to be of the same
order of magnitude as introduced by the FE discretization
itself. Therefore we can be confident that this choice of
POD rank is sufficient for the present work.
[26] When generating suitable snapshot data for a reduced

model run, the optimal boundary condition to apply will be
the same as the boundary condition applied in the reduced
model. However, if the boundary conditions in the reduced
model vary (as required in the MCMC inverse method),
then this is not possible. The results here show that for
differing boundary conditions used for the snapshot data
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(oscillatory with time in the transient model) and the
reduced-order models (linear with time in the transient test),
the accuracy of the reduced-order model is sufficient. This
implies that for repeated reduced model evaluations each
requiring different boundary conditions (e.g., as required for
MCMC inversions) only one full simulation would be
needed to generate suitable snapshot data. This can be
attributed to the linear nature of the temperature response
to heat conduction.
[27] The transient FE forward model takes approximately

4 min to evaluate on a Linux 3.6 GHz Intel Xeon worksta-
tion, whereas the POD transient model takes 11 s on the
same machine. Evaluating 50,000 forward models would
therefore take around 5 months using the full forward model
compared to just 6 days using the POD reduced model. In
this case, the POD model therefore leads to significant
reduction in the required computation time.

4. Inversion, Bayesian Inference, and Markov
Chain Monte Carlo

[28] In formulating the inverse problem, the model
parameters we need to consider are the temperature history,
the equilibrium thermal conditions and the subsurface
geological structure (thermal conductivity, specific heat
capacity and density). We will treat the geological structure
and underground temperatures (down the boreholes) as
known to within a given uncertainty level. We then wish
to make inference concerning the remaining four quantities.
This is a similar setup as in the work of Hopcroft et al.
[2007] except that heat flow is not now confined to the
vertical direction. The model parameter vector is then
written as m:

m 2 ft;T; q0;Teqg ð30Þ

where t, T are the time and temperature vectors, given as ti,
Ti, 8i 2{1,. . .,L}, so that there are L nodes in the
temperature history, which are used to parameterize the

ground surface temperature history with linear interpolation,
and q0 and Teq are the equilibrium heat flux density and
long-term equilibrium surface temperature respectively.
[29] Given these model parameters, the inverse problem

is cast in a probabilistic Bayesian framework [e.g.,
Mosegaard and Tarantola, 1995; Tarantola, 2005]. This
has the advantage that it allows the uncertainty on all model
parameters to be assessed. The probability distribution of
the model parameter vectors conditioned on the data and
prior information is then given by Bayes’ law and is termed
the posterior [e.g., Bernardo and Smith, 1994; Sivia and
Skilling, 2006]:

p m j d; }ð Þ ¼ pðm j }Þ � pðd j m; }Þ
pðd j }Þ ð31Þ

where p is probability, m and d are the model and data
vectors, and } is the theory or hypothesis underlying the
model formulation. In words Bayes’ law can be expressed
as

posterior ¼ prior � likelihood

evidence
ð32Þ

where the terms are in the same order as equation (31), and
we return to the specification of these distributions later.
[30] The overall goal of Bayesian inference is to deter-

mine the posterior distribution. To do this, we use Markov
chain Monte Carlo methods [e.g., Gilks et al., 1996], which
allow us to sample the posterior up to a constant of
proportionality. This avoids the need to estimate the evi-
dence (or marginal likelihood) term (see equation (32)). In
this work we employ reversible jump Markov chain Monte
Carlo (rj-MCMC) [Green, 1995] as it allows inference on
both model parameter values and model dimensionality.
Like the more well known Metropolis-Hastings, rj-MCMC
constitutes a two stage process of proposing a model
probabilistically and then accepting or rejecting this pro-
posed model. The proposal is made by drawing from a

Figure 1. (a) The model setup used in the 3-D simulations. The parameters kk, k?, c, and r are the
thermal conductivity (parallel and perpendicular to the formation, respectively), heat capacity, and density,
respectively, and these may vary over the volume. The additional parameters are the basal heat flux, q0,
applied to the base of the model, and the surface temperatures (Teq in the steady state and T1 in the
transient model) applied to the top of the model. (b) The surface topography profile used in the synthetic
examples with nonflat upper boundary, where zt is the height at the highest region of the domain, zm is the
height of the plateau level, and zb is the height of lowest region.
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probability distribution q(m0jm) to give a proposed model
m’ which is conditional only on the current model m. The
new model is then accepted with a probability min[1, a(m0,
m)]. If the model is accepted, the current model m is
replaced by m0 which becomes the current model for the
next iteration. If it is not accepted, the current model m is
retained for another iteration. This process is then iterated
many times so that, after a period of initial exploration of
the model space (referred to as the burn-in), a series of
samples of the model parameters is collected.
[31] In order to ensure convergence of the sampling

distribution toward the true distribution, each model pro-
posal needs to be accounted for so that detailed balance is
obeyed at each iteration [see Green, 1995, 2003]. This is
encapsulated by the exact form of the acceptance probabil-
ity, a, which now includes extra terms to account for
possible changes in model dimension.
[32] The 5 proposal types which allow exploration of the

model space are as follows:
[33] (1) Create a new GST point (birth). (2) Delete one

GST point (death). (3) Perturb one temperature value, Ti. (4)
Perturb one time value, ti. (5) Perturb q0 and Teq.
[34] At each iteration of the algorithm one proposal type

is randomly selected from the above 5. The derivation of the
correct values for the acceptance terms for each of these
proposal types for this problem is given by Hopcroft et al.
[2007].
[35] Using the reversible jump form of MCMC allows the

construction and comparison of models of differing dimen-
sionality [e.g., Malinverno, 2002]. A key feature of Bayes-
ian inference is that it is naturally parsimonious and so
simpler models are preferentially sampled in the above
methodology, provided that they can adequately explain
or fit the data. This means that explicit smoothness con-
straints on the GST are not required in the prior information.
This has the advantage that the amplitude of the recon-
structed GST histories can be inferred in a more objective
manner, as they should not be artificially smoothed beyond
what is implied directly by the data (and the prior).

[36] Assuming the measurement errors on the borehole
temperature data are normally distributed and independent
between different depths, the likelihood function can be
taken as a multivariate Gaussian. That is

pðd j m; }; kpÞ ¼
1

ð2pÞnddetCd½ �1=2
exp

"
� 1

2

� dsim � dobsð ÞT � C�1
d dsim � dobsð Þ

#
; ð33Þ

where dsim and dobs are the simulated and observed
temperatures in the borehole respectively, there are nd data
points and Cd is the data covariance matrix which is taken
as diagonal with entries corresponding to a standard
deviation on the data, assuming Gaussian errors, for which
a value of 0.1 K has been used for all but the first synthetic
examples presented herein.

5. Boundary Conditions

[37] The atmospheric lapse rate, which quantifies the
change in air temperature with altitude above sea level,
varies from 5 to 10 K km�1 depending on the air moisture
content [e.g., Gill, 1982, Appendix 4]. The standard atmo-
spheric environmental lapse rate value is 6.5 K km�1, so that
for a 100 m rise in altitude, the temperature of the air will on
average be reduced by 0.65 K. This is significant in terms of
climatological investigations because the change in surface
temperature over 100 m topographic change is comparable
to the strength of atmospheric warming over the twentieth
century for example. The effect of a lapse rate is illustrated in
Figures 2–4. In the model, the surface topography varies
from 500 m to 700 m over a distance of 1000 m with a
central 200 m wide plateau at 600 m (Figure 1b). Figure 2
shows the steady state subsurface temperature cross section
for the case where by lapse rate is used. Figures 3 and 4 show
the transient solutions for the same 3-D volume which

Figure 2. A cross section through the 3-D model with a
lapse rate effect of 5 K km�1 showing the steady state
subsurface isotherms for zero basal heat flow. The same plot
with the lapse rate set to zero shows the cross section at a
uniform temperature of 9.0�C, the value of Teq.

Figure 3. As for Figure 2 but with the lapse rate set to zero
and showing the transient response to the last 700 years of
the temperature reconstruction from Moberg et al. [2005].
Notice that the isotherms are close to parallel to the ground
surface.
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has now been forced with a ground temperature history
based on the last 700 years from Moberg et al. [2005]. In
the first case (Figure 3) the lapse rate effect is ignored and
the isotherms lie close to parallel to the ground surface.
In the more realistic example whereby the surface temper-
ature boundary condition is modified by the lapse rate (4),
the subsurface isotherms are considerably different and
demonstrate lateral heat flow induced by elevation differ-
ences. The perturbations due to topography, shown in
Figure 5 relative to the 1-D solution, are of a similar
magnitude and at similar depths as the perturbations caused
by climatic variations [Lewis and Wang, 1992]. Therefore a
3-D model is required to interpret underground temper-
atures located in hilly terrains. In section 6.1 the effect on
the GST reconstructions is quantified by comparing inverse
results from 1-D and 3-D models.
[38] In reality the orientation of the ground surface

relative to the predominant orientation of incoming solar
radiation will also have an effect on underground temper-
atures [Blackwell et al., 1980]. Any surface which is
predominantly Sun facing will, on average, absorb a larger
amount of solar energy, causing the ground to be warmer
than on surfaces which are exposed to more solar radiation.
The difference between surface ground temperatures on
north and south facing slopes can be up to 3�C, causing
heat flow which can be almost horizontal below extreme
topography. In the works of Blackwell et al. [1980] and
Safanda [1999] the relationship between total solar irradi-
ation and ground surface temperatures is found to be
approximately linear, giving a gradient of the expected
average ground surface temperature change with respect
to the change in total annual solar insolation of 4 � 10�3 K/
(kWhm�2 a�1) whereas Safanda [1994] and Gruber et al.
[2004] assume a constant offset in surface temperature
between north and south facing slopes for extreme gra-
dients. However, more realistic methods have also been
utilized for predicting ground temperatures from meteoro-
logical data or regional climate model simulations. For
example, Noetzli et al. [2007] use output data from a
regional climate model to drive an energy balance model
coupled with a 3-D FE model in order to simulate under-
ground temperatures below mountainous topographies.

[39] In practice, however, the quantities required by an
energy balance model may not be available at suitable
locations for a particular borehole. Consequently, it is clear
that a simpler method will find wider applicability in
practical cases. In this work we follow the approach of
Kohl [1999] and ignore the effects of irradiation differences.
We modify the ground surface temperatures only as a
function of altitude using a fixed atmospheric lapse rate.
This is a reasonable assumption for sites where topographic
variations are small (i.e., nonmountainous). A surface tem-
perature lapse rate of 5 K km�1 [Kohl, 1999] is used which is
close to values calculated by extrapolating borehole temper-
atures to the surface by Kubı́k [1990] (4.7 K km�1) and
Šafanda [1999] (4.0 K km�1).
[40] In the majority of borehole climate inversionmethods,

the subsurface thermal conductivity is assumed to be
laterally homogeneous, and in some studies is assumed to
be constant with depth. In many real data cases these
assumptions are likely to be inappropriate and more realistic
models should be used. One issue in geothermics is the
possible influence of conductivity anisotropy whereby the
thermal conductivity varies as a function of orientation. This
has been encountered in real data cases [e.g., Kukkonen and
Šafanda, 1996; Clauser et al., 1997] and may impair the
recovery of past climate changes from borehole data. Here
the 3-D FE model is used to assess the magnitude of the
effect for typical conductivity variations.
[41] Consider a dipping geological section with aniso-

tropic conductivity so that conductivity parallel to the
formation, kk is not equal to the conductivity perpendicular

Figure 5. Four reduced temperature depth profiles x =
100, 500, 700, and 900 m in the 3-D volume calculated with
3-D forward model and including the lapse rate effect. The
basal heat flow was set to zero. The plots have been shifted
to have the same temperature at z = 0 m (the base of the
model) for ease of comparison. The applied GST history are
the last 700 years of the multiproxy reconstruction of
Moberg et al. [2005]. For comparison a similar calculation
using a 1-D forward model is shown.

Figure 4. As for Figure 3 but with the lapse rate set to 5 K
km�1. Notice now that the isotherms are curved and show
induced lateral heat flow.
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to the formation k?. A typical ratio for these two parameters
is 1.5 with the parallel conductivity usually taking the
higher value [Kukkonen and Šafanda, 1996]. The con-
ductivities for the Cartesian coordinates can be calculated
using

Kcart ¼ RT

kk 0 0

0 k? 0

0 0 kk

0
@

1
AR ð34Þ

for which R is a rotation matrix defining the rigid body
rotation of the principal axes of the material to the Cartesian
coordinate axes. For the case described here the Cartesian
values are given by

kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2?sin

28þ k2kcos
28

q
; ð35Þ

ky ¼ kk; ð36Þ

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? cos2 8þ k2k sin

2 8
q

: ð37Þ

[42] In order to test the effect of this type of anisotropy on
the subsurface temperature distribution, a 3-D transient FE
model was constructed with a dipping geological structure.
In the first case kk was set to 2.25 W(mK)�1 and k? to
1.5 W(mK)�1, i.e., an anisotropy factor (

kk
k?
) of 1.5. The dip

angle was set to 8 = 30�. In the second case, the
conductivity is isotropic so that kx = ky = kz with kz given
by equation (37). The difference in �C between the two
cases is shown in Figure 6. The maximum absolute
difference between the two simulations is 4.7 � 10�2�C.
Reducing the anisotropy factor to 1.1 leads to an
approximate halving of this maximum difference. These
difference are comparable with the typical error values of

borehole temperature measurements. The effect of aniso-
tropic conductivity (where it occurs) can therefore have an
affect on paleoclimate inversions but the magnitude is
unlikely to be very significant.

6. Synthetic Inversion Examples

[43] For the first inversion example, data published by
Beck et al. [1992] are used in order to provide a comparison
of the inverse technique used here [Hopcroft et al., 2007]
with the 5 techniques (which employ 1-D models) described
by Beck et al. [1992]. In order to achieve this, the model is
setup with a cuboid 3-D domain with a horizontal upper
surface on an areal domain of dimensions 500 m � 500 m
and of depth 600 m. The chosen data set labeled DS2
includes temperature, thermal conductivity, density and
specific heat capacity and radiogenic heat production values
with depth to 600 m. The data have been degraded with
random Gaussian noise by Beck et al. [1992]. Here we use
the noisy values for temperature (degraded with standard
deviation of 0.02 K) and thermal conductivity (degraded
with standard deviation of 0.25 Wm�1 K�1) but otherwise
use the true values, the noise on the density and specific
heat capacity have therefore been ignored. We also correct
the temperature values for the radiogenic heat production
using the steady state formula Tr = Az2/kc, for which A is the
volumetric heat production (1 � 10�6 Jm�3 is used by Beck
et al. [1992]). In the rj-MCMC algorithm the model
parameters were initialized with a flat GST history with
2 points at 1000 years and 0 years, and with a basal heat
flow of 0.45Wm�2 and Teq of 7.0�C. The temperature data
uncertainty standard deviation was set to 0.02 K, the same
value as the standard deviation of the synthetic noise added
to the temperature data.
[44] Figure 7 shows the posterior distribution of the GST

after 50,000 iterations of the rj-MCMC algorithm alongside
the true model (shifted to have the same Teq as inferred by
the algorithm). The results from the rj-MCMC algorithm
indicate that the cool period between 1500 AD and
1700 AD cannot be fully resolved, and that the expected
value (from the posterior mean) for this time period is

Figure 6. The contours of difference in �C between the
anisotropic and isotropic cases for a transient FE simulation.
The basal heat flux is set to zero, and the equilibrium
surface temperature is 9.0�C. The transient boundary
condition is the last 700 years of the proxy reconstruction
of Moberg et al. [2005].

Figure 7. Posterior probability density function on the
past GST values as sampled by the rj-MCMC algorithm for
the data set DS2 published in the work of Beck et al. [1992],
and as described in the text.
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�1.0�C, just over half the value in the true model
(�1.75�C). This underestimation is most likely to be due
to the short duration of this temperature excursion in
relation to its age (200 years at 300–500 years ago) and
the effect of the noise on all of the model parameters.
Additionally, the rj-MCMC inversion appears to underes-
timate the long-term equilibrium temperature (Teq), this
may be due to length of the temperature history which
means that Teq is unconstrained by the data, since a range
of values can be compensated for by a different inferred
GST history. More informative prior information would
likely counter this effect.
[45] The underestimation of the GST signal in this case

demonstrates a useful feature relating to the parsimony of
the Bayesian approach whereby the posterior distribution
will tend toward the prior where the data provide a poor
constraint otherwise. In this case the prior indicates no
change in GST over time and so the posterior underesti-

mates the true model somewhat. Direct comparisons of the
prior and posterior can be useful in determining the relative
influence of the prior and data on the posterior [e.g.,
Hopcroft et al., 2007]. The 95% credible limits indicate
that a cooling to �1.2�C at around 1600 AD should not be
ruled out by the data. This shows that the overall posterior
distribution contains useful information which may not be
conveyed by a single solution.
[46] The equivalent synthetic examples shown in Figure 4

of Beck et al. [1992] demonstrate that the amplitude of the
cooling at around 1500 AD is unlikely to be well resolved by
borehole inversion. Four of the examples in their Figure 4
lead to a similar magnitude of inferred cooling as does the
rj-MCMC method here. Additionally, three of the recon-
structions show large amplitude variations, of magnitude
1�C, in the recent past at around 1800–1900 AD, which are
not consistent with the data. These large-amplitude varia-
tions are not inferred by the rj-MCMC method. Addition-

Figure 8. Inversions of the temperature profiles shown in Figure 5. (a) Inversion of x = 100 m profile
using a 1-D model, (b) inversion of the x = 900 m profile using a 1-D model, and (c) inversion of the x =
900 m profile using a 3-D forward model. In this latter case the posterior distribution corresponds well
with the true model, except for the short excursion at 550 years which is most likely unresolvable due to
exponential decay of the surface signal with time and surface perturbation frequency. In Figures 8a and
8b the posterior distributions do not capture the true variability in the synthetic data, and this can be
attributed directly to the influence of the surface topography which is not accounted for in the 1-D model.
The curves are labeled as in Figure 7.
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ally, because the rj-MCMC is able to deal with the inversion
as a nonlinear problem, the inferred credible limits may well
be asymmetric, leading to further information about the true
GST.

6.1. Idealized Examples 1-D/3-D

[47] In the subsequent synthetic examples a 3-D geometry
is used which is designed to be representative of typical
moderate topographies as in the work of Kohl [1999]. The
model has a horizontal extent of 1000 � 1000 m and varies
from 700 m to 500 m in the vertical direction. This setup is
shown in Figure 1b where zb = 500 m, zm = 600 m and zt =
700 m. In the vertical direction the average nodal spacing is
6.67 m and in the horizontal direction the nodal spacing is
40 m in the central 200 m and 80 m outside of this region.
The lapse rate is set to 5 K km�1. A forward model is run
with 700 � 1 year time steps with a surface boundary
condition based on the last 700 years of the surface
temperature reconstruction by Moberg et al. [2005]. The
basal heat flux has been set to zero for clarity in interpreting
the results. Vertical profiles have been extracted from the
resultant temperature field at distances along the slope
corresponding to x = 100 m, 500 m, 700 m and 900 m
and these are shown in Figure 5. A vertical slice through the
resultant temperature field is shown in Figure 4.
[48] The synthetic data produced by the forward calcula-

tion at the borehole sites are degraded with 0.1 K normally
distributed noise as in the work of Hopcroft et al. [2007].
The rj-MCMC algorithm is then run for 20,000 iterations.
The resultant posterior samples are shown for a simplified
case in Figures 8a and 8b for which the heat flow and
equilibrium surface temperature are treated as known. The
data were inverted using a 1-D forward model with the rj-
MCMC algorithm. The resultant posterior on the past GSTs
shows the effects of topography on the recovery of past
surface temperatures, as the posterior on the GST diverges
during most of the reconstruction period from the true

values, with no inferred cool period centered on 400 years
(before present) for the x = 100 m and an overestimate of
this cooling in the x = 900 m case. For comparison the x =
900 m data are inverted using a 3-D forward model and the
same rj-MCMC algorithm and the resulting posterior on the
GST is shown in Figure 8c. Apart from the noise on the data
this represents a realistic but ideal inversion case against
which to make further comparisons. The posterior mean in
this example shows excellent agreement with the true model
with the posterior mean GST correctly identifying a cool
period centered on 400 years. This example clearly demon-
strates the strong effect that moderate topographic variations
(here 200 m vertical change over a horizontal distance of
1 km) can have on inferred GST histories when a 1-D
forward model is employed.

6.2. Uncertain Basal Heat Flow Example

[49] In this more realistic example, a similar model setup
is used to test the more realistic inversion case whereby the
true values of heat flow (q0) and long-term equilibrium
temperature (Teq) are not known precisely to start with. This
results in a larger model space and so more MCMC
iterations are required to properly sample the posterior
pdf. In addition the data have been truncated above 20 m
depth to mimic real data acquisition and since daily and
annual signals are significant above this depth. The model
was set up with a more moderate surface topography with a
variation of 75 m change over the volume, so that zb = 500 m,
zm = 550 m and zt = 575 m in Figure 1b. The rj-MCMC
algorithm was run for 50,000 iterations. Figure 9 shows the
posterior pdf for the GST history. The data favor a model
with 3 or 4 points (not shown), which can be taken as a
measure of the model complexity (subject to the discrete
representation of what is in reality a continuous function of
time). In this case the uncertainty of the GST model
increases considerably into the past and reflects this more
realistic model setup. The posterior mean GST history
again indicates a cool period centered on 300–400 years
and subsequent 0.4–0.5�C warming to the present. The
95% credible limits enclose the true model at nearly all
times except for a short positive temperature excursion at
50 years. Given the level of noise on the temperature data is
relatively large at sd = 0.1 K and the overall amplitude of
the changes in the true model is small and of the order
0.8 K, this example demonstrates the efficacy of the
method, and we can be reasonably confident that similar
examples with real data will be feasible.

6.3. Three-Dimensional Thermal Conductivity
Structure

[50] A common assumption in 1-D GST inversions is that
the underlying geological structure is laterally homoge-
neous. This assumption is tested here using a realistic
synthetic example. The forward model is set up with three
sloping geological layers of differing thermal conductivities.
In the inversion, the conductivity layers are assumed to be
horizontal and take the values which occur at the borehole
position in the forward model.
[51] The synthetic data have been recalculated to account

for the three parallel layers which are assumed to have a dip
angle of 8.53� corresponding to a vertical rise of 150 m over
1000 m horizontally. The topographic profile of the preced-

Figure 9. Posterior probability density function on the
past GST values as sampled by the rj-MCMC algorithm
(50,000 iterations) for noisy synthetic data with 3-D forward
model allowing also for the uncertainty on the basal heat
flux and equilibrium surface temperature.
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ing example is used (i.e., a change of 75 m is applied at the
upper surface from one side of the volume to the other). The
thermal conductivity layers from surface downward are
isotropic and with values of 1.5, 3.0 and 2.0 W(mK)�1.
This thermal conductivity setup is depicted in Figure 10.
For comparison, the forward model is forced with the same
surface temperature reconstruction as in previous examples
and is setup with a basal heat flux of 60 mWm�2 and an
equilibrium surface temperature of 9.0�C. Again the surface
temperature is modified according to the ground surface
lapse rate of 5 K km�1.
[52] In Figure 11 the posterior pdf of the GST history is

depicted after rj-MCMC sampling of 50,000 iterations. It
can be seen that the posterior mean GST accurately follows
the past temperature variations shown in the true model.
Although a general cool period is inferred, the amplitude
and timing is modest (around �0.1 K rather than �0.3 K)
and the time of the coolest temperatures has been shifted
toward the present by around 100 years when compared to
Figure 9. The algorithm also shows a tendency toward
smoother models (not shown) as the posterior probability
of 2 or 3 time-temperature points is higher than for the
example in Figure 9. Overall this case demonstrates that,
although slightly incorrect thermal conductivity values have
been used over much of the volume, the reconstructed GST
history is relatively robust to this change. The effect of the
lateral thermal conductivity homogeneity assumption
(which is not true in this example) is relatively small, other
geometries may lead to increased discrepancies in the
inferred GST histories.

7. Comparing Reversible Jump-MCMC With a
Nonlinear Conjugate Gradient Inversion Method

[53] In order to provide a comparison with the results
obtained using rj-MCMC a more standard inverse method is
considered (nonlinear conjugate gradient NLCG). For rect-
angular matrices that the linear conjugate gradient method is
equivalent to Lanczos’ algorithm [e.g., Golub and Van
Loan, 1996, chapter 10.2.5], a method used to calculate
the singular value decomposition (SVD) of a matrix. There-
fore, the NLCG method applied here is a nonlinear analogue
of the SVD method widely used for borehole data inversion
[e.g., Mareschal and Beltrami, 1992], and comparison of

this method with the rj-MCMC used here is therefore
particularly relevant.
[54] NLCG relies on a first-order gradient calculation and

uses a functional term penalizing the roughness of the GST
model to constrain the solutions to realistic values. The
method is designed such that initial model updates produce
generally smooth models, while subsequent iterations can
introduce more detailed structure. The gradient calculations
are achieved efficiently by using the adjoint method [e.g.,
Wang et al., 1992]. This means that these calculations are
exact for the finite element discretization used here.
[55] The functional quantifies the progress of the inver-

sion method by measuring the fit between the measured and
simulated data as in the likelihood used in the Bayesian
method. In this work the functional also includes a regular-
ization term which penalizes deviations in the temperature
history model from the smoothest (i.e., no change) model.
This is formed by the square of the differential of the
temperature history with time, for which the continuous
and discretized equations are given by:

Fr ¼
1

2
l
Z

rTTksmrT dW ð38Þ

Fr ¼
1

2
lTTKrT ð39Þ

where ksm is a regularization matrix, Kri,j =
R
rTQirQjdW,

where Qi are the temporal basis functions. The integral is
over the time domain of the reconstruction. The data fit
contribution to the functional is given by:

Fd ¼
1

2
d� dobsð ÞTC�1

d d� dobsð Þ ð40Þ

where Cd is the data covariance matrix.

Figure 11. Posterior probability density function of the
past GSTs as sampled by the rj-MCMC algorithm (50,000
iterations) for the noisy synthetic case corresponding to the
conductivity structure of Figure 10 but with assumed lateral
homogeneity so that values at the borehole are assumed for
the whole volume.

Figure 10. The conductivity profile setup used in the
forward model example of section 6.3.
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[56] The overall functional used for nonlinear conjugate
gradient F, is given by a combination of the data fit and
regularization terms:

F ¼ Fd þ Fr ¼
1

2
d� dobsð ÞTC�1

d d� dobsð Þ þ 1

2
lmTKm: ð41Þ

[57] The NLCG algorithm uses Polak-Ribière formula to
calculate the search directions and makes use of a parabolic
bracketing method in order to find the minimum along each
search direction. If the model regularization is not sufficient
the algorithm will tend to inverse solutions with large-
amplitude variations which are not apparent in the true
model. In order to combat this the regularization term is
initially set to be large and is then gradually relaxed by 5%
per iteration. Additionally, a termination criterion is intro-
duced so that the algorithm is stopped once the functional
reduction due to the model update falls below a certain
criterion. Here this is determined to be the functional update
which corresponds to less than 0.01 K average update at
each data point, i.e., when the functional changes by less
than 0.4.
[58] To compare the NLCG with the rj-MCMC method,

the data from the idealized 3-D example were used, corre-
sponding to the posterior GST history shown in Figure 8 and
the results are given in Figure 12. In this example, the
NLCG inversion was stopped after 5 iterations. The solution
shows reasonable agreement with the true model, depicting

a general cool period in the past with more recent warming.
However, the model appears to be more sensitive to recent
events and so the minimum of the cool period is inferred to
have occurred at around 200 years rather than at 400 years.
[59] In Figure 12 we can see that the NLCG method

infers a set of rapid variations between 20 years and the
present. These variations appear to be an artifact of the
gradient calculation and the lack of constraints for very
recent GST history as the data are taken from depths greater
than 20 m. These variations are therefore only penalized in
the functional through the regularization term and are
therefore difficult to remove with increased regularization
without obscuring part of the true trend at earlier times [e.g.,
Chouinard and Mareschal, 2007]. A plausible solution is to
cut off the inverse model at 10–20 years before present, or
to average the GST values over this period, here the former
option used. Other more sophisticated approaches to this
problem involve varying the parameterization of the for-
ward model or using a time-dependent regularization term
[Şerban and Jacobsen, 2001; Jacobsen and Rath, 2007].
[60] Since gradient optimization methods cannot guaran-

tee convergence to a particular functional minimum, it is
necessary to use multiple trials which are started from
different positions in the model space. Therefore for com-
parison the inversion of the data used in Figure 12 inverted
again with the model initiated as T = 8.0�C. The resultant
inverse solutions converge to the same warming signal for
the recent part of the history, whereas the earlier part of the

Figure 12. (a) The inverse GST models with iterations for two starting models using the NLCG
method. The first five iterations are shown for the model starting at T0 = 10�C, and the fifth iteration only
is shown for the model initialized with T0 = 8�C. (b) The functional value for the NLCG algorithm
starting at T0 = 10�C. The vertical line denotes the stopping point which is chosen according to the
magnitude of the model update as described in the text. (c) As in Figure 12a but showing the last
150 years only.
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history before 300 years is biased toward lower temper-
atures. In this example the algorithm is again terminated
after 5 iterations and the final model has almost exactly the
same functional value. However, here the inverse solution
GST history does not show the same variation over time,
instead showing a general warming over the whole recon-
struction length, this is shown in Figure 12 by the black
dash-dot line. It therefore appears that in this example the
algorithm has converged to a different functional minimum
leading to a different solution.
[61] Realistic synthetic examples presented here indicate

that the inverse solutions which are dependent on the
gradient of the functional w.r.t. model parameters are most
sensitive to the recent climatic events. This means that it is
difficult for the method to recover realistic timing of past
temperature changes. Evidence from repeated inversions
with differing starting models shows that approximately
equal data fits can be obtained for solutions with quite
different GST histories. This is due to the degeneracy of the
inverse solutions caused by the noise in the data. This is a
feature with is dealt with robustly in a Bayesian formulation
through the quantification of the posterior distribution of the
GST history. In our experience this has shown no significant
dependence on the starting values used in the rj-MCMC
sampling method.
[62] However, the rj-MCMC method used is relatively

computationally expensive, typically requiring 10,000 s of
forward model evaluations. In contrast the gradient based
method requires only around 50–100 equivalent forward
model evaluations (the gradient calculation is equivalent to
2 forward runs). For extremely large data sets or 3-D
models, it may only be feasible to use an optimization type
method unless the forward model is parallelized efficiently,
but this is prone to converging on poor solutions. Some
hybrid scheme involving both gradient and an rj-MCMC
methods could therefore be useful. For example, the faster
gradient inversions could be used to approximate the prior
pdf of the temperature histories by collecting the results
from multiple starting points. This more informative prior
could then serve to constrain the plausible model space (and
hence computation time) for the rj-MCMC algorithm.

8. Discussion and Conclusions

[63] In this work a new method for performing simulation
and inversion for GST histories using a 3-D numerical
forward model has been described. A major limitation has
been that full 3-D models are typically expensive or slow
and the aim here has been to develop a forward model
strategy that is efficient enough that a fully nonlinear
Bayesian inversion method (MCMC) could be applied. This
necessarily implies the use of a further approximation in the
finite element method. In order to achieve this, the method
of proper orthogonal decomposition has been applied to a
conventional 3-D finite element heat transfer model such
that a reduced-order model is produced. However, the errors
introduced by this approximation have been shown to be
small enough for accurate inversions to be considered. This
reduced-order model is then taken as the forward model and
is linked with a Bayesian approach to the inverse problem in
which the trans-dimensional form of Markov chain Monte
Carlo sampling is used.

[64] We have demonstrated the application of the new
method using synthetic data, which have been degraded
with noise in order to replicate realistic data sources. The
resultant GST histories then show similar resolution to those
obtained in 1-D settings. For comparison, the same data
have been treated with an identical inverse method but
utilizing instead a 1-D forward model. In examples of
moderate topography (200 m over 1 km) the resultant
GST histories are shown to be significantly affected as the
1-D inversion results do not recover the true GST trends.
The impact of assuming lateral homogeneity of the geolog-
ical structure has also been assessed. This shows that for
large differences between the true and assumed thermal
conductivity models, the inferred GSTs are still relatively
realistic, but (in the case considered here) leads to slight
underestimation of the true trends.
[65] This approach therefore allows the inclusion of a

range of processes in the forward model which could not
previously be accounted for when inverting borehole data
for past surface temperatures. In particular the effects of
variable surface topography and heterogeneous subsurface
conductivity values can be taken into account. Previously
Kohl [1999] showed that the effects of topography could be
eliminated from temperature-depth profiles by performing a
correction, which relies on 3-D calculations. This has the
disadvantage that the basal heat flow and equilibrium
surface temperature as well as the underground conductiv-
ities must be calculated separately from the inversion for the
GST histories. In our approach these quantities are inferred
jointly from the data along with the GSTs allowing for
uncertainty in each parameter and therefore leading to a
more robust approach, as the inferred GST signal depends
strongly on the values chosen for each of these other
quantities.
[66] The trans-dimensional sampling method (rj-MCMC)

used here allows for models of differing dimensionality
such that the resolution of the GST history with time is
addressed directly during the inversion procedure. Compar-
isons between this method and a more conventional non-
linear conjugate gradient method have shown that the
rj-MCMC method is simpler in terms of less tunable
parameters and is generally able to reconstruct the
applied GST histories more closely.
[67] The synthetic case studies shown in this paper

illustrate effects that could be important for particular
settings. However, these sorts of terrains are purposefully
avoided when selecting data for paleoclimate studies. The
effects of topographical settings on previous borehole
paleoclimate reconstructions cannot be estimated from the
results in this work, since the calculations here relate to a
single synthetic model setup. In practice the effects of
topography may be expected to cancel upon averaging of
multiple reconstructions, since boreholes could be located
with equal proportion on positive and negative topographic
features. However, this is difficult to justify without resort-
ing to detailed analysis of suitable digital elevation data.
[68] Regional averages of GST histories are particularly

important in real data settings in order that robust climate
histories can be derived. The method used here could be
employed at locations where it is warranted (i.e., where
topography is significant), while the 1-D equivalent could
be employed for other sites with regular topography.
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Regional averages could then be found by averaging the
posterior mean GST deviations for these sites. Alternatively
a simple statistical model (e.g., Gibbs sampling) could be
used to sample jointly from the separate posterior GST
history probability distributions for each of the sites con-
sidered. For closely spaced boreholes a single 3-D forward
model could be used to model all of the sites together. In
that case it may be found that the simple parameterization
of the surface temperature as a function of altitude (using a
lapse rate) is inadequate. In this case the Bayesian meth-
odology used here could be extended to estimate spatial
variations of this parameter using for example Bayesian
partition modeling [Denison et al., 2002]. This may then
allow the influence of historical land cover differences [e.g.,
Nitoiu and Beltrami, 2005; Bense and Beltrami, 2007] from
one borehole to another to become apparent, since these
effects will disrupt the assumed linear relationship between
ground surface temperature and ground surface altitude.
[69] A chief limitation for the methods introduced here is

the paucity of appropriate geological data required to
construct the 3-D forward model. Much of the borehole
data currently available for paleoclimate reconstruction are
not accompanied by appropriate subsurface geological data.
However, topographic data at reasonable horizontal resolu-
tion of 90 m is available for the globe, with higher 30 m
resolution data available for the U.S. and this could be used
to reasonably accurately model the topographic influence at
a particular borehole site. Further limitations stem from the
simplicity of the model setup considered here, which
ignores the effects of vegetation or snow cover which can
vary with topography and the influence of topographically
induced fluid flow. Nevertheless, a recent study by
Chouinard and Mareschal [2007] discarded 34 out of 194
borehole temperature profiles for climate studies on the
grounds of topography alone. Clearly some of these may
have been affected additionally by topographically induced
fluid flow, but this result gives an approximate upper limit
for the proportion of borehole data that can now be used for
climate reconstruction purposes using the methods pre-
sented herein.
[70] In future work, data from a digital elevation model

(DEM) could be incorporated into the 3-D forward model in
order to test the method on real data. Furthermore, the
forward model could also be modified to simulate under-
ground advection of ground water. This advection-diffusion
model could then also be reduced using the POD method
and linked with a suitable inversion scheme. Because of the
trade-off between the influence of groundwater flow and
paleoclimate on underground temperatures, some method
for assessing a priori the fluid velocities would be required.
This could be obtained from detailed geological investiga-
tions of the site under consideration or by the use of a
hydrogeological fluid flow model.
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Beaulieu, F-35042 Rennes, France. (kerry.gallagher@univ-rennes1.fr)
P. O. Hopcroft, Bristol Research Initiative for the Dynamic Global

Environment, School of Geographical Sciences, University of Bristol,
University Road, Bristol BS8 1SS, UK. (peter.hopcroft@bris.ac.uk)

F02019 HOPCROFT ET AL.: THREE-DIMENSIONAL BOREHOLE INVERSION

16 of 16

F02019


