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Abstract. Pyrocarbon is a key material in the field of C/C composites, for aircraft brake disks, exit cones and nozzles for 
rocket motors or nose shields for strategic missiles. This abstract published elsewhere [1] provides a comprehensive survey 
on pyrocarbon properties and characterization, say: transmission electron microscopy, optical microscopy and Raman 
spectroscopy. 
 

1. Introduction 
Pyrocarbons belong to a family of carbon materials that contains at least 95% of carbon and up to 5% of hydrogen [2]. 

They are deposited following various chemical vapour-based mechanisms [3]. Process controls structure, density as well as 

many other properties, like heat conductivities, elastic modulus, toughness, etc… For example density goes from 1 to 2.2. 

Some of the pyrocarbons properties are summarized in Table 1. 

 

The development of a new process named Pulse-CVI (for chemical vapour infiltration with pulsed pressure) was a key for 

the recent progresses in the fundamental understanding of CVI processes [5] (say chemical vapour deposition and 

infiltration, respectively). Pulse-CVI was particularly interesting for controlling tR - the residence time and gas phase 

maturation – a key parameter to understand CVI. The main success was the discovery of a new pyrocarbon structure 

deposited with a long residence time tR and thereafter a high gaz phase maturation. This is a graphitizable pyrocarbon first 

patented [6] and then called ‘Regenerative laminar Pyrocarbon’ in the open literature [7]. Part 1 shows that this anisotropic 

pyrocarbon is as dense as Rough Laminar Pyrocarbon but its lattice defects are different : it is the key control for in-service 

performances [1]. The multiscale structure characterization is critical as shown in the following parts. 

 

2. “Regenerative Laminar Pyrocarbon”: a new grade of graphitizable pyrocarbon 

 

Regenerative Laminar is very anisotropic and graphitizable [7]. Its anisotropy is as high as that of Rough laminar. 

Meanwhile, its lattice is seen to possess a high amount of defects. Diffraction gives a pattern of “amorphous-like” carbon 

but highly anisotropic.  The presence of these defects is perfectly measured by the broadening of the Raman D-band : high 

FWHMD (see Table 1 and part 4). 
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Table 1. Regenerative Laminar pyrocarbon, compared to the well known Rough and Smooth Laminars [19]. 
 

 Rough laminar  
(RL) 

Smooth laminar  
(SL) 

Regenerative laminar 
(ReL) 

Optical 
Microscopy 

(cross polarized 
light) 

(bare is 10µm) 
   

Raman 
(1st order) 
Increasing 

bands 
broadening 

   
d (g.cm-3) 2,13 1,95 2,11 

H (mass%) 4,4% 2,3% 3,5% 
OA0.1 

TEM anisotropy 
(0.1µm selected 

area) 

 
25° 

 
65° 

 
34° 

Ae 
optical 

anisotropy 

22° 12° 22° 

Rmax 
Maximum 

reflectance 

 
26,6% 

 
- 

 
32% 

Rmin 
Minimum 

reflectance 

 
8% 

 
- 

 
9% 

TEM 
Lattice 

organisation 

 
  

 
 

Regenerative Laminar forms following a homogeneous growth mechanism. Residence time is long. Gaseous phase 

produces large PAH molecules (Polycyclic Aromatic Hydrocarbons) which deposit by physisorption on the growth surface 

[8]. The low diffusivity and reactivity of these molecules on the surface limit the perfection of the lattice, trapping a high 

amount of defects and hydrogen. 

 

3. Anisotropy : quantitative assessment by TEM  
 

Pyrocarbon has a multiscale structure.  At short range, was developed a quantitative computer application (AnaDif) based 

on electron diffraction pattern image analysis. AnaDif gives what is call the “orientation angle” OA [9] of the electron 

diffraction arcs of the pyrocarbon : 20° (strong anisotropy) < OA < 90° (weak anisotropy). The interest of this method is 

straightforward. It gives the scale function of the pyrocarbon, just by changing the selected area that diffracts from ~ 0.1µm 
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to 2µm. Table 2 illustrates the power of this approach. Rough Laminar OA value depends on the opening of the selected 

area aperture : at the scale of 100nm the angle is 25° meaning a high anisotropy. At long range it increases up to 35°: the 

anisotropy decreases. In the case of Regenerative Laminar the anisotropy is not so high locally but keeps constant in-

between 0.1 to 2.15. This is due to the presence of the regenerative cones during the growth process of the so called 

Regenerative Laminar pyrocarbon. 

 
Table 2.  OA Anisotropy of Rough and Regenerative Laminars (RL and ReL, respectively), as a function of the range selected (TEM 

diffraction selected area) [7]. 

 Selected area 
(aperture diameter, µm) 

 0.11 0.4 0.8 2.15 
OA measured in ReL 34° 32° 32° 35° 
OA measured in RL 25° 35° 35° 37° 

 

 

4. Optical properties of pyrocarbons 

 
An abundant literature is available on this subject. Optical methods have long been the best means to achieve the 

measurement of carbon anisotropy [10-11].  We first introduced Ae the so called Extinction Angle technique in 1995 [12] 

to distinguish the different laminar families from 4° to approx. 20° or 22° depending on the source wavelength. Then, 

Bourrat et al., 2000 cross-check Ae with OA in 2000 [9]. Finally, in a recent paper we detailed the optical properties of 

pyrocarbons and demonstrated the physical accuracy of this technique [4].  

 
 
Figure 1. Extinction Angle basics. The incident polarized wave P is reflected in two waves along the two main directions of graphite. 
These two waves will interfere onto the plane of the analyzer, rotated by an angle θ = Ae from its crossed position, the quadrant 
extinguishes [4]. 
 

Ae, the extinction angle can be measured on any optical microscope equipped with a rotating analyzer. An example is 

given in Fig. 1. When the two Nicols are crossed, a Maltese cross appears inside the pyrocarbon coating around the fiber. 

Rotating the analyzer anticlockwise (θ angle), the quadrant extinguishes and then becomes bright again. The angle value 

for the maximum extinction is called the extinction angle Ae and is expressed in degree. 
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With this technique Rough and Regenerative Laminars have the same value : Ae > 18°. Before the discovery of 

Regenerative Laminar, all the papers in the literature (our group and others) have systematically called any pyrocarbon with 

a high Ae value ‘Rough Laminar’. Many papers have to be revisited with this new vision. 

 

In our last paper we used a spectrophotometer to validate a calculated model of optical properties. The optical phase shifts 

as well as the ordinary and extraordinary reflectance were obtained by fitting the experimental data to the theoretical 

model. The extinction angle Ae and phase shift are proposed to distinguish the various families of pyrocarbons. As shown 

on Fig. 2 the optical properties allow to clearly distinguishing the different pyrocarbons. Regenerated Laminar pyrocarbons 

exhibit a lower phase shift as compared to Rough Laminar. This behavior is in line with the many defects observed in the 

LRe lattice by TEM or Raman spectroscopy (see next Part). 

 
 

Figure 2. Plot of Ae vs δ, the phase shift measured by reflected light. It is clearly seen that all Regenerative Laminars 
distinguish for their lower δ value, related to lattice defects. In red, calculated graphite values, with Ergun and Greenaway’s 
experimental data (Greenaway’s fit very well) [13] 
 

 

5. Raman spectroscopy of pyrocarbons 
 

Raman Microspectroscopy is a non-destructive and local analysis particularly suited to the characterization of pyrocarbons. 

As other graphite-like materials, their first order spectrum exhibits the following main features : the in-plane mode with 

E2g symmetry, first identified from a graphite single crystal at a wavelength of 1575 cm-1 by Tuinstra and Koenig 1970 

[14], the disorder induced D mode observed at 1330 cm-1 for a laser excitation of 1.97 eV (wavelength 632.8 nm) also 

discovered by Tuinstra and Koenig and the D” mode found at about 1500 cm-1 [15]. 

 

For a few years, the dispersive effect of the D mode has been attributed to a double resonance Raman scattering mechanism 

(DRRS) by Thomsen & Reich, 1999 [16]. Most of the features in the spectra of sp2 carbonaceous materials (e.g. the D, D’ 

and D’’ bands) can be predicted by means of the DRRS theory [17]. The phonon modes experimentally observed for a laser 
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energy EL < 3 eV can be successfully correlated with the phonon dispersion curves, covering a large area of the 2D graphite 

Brillouin zone [18].  

 

The width of the Raman D band (FWHMD) is very sensitive to low energy structural defects (e.g., disorientation of the 

graphene layers). For a long time, the D-band has been empirically connected to defects. The role of the defects in the 

broadening of the D-band is now well understood, thanks to the ‘double resonance’ theory. On that basis we have proposed 

to quantify the graphene defects by measuring the D-band broadening, corresponding to the LO phonon [19]. The D-band 

was preferred because it is easily subtracted: its full width at half maximum (FWHMD) is inversely proportional to the life 

time of the phonon : the higher the defects density, the shorter the phonon’s life time and the larger the FWHMD. 

 

First the Raman parameter ‘FWHMD’ was calibrated during graphitization. The large difference observed among pristine 

pyrocarbons disappears by a treatment below 1600°C as shown on Fig. 3. Then FWHMD subsequently decreases linearly 

up to 2000° C and remains almost constant beyond this temperature. These structural defects, healed to a large extent after 

a heat treatment at 2000° C, were assumed to be in-plane local disorientation or dislocation by Rouzaud et al. [20] in their 

study of pyrolytic carbon films. 

 
 

Figure 3. Sharpening of the D band (FWHMD) versus heat treatment temperature for the 3 main pyrocarbons (right: schematic showing 

the sharpening of the peak with heat treatment) [19]. 

 

This two-stage structural improvement is accurately monitored by means of La, the in-plane coherence length determined 

by XRD. The two main stages of the graphitization process can be evidenced in Fig. 4, as the heat treatment temperature 

increases. The first stage is characterized by a large decrease of FWHMD up to 2000° C and corresponds to the gradual 

straightening of the graphene planes. The second stage (THT > 2000° C) is defined by the lateral extension of the layers 

and results in the increase of La (Fig. 4), while FWHMD remains almost equivalent for all the pyrocarbons. The latter 

parameter therefore appears as a very reliable indication of the heat treatment temperature encountered by pyrocarbons (at 
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least below THT = 2000° C). The sensitivity of FWHMD to the in-plane defects makes this parameter particularly 

relevant for the structural characterization of as-deposited pyrocarbons. 

 

 
 
Figure 4.   FWHMD of the Regenerative Laminar (LRe)  and Rough Laminar (LR1 for LR number 1)  pyrocarbons as a function of La 
and the heat treatment temperature [19]. 
 

  

6 Discussion : pyrocarbon structural classification based on polarized Raman spectroscopy 
 

Pyrocarbon has a multiscale structure. That is why classification attempts based exclusively on anisotropy have failed in the 

past. It is necessary to associate a lattice criterion to the anisotropy in order to complete the structural description. Raman 

D-band broadening, FWHMD, is the ideal structural parameter. X-ray or TEM parameters are efficient but difficult to 

measure in routine. 

 
Figure 5. Polarized Raman spectroscopy. The ratio of the intensity measured with the polarizer alone (blue curve) on the intensity  
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measured with an analyzer in cross position (red curve) gives RA : the Raman anisotropy factor [19]. 

 

 

As for the anisotropy, Ae or OA can be used but we decided to develop a measurement of the anisotropy directly on the 

Raman microscope. We called it RA, the Raman anisotropy factor. Both G and D bands correspond to the same phonon 

LO and are polarized, parallel to the graphene planes. The Raman scattered beam is itself polarized parallel to the graphene 

planes. If an analyzer is introduced in a crossed position regarding the polarized direction of the incident beam, it is 

possible to measure the scattering intensity of the disoriented planes.  

 

 
 

Figure 6.  Plot of  FWHMD versus RA, of all the pyrocarbons available from the different processes [19]. 
 

Our technique is very simple as shown in Fig. 5. Signals are weak but accurate enough to be used: RA is the ratio of the 

Raman intensity (800 to 1850 cm-1) measured without analyzer on that with the analyser. Experimentally, RA varies from 

2.2 for the isotropic pyrocarbon up to more than 8 for the highest anisotropic ones. 

 

The plot of the 18 samples processed with all the techniques available is shown in Fig. 6. Pyrocarbons with the lowest 

anisotropy scatter parallel to the ordinate. On the contrary, pyrocarbons with the highest anisotropy are divided into two 

classes : those with a high amount of defects on the top and those with a low content on the back. These 3 populations 

correspond to the 3 mechanisms observed by the kinetics approach [21]. The interpretation of this result is summarized in 

Fig. 7. 

  
Each of the three growth mechanisms known so far, occupies one specific area in this diagram. Following the arrow which 

characterizes the increasing maturation of the gas phase, it is successively obtained : Rough Laminar pyrocarbon with an 

heterogeneous mechanism at very short residence time, Dark Laminar with a 2d heterogeneous mechanism and the 

homogeneous Regerative Laminar for long residence time. Smooth Laminar (SL) and Granular (G) are intermediate 

structures. An example of the in situ transition characterization is given in the next part. 
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Figure 7. The three main pyrocarbon-growth-mechanisms in the FWHMD vs RA  diagram : RL, rough laminar; ReL, regenerative laminar 

and D, dark laminar (G, granular and SL, smooth laminar are considered as intermediates). Each structure is illustrated with its HR-TEM 

image in high resolution and electron diffraction [1]. 

 

7. Conclusions 

 

These techniques were successfully applied in different fields where carbon structure is critical, for example: 

 protection against the oxidation of reinforced-carbon composites [22] 

 control of the interface in carbon-reinforced  composites [23-26] 

 pyrocarbon as a confinement barrier for nuclear reactor fuel particles [27-30]. 
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