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ABSTRACT 

Basic slag (BS) is an alkaline by-product of the steel industry with potential properties 

to ameliorate nutrient supply and metal stabilisation in contaminated soils. The BS effects on 

soil pH, soil conductivity, growth and chemical composition of beans were investigated using 

an acid, sandy soil from a wood treatment facility containing 630 mg Cu kg-1. Pot experiments 

were carried out on a 2-week period with Phaseolus vulgaris L. An uncontaminated, sandy 

soil was used as a control (CTRL). BS was added into the soil (1 kg soil pot-1) to constitute 

four treatments in triplicates: 0 % (T1), 1 % (T2), 2 % (T3) and 4 % (T4) BS kg-1 air-dried 

soil. The BS addition increased soil pH, soil conductivity, and plant growth compared to the 

untreated soil. At 1 % and 2 % BS addition rate, highest shoot yields (dry weight, DW) 

occurred. Foliar Cu concentration varied from 5.6 mg kg-1 to 53.1 mg kg-1 in the following 

order: CTRL < T2, T3, T4 < T1. The highest decrease in the foliar Cu concentration, 2.3 

times compared to T1 plants, was obtained for the T2 plants. The BS addition at 1% rate into 
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the Cu-contaminated soil promoted bean growth with the lowest foliar Cu concentration. 

Foliar Ca concentration was enhanced in the T2, T3 and T4 treatments whereas the foliar P 

concentration was not promoted.  

 
Keywords: basic slag, Cu, in situ stabilisation, liming, soil remediation, Phaseolus vulgaris. 
 
 

1. INTRODUCTION  

In contaminated soils, stabilisation technique aims at decreasing the labile pool of 

metals and metalloids such as As, Cr, Cu, Pb, Cd and Zn by the incorporation of amendments. 

This technique is able to enhance one or several processes such as metal adsorption through 

increased surface charge, formation of organic and inorganic metal complexes, sorption on 

Fe, Mn, and Al oxides, and precipitation. It can be used in in situ and ex situ applications to 

reclaim and re-vegetate industrially devastated areas and mine-spoils, restore the physical, 

chemical, and biological soil properties, and reduce the contaminant mobility and 

bioavailability with various chemical and mineralogical agents such as industrial by-products 

(Bolan and Duraisamy, 2003; Pérez de Mora et al., 2005; Raicevic et al., 2005; Kumpiene et 

al., 2008). Elements such as As, Cu, Cr, and Zn can be found in excess in contaminated soils 

at wood treatment facilities, especially when Cu sulphates and chromated copper arsenate 

(CCA) were used as a preservative against insects and fungi, which may result in soil 

phytotoxicity (Kumpiene et al., 2008). The As stabilisation can occur through sorption on Fe 

oxides by replacing the surface hydroxyl groups with the As ions, and also by the formation 

of amorphous Fe (III) arsenates and/or insoluble secondary oxidation minerals. The Cr 

immobilisation mostly deals with Cr reduction from toxic and mobile hexavalent form Cr (VI) 

to stable Cr (III) in natural environments. Copper immobilisation by clays, organic matter, 

carbonates, phosphates, and Fe oxides amendments was reported with precipitation of Cu 
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carbonates and oxy-hydroxides, ion exchange and the formation of ternary cation–anion 

complexes on the surface of Fe and Al oxy-hydroxides (Kumpiene et al., 2008). Phosphorus 

amendments, clays, birnessite and coal fly ash such as beringite can successfully immobilise 

Zn in soil (Mench et al., 2000; Bolan et al., 2003; Kumpiene et al., 2008).  

 

Several alkaline slags have been used for amending acid soils. Phosphogypsum can 

improve soil properties such as pH, soil electrical conductivity (EC), cation exchange capacity 

(CEC), exchangeable Ca, Mg, and metal availability to plant, and increase the crop yield 

(Alva and Sumner, 1990). Slag treatments increase more soil pH than converter sludge 

treatments (Kiaee Jamali et al., 2005). Combination of slag and converter sludge treatments 

enhances the plant Ca and Mg concentrations. The application of calcium silicate slag reduces 

the soil acidity and increases available P, Si and exchangeable Ca in soil. (Barbosa Filho et 

al., 2004). Blast furnace slag are used to correct soil acidity and can promote root growth and 

distribution in the soil profile, which results in higher shoot dry matter and grain yield of 

upland rice under sprinkler irrigation (Carvalho-Pupatto et al., 2004). A combination of 

converter slag and fungicide does not decrease the density of dormant spores of 

Plasmodiophora brassicae in the soil but suppresses the clubroot disease (Murakami and 

Goto, 2004). The application of Linz-Donawitz (LD) slag in acid soils managed under 

pastures increases the soil pH with and without NPK fertilization (Pinto et al., 1995), 

enhances exchangeable soil Ca and Mg whereas exchangeable soil Al, Mn, Cu and Zn 

decrease (Besga et al., 1996), and its combination with NPK fertilizers results in highest crop 

yields and nutrient concentrations in plants (Lopez et al., 1995). Both calcitic limestone and 

basic slag (BS) applied in Brazil sugarcane fields generate a beneficial residual effect in the 

correction of soil acidity, the increase of base saturation, and the yield of sugar cane rattoon 

(Prado et al., 2003). For Ali and Shahram, (2007), the increasing rate of soil pH is 
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proportional to the slag amount used. The slag decreases Fe availability at a pH range of 7.4 - 

8.5 but increases it at higher pH, while the slag use also proportionately enlarges the P and 

Mn availability. In greenhouse studies the application of 1 % and 2 % (w/w) of slag in tea 

garden soil and 0.5, 1 and 2 % slag in rice field soil enhances the plant shoot DW yield and P 

and Mn uptake. Fe and K uptake increases in rice field, K uptake declines in tea garden soil 

and Fe uptake is not changed. The addition of Thomas basic slag (TBS), hydrous manganese 

oxide (HMO), iron grit and beringite to a contaminated soil does not raise the plant biomass 

production but reduces the mobility and bioavailability of Cd, Zn and Pb (Mench et al., 

1994a, b). These agents effectively mitigate the Cd uptake by plants. In ryegrass, HMO and 

iron grit decrease either shoot Pb or Zn concentrations, and TBS reduces shoot Pb 

concentrations. The application of alkaline materials, organic matters, phosphates, alumino-

silicates, iron grit, basic slag (3.9%) and compost of sewage sludge (5%) combined with iron 

grit are the most efficient to promote shoot production and limit foliar Cu accumulation in 

dwarf beans cultivated in a highly Cu-contaminated soil (Bes and Mench, 2008).  

 

The Ca and P contents in BS make it a potential liming agent to increase the 

precipitation and sorption of metals such as Cu and a potential fertilizer promoting plant 

growth and improving physico-chemical properties of the soil. Therefore this study aimed at 

investigating a BS addition into a soil mainly Cu-contaminated from a wood treatment facility 

and which addition rate may improve soil characteristics such as pH and EC and reduce the 

labile pool of trace elements in soil for root-to-shoot transfer in beans. Hypotheses were that 

BS compounds may influence the composition of soil solution through acid-base, 

precipitation and sorption reactions, and foliar concentrations through changes in soil 

solution, competitions for root uptake and root-to-shoot transfer. Bean plants were cultivated 

in potted soils with increasing BS addition rates, from 0% to 4%, placed in controlled 



 5

conditions. Changes in soil EC and pH, plant growth, biomass production and the foliar 

elemental concentrations of primary leaves were determined. 

 

2. MATERIAL AND METHODS 

2.1. Soil characterisation  

The topsoil (0-0.25 m) mainly contaminated by Cu was sampled from a French wood 

treatment facility (Mench and Bes, 2009). This anthropogenic soil developed on an alluvial 

soil in terrace (Fluviosol) containing alluvial materials from the Garonne River combined 

with wind deposits (BRGM, 1978). Copper contamination originated mainly from Cu 

sulphate and in a lesser extent from standard CCA type C (copper oxide 11.1 % w/w, 

chromium trioxide 30 % w/w, arsenic pentoxide 19.9 % w/w) used as wood preservatives 

(Bes and Mench, 2008; Mench and Bes, 2009). The soil was air-dried and sieved at 2 mm. A 

sandy control soil from the same soil type was sampled (0-0.25 m) in an uncontaminated 

kitchen garden, Gradignan, France. A soil aliquot (50 g) was used for particle size distribution 

analysis by sieving and pipette methods (Richards, 1954). The soil pH was measured in 1:1 

soil:water suspension using a glass electrode pH meter (Jackson, 1967). The soil electrical 

conductivity (EC) was measured in 1:1 soil: water suspension by using the glass electrode 

(Jackson, 1967). Total nitrogen was determined at the INRA laboratorie d’Analyses des sols 

(LAS), Arras, France using standard methods (Inra Las, 2007). The organic matter content 

was determined by a modified Walkely-Blake method; 0.5 g soil was placed in a 500-ml 

conical flask and mixed with 10 ml of 0.17 M K2Cr2O7 followed by addition of 20 ml of 

H2SO4, 200 ml of water, 10 ml of H3PO4 and one ml of diphenylamine indicator. Finally the 

contents were titrated with 0.5 M FeSO4.7H20. The estimation of organic matter assumes that 

77% of the organic carbon is oxidized by the method and that soil organic matter contains 

58% C (Jackson, 1967). The cation exchange capacity (CEC) was determined using 
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cobaltihexamine chloride (Ciesielski and Sterckeman, 1997). Total metal contents in soil were 

determined by ICP-AES after wet digestion in HF and HCIO4 (AFNOR NF X 31-147, 

Ciesielski et al., 1997). Table 1 lists physico-chemical properties of contaminated and control 

soils. 

 

2.2. Basic slag characterisation 

BS is a by-product of the steel industry, containing mainly calcium oxide, silicon 

oxide, iron oxide, and other metal oxides. They were determined by using an atomic 

absorption spectrophotometer (Rank Hilger, Atom Spek H-1580). Arsenic (As) was analysed 

by GF-AAS according to norm NF EN ISO 15586 (T90-119) after digestion with regal water 

(NF EN 13346), other trace elements were analysis by ICP-AES according to norm NF EN 

ISO 11885 after mineralisation (total digestion NFX31-147). The pH and electrical 

conductivity (EC) for BS were measured in 1:1 BS: water suspension by using pH meter and 

glass electrode EC respectively. The BS characterisation is shown in Table 2  

 

2.3. Pot experiment  

Four soil treatments were prepared by mixing soil (1 kg air-dried weight) with 0 %, 1 

%, 2 % and 4 % of BS. Amended soils (made in triplicates) were homogenised by rotation in 

2-L plastic flasks, transferred into 1.3-L plastic pots, then watered daily and maintained at 70 

% of water holding capacity (WHC, 10% of soil air-dried weight) by manual irrigation with 

distilled water and allowed to react for four weeks at 20°C. The control soil was treated in the 

same way. Four dwarf beans (Phaseolus vulgaris L. cv vroege Limburgs) were sown in all 

pots and cultivated (15 days) in controlled conditions: illumination 12 h light/12 h darkness 

regime, intensity 150 µmol m-2 s-1, temperature 25°C/22°C, and 50% relative humidity. Pots 

were arranged in a fully randomised block design on a bench and watered daily with 
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deionised water to 70% WHC to maintain the soil in the 50-70% WHC range during the day 

without loss from drainage. The plant growth was monitored on a daily basis using an index 

based on plant development steps for two weeks and then plants were harvested. Biometrical 

parameters, i.e. fresh weight (FW) of roots, shoots, and primary leaves were measured. Plant 

materials were washed with deionised water (2 times) and distilled water, oven dried at 70 °C, 

and weighted to determine the DW biomass production. Plant samples (0.5g) were wet 

digested in 5 mL 14M HNO3, 2 mL H2O2 and 1 mL distilled water at 180°C in PFA 

(perfluoroalkoxy copolymer resin) tubes under microwaves (MarXpress, CEM). Mineral 

composition in plant digests were measured by ICP-AES (Ultima, Jobin Yvon Horiba, 

Longjumeau, France). The soil samples were taken from all pots experiment to measure the 

soil pH and the EC in suspension soil:distilled water in the ratio 1:1 using a glass electrode pH 

meter and electrical conductivity respectively (Jackson, 1967). 

 

2.4 Statistics 

The soil properties and plant yield, element concentrations and total element amount 

in primary leaves [µg plant-1, so-called here element accumulation and calculated based on 

foliar element concentration (µg kg-1 DW) and leaf biomass production (µg DW plant-1) of 

plants from the pot experiment were tested by statistical analysis (ANOVA, Kruskall-Wallis 

and Tukey test) with SAS software version 9.1. 

 
 
3. RESULTS AND DISCUSSION 
 
3.1. Soil parameters 

The BS incorporation in soil study increased the soil pH in relation with the addition 

rate from 5.6 for the T1 treatment to 7.9, 8.3 and 9.8 for the T2, T3, and T4 treatments, 

respectively. This resulted in soil pH values higher in the T2, T3, and T4 treatments than in 
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the control soil (7.0) (Figure 1). Increase in soil pH was predicted by a polynomial equation (y 

= -0.223x2 + 1.883x + 5.774, R2 = 0.96). Ali and Shahram, (2007) found that the increasing 

rate of soil pH was proportional to the slag amount used in soil. Basic slag affected also the 

soil EC which increased from (in mS cm-1) 0.14 (T1) to 0.39, 0.46 and 0.82 for the T2, T3, 

and T4 treatments respectively. Consequently, soil EC was lower in the T1, T2 and T3 

treatments and higher in T4 than in the control soil (0.62 mS cm-1) (Figure 2). A linear 

equation predicted the increase in soil EC in relation with the BS addition rate (y = 0.161x + 

0.176, R2 = 0.97). The enhanced soil pH and EC in amended soils were likely due to the 

alkaline property and composition of BS. Su and Evans, (1996) reported that EC increased in 

soil treated with lime. Amelioration of acid soils with amendments such as alkaline by-

products can improve soil properties such as pH and EC (Alva and Sumner, 1990). Our results 

are in line with Pinto et al. (1995) who reported that BS application in acid soils increased the 

soil pH with and without NPK fertilization. In addition, the incorporation of Thomas basic 

slag into a Cu-contaminated topsoil from a wood treatment facility increased soil pH (Bes and 

Mench, 2008). Our results confirmed BS as a potential liming agent able to improve the soil 

acidity. An 1% addition rate would correspond to 25000-30000 kg BS ha-1 depending of the 

soil depth considered, i.e. 0.25 or 0.3 m. Rodriguez et al. (1994) suggested that Linz-

Donawitz (LD) slag application increased soil pH linearly, especially where fertilizer was not 

applied. The 7500 kg addition rate, without NPK fertilization, increased soil pH from 5.3 to 

6.5. When 3000 kg ha–1 of slag was added, the increase in soil pH was accompanied by a 

decrease of Al saturation percentage in the cation exchange complex to <10%. 

 

 

 

3.2. Plant analysis 
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3.2.1 Plant yield 

Some basic slags previously used in acid soils have ameliorated plant growth and their 

biomass production (Lopez et al., 1995). Shoot yield DW are presented in Figure 3. The effect 

of BS incorporation into the soil on the biomass of bean primary leaves varied across the 

treatments. The shoot yield was the highest for the control soil and the lowest for the T1 

treatment. This confirmed that the studied soil negatively impacted beans (Bes and Mench, 

2008). Shoot yield numerically increased for all amended soils. Compared to the untreated 

soil (T1), T2 and T3 treatments delivered the highest increases for the shoot yield, i.e. 1.89 

and 1.75 times for T2 and T3, while the T4 treatments gave an intermediate value. These 

values for shoot yields in the T2 and T3 treatment corresponded to 89 % and 83 % based on 

the control soil value. Only the difference between T1 and T2 treatments however was 

statistically significant. In previous findings, the application of respectively 1 % and 2 % 

(w/w) of the slag in tea garden soil and 0.5, 1 and 2 % slag in rice field soil increased the plant 

shoot DW yield (Ali and Shahram, 2007). The application of Linz-Donawitz (LD) slag in acid 

soils combination with NPK fertilizers resulted also in highest crop yields (Lopez et al., 

1995). The decrease in shoot yield for the T4 treatment compared to the T2 and T3 treatments 

likely indicated an excessive BS addition rate. The ideal soil pH for beans is in the 6.0-7.5 

range (Gardener’s Network, 2009) and soil pH for the T4 treatment largely exceeded these 

values. In addition the soil conductivity in the 0-0.45 mS cm-1 range is suitable for most plants 

if recommended fertilizers are used, but a high conductivity (0.46-0.7 mS cm-1) may reduce 

the emergence and cause a slight to severe damage to salt sensitive plants (Omafra, 2008). 

Indeed the soil EC in the T4 treatment which reached 0.8 mS cm-1 would be excessive and 

may contribute to limit bean shoot yields.  
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The BS effect on the root DW yield varied with its addition rate in soil (Figure 4). The 

highest value of the root DW yield occurred in the T2 treatment and the lowest value in the 

T1 treatment. Root yield was significantly higher in T2 and T3 BS-amended soils than in the 

untreated soil (T1) and control soil (CTRL). The differences however remained relatively 

low. For the T2 and T3 treatments, the root yield increased 1.06 and 1.05 times respectively 

compared to the untreated soil (T1). Higher increases in root biomass were previously 

obtained with the addition of Thomas basic slag (TBS) in a Cu-contaminated soil from a 

wood treatment facility (Bes and Mench, 2008) and of blast furnace slag to upland rice 

(Carvalho-Pupatto et al., 2004). At 4% addition rate, the beneficial BS effect on root yield 

disappeared again likely due to excessive increases in soil pH and EC.  

 

3.2.2. Foliar element concentrations and accumulations 

The effect of BS addition rate in soil on the foliar element concentrations and foliar 

element accumulations are presented in Tables 3 and 4 respectively.  

3.2.2.1. Foliar nutrient concentrations and accumulations 

Foliar Al concentration decreased in plants from all BS-amended soils. Its value was 

significantly lower in T3 plants than in T1 plants, reaching the control level. The decrease in 

foliar Al concentration is likely due to the liming effect, i.e. the rise in the soil pH and 

competition with Ca for root uptake, and increase in primary leaf biomass. The foliar Al 

accumulation varied in the 1.2-3.3 µg plant-1 range with lowest and highest values for T3 and 

T2 plants but differences were not significant. Foliar Mg concentration was higher in T1 

plants than in control plants likely due to a lower leaf biomass. The increase in the leaf 

biomass for the T2 and T3 beans reduced foliar Mg concentration. In addition, the rise of 

foliar Ca concentration may induce a decrease in foliar Mg concentration. Changes in foliar 

Mg accumulation were not significant. The Ca concentration was 3 times lower in the primary 
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leaves of T1 beans than that in control beans. It was also below frequent values for primary 

leaf Ca concentrations in dwarf beans. In the literature, 1% slag and 1% converter sludge 

treatments increased Ca and Mg concentration in the plant (Kiaee Jamali et al., 2005). Bes 

and Mench (2008) suggested that the low foliar Ca concentration vs. foliar Cu concentration 

can limit bean growth. The foliar Ca concentration was increased 8.9 times for both T2 and 

T3 plants compared to T1 plants and 2.7 times compared to the control plants. This reflected 

the Ca inputs in studied soil due to the BS incorporation. It decreased in T4 plants probably 

because roots were negatively impacted by the high soil EC value. The foliar Ca accumulation 

lined up according to the order: T1 < CTRL, T4 < T2, T3. The Foliar P concentrations were 

ranked as follows: T2, T3 < T4 < CTRL, T1. The control soil contained relatively a high 

organic matter content which could supply organic P and was regularly fertilized. Both low 

leaf yield for the T1 plant and acid soil pH in T1 treatment could likely enhance the foliar P 

concentration. Despite P inputs in soil due to the BS incorporation, the foliar P concentration 

was not increased in beans from BS-amended soils. We assumed that several soil and plant 

factors can explain this result. Firstly, the BS contained a high Ca content and relatively high 

Fe and Al contents. Therefore phosphates could be sorbed with these three cations and not 

easily available in the soil solution for root uptake. Increase in the leaf yield could contribute 

to reduce foliar P concentration in T2 and T3 beans. Regarding foliar P accumulation, plants 

from untreated and BS-treated soils have a lower value than the control soil. The foliar K 

concentration increased in relation with the BS addition rate but differences were only 

significant between T4 plants and the other plants. The foliar K concentration was 1.8 times 

and 1.5 times higher in T4 plants than in T1 plants and control plants, respectively. This 

slightly exceeded frequent values for foliar K concentration in bean primary leaves. However 

in plants the critical K concentration is in the 20-50 g kg-1 DW range (Marschner, 1995). The 
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foliar K accumulation was similar in T2, T3, T4 and CTRL. Only the T1 plants showed a 

decrease in foliar K accumulation compared to all other plants. 

 

3.2.2.2. Foliar trace element concentrations and accumulations 

The foliar Cu concentration varied from 5.6 mg kg-1 to 53.1 mg kg-1 in the following 

order: CTRL < T2, T3, T4 < T1. The foliar Cu concentration in T1 plants exceeded its 

frequent values and the critical Cu concentration for bean leaves, i.e. 15-30 mg Cu kg-1 DW 

(MacNicol and Beckett, 1985). We assumed that this mainly caused the phytotoxic effect in 

plants grown in the untreated, Cu-contaminated soil. The highest decrease in the foliar Cu 

concentration, i.e. 2.3 times compared to the T1 plants, was obtained for the T2 plants. This 

suggested that the Cu labile pool for root uptake in the soil is low at the T2 soil pH and that 

further increase in the soil pH for the T3 and T4 treatments may enhance Cu complexation 

with dissolved organic matter (DOM) in the soil solution (Sauvé et al., 1997). The mobility of 

copper in soil depended on several factors, including the Cu-complexing ability of the solid 

phase, the Cu-complexing ability of the DOM, and the molecular weight of the DOM fractions 

(Han and Thompson, 2003). Cu–DOM complexation increases approximately 10-fold per pH 

unit (Lu and Allen, 2002). However the availability of such Cu-DOM complexes for root 

uptake in T3 and T4 soils is questionable. The BS addition at 1% into the studied soil 

promoted bean growth with the lowest foliar Cu concentration and highest Ca concentrations. 

Foliar Cu accumulation varied from 0.4 mg to 2.0 mg plant-1 in the following order: CTRL < 

T4, T2, T3, T1. Indeed the Cu amount accumulated in primary leaves was not significantly 

changed in plants from BS-treated soils, but their improved shoot yield resulted in reducing 

foliar Cu concentrations through a biomass dilution effect. The rise in foliar Ca accumulation 

in BS-treated plants may contribute to a better pectin methylesterase functioning (Micheli, 

2001), resulting in the restoration of cell elongation and a higher Cu sorption on the cell walls. 
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Restoration of Ca homeostasis may also promote plant metabolism and the Cu sorption by 

various ligands (Pilon et al., 2006). Changes in foliar Zn concentration were not significant 

across the treatments. Foliar Zn concentration exceeded its frequent values in some dwarf 

beans from BS-treated soils but remained below the critical leaf concentration for dwarf beans 

i.e. 100 mg kg-1 DW (Mench et al., 2000). Usually an increase in soil pH reduces Zn 

availability in the soil solution and changes in the leaf yield affect the foliar Zn concentration 

causing a decrease in foliar Zn concentration (Mench et al., 2000). For instance the addition 

of Thomas BS decreases the mobility and bioavailability of Cd, Zn and Pb in a highly 

contaminated soil, near smelters at Evin (Pas de Calais, France) (Mench et al., 1994a). But 

here our results did not confirm such previous studies. The foliar Cr concentration was not 

significantly changed in BS-treated soils compared with the control soil, and all values fell in 

the range of Cr frequent values. The foliar Cr accumulations were also similar for all 

treatments. Foliar Cd concentration and accumulation decreased below the analytical 

detection limits with the BS application compared with the untreated soil. 

 

4. CONCLUSION 

A basic slag (BS) was incorporated at increasing addition rates (1, 2 and 4%) in an 

acid sandy Cu-contaminated soil. The soil pH was increased from 5.6 in the untreated soil up 

to 9.8 for the 4 % BS-amended soil. The soil conductivity rose from 0.14 mS cm-1 in the 

untreated soil to 0.38 mS cm-1, 0.46 mS cm-1, and 0.82 mS cm-1 in the 1%, 2%, and 4% BS-

amended soils respectively. These increases in soil pH and EC in all BS-amended soils likely 

resulted from the BS composition and in particular its high Ca content. The pot experiment 

carried out with dwarf beans demonstrated that (i) the foliar Cu concentration likely caused a 

phytotoxic effect in plants grown in the untreated, Cu-contaminated soil, (ii) the BS 

incorporation at 1% addition rate into the contaminated soil promoted bean growth with the 
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lowest foliar Cu concentration and highest Ca concentrations, and (iii) foliar P concentration 

however was not enhanced by the BS incorporation into the Cu-contaminated soil. Instead, 

foliar K accumulation in primary leaves was restored up to control level. Therefore this by-

product was effective at 1% addition rate as a liming material but not as a P fertilizer in this 

short-term experiment. The BS incorporation in the contaminated soil did not increase the 

foliar concentrations and accumulations for Cd, Cr, and Zn.  
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Table 1: Physico-chemical properties of contaminated and control soils. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 2: Characterisation of the basic slag 
pH  
EC mS/cm 

12.72 
12.2 

 
Al2O3   % 
CaO    % 
Fe2O3  % 
K2O    % 
MgO  % 
MnO  % 
P2O5   % 
SiO2   % 
TiO2   % 

 

 
5.91 
60.69 
14.61 
0.15 
2.51 
1.06 
1.05 
12.54 
1.47 

As mg/kg  <5 
Co mg/kg  <5 
Ni mg/kg  <10 
Cu mg/kg  5 
Zn mg/kg  42 
Pb mg/kg  <20 
Mn  % 0.01 

 
 

Parameters Contaminated soil Control soil 
Particle size distribution 
Sand % 
Silt   % 
Clay % 

 
88.8 
4.8 
6.4 

66.5 
15.5 
18.0 

pH 5.64 7.01 
EC mS cm-1 0.11 0.62 
Total nitrogen (N) g kg-1 0.693 2.94 
Organic carbon  g kg-1 14.8 40.4 
C/N % 21.3 13.8 
Organic matter  g kg-1 25.6 69.9 
CEC  cmol+ kg-1 1.94 16.1 
As mg kg-1 27.4 3.6 
Co mg kg-1 3.37 2.62 
Cr  mg kg-1 41.9 17.9 
Cu mg kg-1 630 21.5 
Mn mg kg-1 147 189 
Ni  mg kg-1 8.31 7.46 
Zn mg kg-1 42.3 50.9 
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Table 3: Element concentrations in the primary leaves of bean plants. 
 

 
- In a column mean values (± standard deviations) followed by the same letter do not differ 
significantly P (0.05<*<0.01), P (0.01<**<0.001), P (0.001<***<0.0001) and non significant NS 
(p>0.05).  
- (#) ranges of frequent values for element concentrations in the primary leaves of dwarf bean 
grown on uncontaminated control soils (Mench et al., 1996). 
- <dl: detection limit. 

 
 

Table 4: Element accumulation in the primary leaves of bean plants (µg plant-1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
- In a column (mean values ± standard deviations) followed by the same letter 
do not differ significantly P (0.05<*<0.01), P (0.001<***<0.0001) and non 
significant NS (P>0.05).  
- <dl: detection limit. 

 
Treatments 

 
T1 

 
T2 

 
T3 

 
T4 

 
CTRL 

Frequent 
values (#) 

 
Al  mg/kg 

0.07 a 
± 0.01* 

0.04 ab 
± 0.02* 

0.02 b 
± 0.01* 

0.04 ab 
± 0.01* 

0.03 b 
± 0.01* 

- 

 
Mg  g/kg 

3.14 a 
± 0.10*** 

1.93 c 
± 0.20*** 

1.93 c 
± 0.15*** 

2.18 c 
± 0.03*** 

2.51 b 
± 0.21*** 

 
1.9 - 3.7 

 
Ca  g/kg 

3.37 d 
± 1.03*** 

29.41 a 
± 3.21*** 

29.45 a 
± 1.37*** 

21.54 b 
± 1.77*** 

10.97 c 
± 1.95*** 

6.4 - 29 

 
P  g/kg 

5.24 a 
± 0.52** 

3.16 b 
± 0.55** 

3.30 b 
± 0.41** 

4.23 ab 
± 0.42** 

4.82 a 
± 0.14** 

1 - 6 

 
K  g/kg 

16.01 b 
± 1.23** 

18.62 b 
± 2.78** 

21.17 b 
± 2.16** 

29.77 a 
± 3.95** 

19.31 b 
± 0.13** 

13 - 22 

 
Cd  mg/kg 

0.11 a 
± 0.10 NS 

<dl <dl <dl <dl 
 

0.03 - 0.07 

 
Cr  mg/kg 

0.41 a 
± 0.09  NS 

0.33 a 
± 0.11  NS 

0.61 a 
± 0.27  NS 

0.65 a 
± 0.07  NS 

1.70 a 
± 1.02  NS 

0.13 - 1.7 

 
Cu  mg/kg 

53.13 a 
± 14.04** 

22.59 b 
± 1.59** 

27.54 b 
± 1.51** 

27.64 b 
± 0.71** 

5.65 c 
± 0.67** 

4.9 - 7.9 

 
Zn  mg/kg 

25 a 
± 14 NS 

31.5 a 
± 20.5 NS 

16.5 a 
± 3.5 NS 

24 a 
± 12 NS 

12 a 
± 2.5 NS 

13 - 20 

 
Treatments 

 
T1 

 
T2 

 
T3 

 
T4 

 
CTRL 

 
Al 

2.87 a 
± 1 .28 NS 

3.31 a 
± 2.26 NS 

1.18 a 
± 0.25 NS 

2.16 a 
± 0.97 NS 

2.28 a 
± 0.40 NS 

 
Mg 

119 a 
± 34  NS 

138 a 
± 16  NS 

128 a 
± 30  NS 

117 a 
± 25  NS 

195 a 
± 34  NS 

 
Ca 

127 c 
± 49*** 

2140 a 
± 531*** 

1950 a 
± 430*** 

1170 b 
± 337*** 

843 b 
± 71*** 

 
P 

198 b 
± 57* 

225 b 
± 27* 

214 b 
± 22* 

224 b 
± 29* 

377 a 
± 87* 

 
K 

602 b 
± 151* 

1354 a 
± 343* 

1405 a 
± 361* 

1583 a 
± 260* 

1521 a 
± 406* 

 
Cd 

0.01 a 
± 0.01 NS 

<dl <dl <dl <dl 
 

 
Cr 

0.02 a 
± 0.01 NS 

0.02 a 
± 0.01 NS 

0.04 a 
± 0.02 NS 

0.03 a 
± 0.003 NS 

0.15 a 
± 0.10 NS 

 
Cu 

2.04 a 
± 0.80 NS 

1.63 a 
± 0.32 NS 

1.81 a 
± 0.34 NS 

1.48 a 
± 0.27 NS 

0.43 b 
± 0.06 NS 

 
Zn 

0.92 a 
± 0.04NS 

2.26 a 
± 1.08  NS 

1,07 a 
± 0.06  NS 

1.27 a 
± 0.8  NS 

0.94 a 
± 0.03  NS 
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Values are mean ± standard errors (n=3). Bar graphs with different letters were 

significantly difference; P (0.001<***<0.0001). 

 
Fig. 1: Effects of basic slag on the soil pH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are mean ± standard errors (n=3). Different letters on bar graphs indicate a 

significant difference; P (0.001<***<0.0001). 
 
 

Fig. 2: Effects of basic slag on the soil EC 
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Values are mean ± standard errors (n=3). Different letters on bar graphs indicate a 

significant difference; P (0.05<*<0.01). 

 
Fig. 3: Effect of basic slag on shoot yield of bean plants (g DW plant-1) for each treatment 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are mean ± standard errors (n=3). Different letters on bar graphs indicate a 

significant difference; P (0.01<**<0.001). 

 
Fig. 4: Effect of basic slag on root yield of bean plants (g DW plant-1) for each treatment 
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