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[1] Laboratory experiments are performed to understand the controlling parameters of the
electrical field associated with the seepage of water through a porous material. We use
seven glass bead packs with varying mean grain size in an effort to obtain a standard
material for the investigation of these electrical potentials. The mean grain size of these
samples is in the range 56–3000 mm. We use pure NaCl electrolytes with conductivity in
the range 10�4 to 10�1 S m�1 at 25�C. The flow conditions cover viscous and inertial
laminar flow conditions but not turbulent flow. In the relationship between the streaming
potential coupling coefficient and the grain size, three distinct domains are defined by
the values of two dimensionless numbers, the Dukhin and the Reynolds numbers. The
Dukhin number represents the ratio between the surface conductivity of the grains (due to
conduction in the electrical double layer coating the surface of the grains) and the pore
water electrical conductivity. At high Dukhin numbers (�1) and low Reynolds numbers
(�1), the magnitude of the streaming potential coupling coefficient decreases with the
increase of the Dukhin number and depends on the mean grain diameter (and therefore
permeability) of the medium. At low Dukhin and Reynolds numbers (�1), the streaming
potential coupling coefficient becomes independent of the microstructure and is given
by the well-known Helmholtz-Smoluchowski equation widely used in the literature. At
high Reynolds numbers, the magnitude of the streaming potential coupling coefficient
decreases with the increase of the Reynolds number in agreement with a new model
developed in this paper. A numerical application is made illustrating the relation between
the self-potential signal and the intensity of seepage through a leakage in an embankment.

Citation: Bolève, A., A. Crespy, A. Revil, F. Janod, and J. L. Mattiuzzo (2007), Streaming potentials of granular media: Influence of

the Dukhin and Reynolds numbers, J. Geophys. Res., 112, B08204, doi:10.1029/2006JB004673.

1. Introduction

[2] The generation of electrical signals associated with
the movement of water in porous/fractured materials is
related to the viscous drag of the excess charge contained
in the pore water of the porous medium [e.g., Bull and
Gortner, 1932]. The record of these electrical fields pro-
vides a powerful geophysical method for tracking the
pattern of groundwater flow. Applications in geohydrology
concern the forced movement of water associated with
deformation of porous rocks [e.g., Lorne et al., 1999a,
1999b; Revil et al., 2003], the determination of preferential
flow paths over karstic areas [Jardani et al., 2006a, 2006b],
the determination of transmissive properties of unconfined
aquifers [Titov et al., 2000], the determination of subglacial
flow patterns [Kulessa et al., 2003a, 2003b], CO2 seques-
tration [Moore et al., 2004], and the detection of leakages in
embankments and dams and the interpretation of the resul-

ting self-potential signals in terms of seepage velocity [e.g.,
Bogoslovsky and Ogilvy, 1970; Gex, 1980; Panthulu et al.,
2001; Sheffer, 2002; Sheffer and Howie, 2001, 2003; Titov
et al., 2005; Rozycki et al., 2006]. These works have also
recently driven the development of new algorithms of self-
potential tomography [e.g., Revil et al., 2001; Long and
Hao, 2005; Minsley et al., 2007] and tank-scale laboratory
measurements in well-controlled conditions to check the
underlying physics of these processes [Maineult et al.,
2006a, 2006b; Moore and Glaser, 2007]. Similar types of
analysis were carried out recently inmedical imaging to study
the flow of electrolytes in cartilage submitted to mechanical
loads [Sachs and Grodzinsky, 1995; Garon et al., 2002] and
in plant sciences to monitor the flow of sap in trees [Gibert et
al., 2006].
[3] There are a number of works published in the lite-

rature regarding the measurement of streaming potentials
associated with the flow of water through granular porous
materials [e.g., Ahmad, 1964; Lorne et al., 1999a, 1999b;
Guichet et al., 2006]. The streaming potential coupling
coefficient is a material property arising in the coupled
hydroelectric problem of porous material. It represents the
variation of the electrical potential to a variation in pore
fluid pressure. For example, Bull and Gortner [1932] show
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a decrease of the strength of the streaming potentials by two
orders of magnitude when the grain size decreases by two
orders of magnitude from �5 to 500 mm at low ionic
strengths (�10�4 N NaCl at 25�C). This decrease was
explained by Revil et al. [1999b] as resulting from the
influence of the surface conductivity of the grains on the
streaming potential coupling coefficient in the viscous
laminar flow regime.
[4] However, very few researchers have investigated the

effect of non-viscous laminar flow upon the electrokinetic
process. Streaming potential measurements have been made
in capillaries of different radii to see the influence of the
viscous sublayer upon the electrokinetic process at high
Reynolds numbers [Bocquet et al., 1956; Kurtz et al., 1976].
The Reynolds number is a key-dimensionless number that
expresses the ratio of inertial to viscous forces in the Navier-
Stokes equation. However, as far as we know, there were no
works investigating quantitatively the influence of the
Reynolds number upon the value of the streaming potential
coupling coefficient at the transition between the viscous-
laminar flow regime and the inertial-laminar flow regime in
porous media.
[5] In this paper, we propose a new formulation regarding

the influence of the Reynolds number upon the coupled
hydroelectric problem of porous material. In this formula-
tion, we also account for the influence of surface conduc-
tivity of the grains on both the electrical conductivity and
the streaming potential coupling coefficient. To check the
validity of this model, we measured the streaming potential
coupling coefficient and electrical conductivity of glass
bead packs at different salinities. We investigate a set of
seven well calibrated glass bead packs that can be consi-
dered as a standard material for the investigation of elec-
trokinetic phenomena. The mean grain size of each sample
is in the range 56 to 3000 mm (the permeability of these
samples covers approximately four orders of magnitude and
the porosity f is approximately that of a random packing of
spherical particles, f = 0.40). We used NaCl solutions with
electrical conductivities in the range 10�4 to 10�1 S m�1 at
25�C, corresponding to the conductivity of surface and
groundwaters often encountered in nature. Our goal in this
paper is to provide a model explaining the variations of the
streaming potential with the mean grain diameter of the
sample at different salinities. An illustration is made by
simulating the intensity of self-potential signals associated
with the leakage of water through an embankment. We
show that a quantitative relationship exists between the
intensity of the self-potential signals and the intensity of
seepage.

2. Theoretical Background

[6] In this section, we discuss a theoretical model able to
capture the influence of two key dimensionless numbers,
namely the Dukhin and the Reynolds numbers, upon the
value of the streaming potential coupling coefficient. The
streaming potential coupling coefficient is the key parame-
ter that controls the magnitude of self-potential signals
associated with the percolation of water through a porous
material. This electrokinetic or hydroelectrical phenomenon
stems from the existence of an electrical double layer
coating the surface of the grains. Indeed, when in contact

with water, the surface of the minerals becomes charged.
The fixed charge of the mineral surface is counterbalanced
by sorbed charges in the Stern layer plus charges located
in the diffuse layer. The counterions correspond to the
excess of ions (generally cations) located in the pore space
of the porous material. The flow of water through the
porous material drags the excess charge contained in
the pore space, creating a net source of current density
(the streaming current) [e.g., Lorne et al., 1999a, 1999b].
The opposite mechanism exists and corresponds to the
flow of pore water in response to the application of an
electrical field. This is due to viscous drag of the pore
water by the movement of the counterions associated with
the application of the electrical field. This mechanism is
known as electro-osmosis.

2.1. Viscous Laminar Flow

[7] We consider a granular medium with a narrow particle
size distribution centered on a mean particle diameter d0. If
the distribution of the size of the particles corresponds to a
log normal distribution, d0 corresponds to the peak of this
distribution. We denote p the pore fluid pressure (in Pa) and
8 the electrical potential (in V). We consider that the pore
water is an electrolyte with N ionic species (the mobility of
species i is bi and their charge qi). The boundary-value
problem describing the hydroelectric coupling through a
granular porous material is given by the Nernst-Planck and
Stokes equations [e.g., Pride, 1994; Revil and Linde, 2006],

jf ¼
XN
i¼1

qi �biqi �Cir8þ �Ci

@uf
@t

� �
ð1Þ

�rpþ hfr2 @uf
@t

� �
þ F ¼ 0; ð2Þ

@uf
@t

¼ 0; on S; ð3Þ

jf 
 n ¼ 0; on S ð4Þ

where jf is the electrical current density in the pore water (in
A m�2), @uf/@t is the velocity of the pore fluid (in m s�1)
and r 
 (@uf/@t) = 0 (incompressibility of the flow), F =
��QVr8 is the electrostatic microscopic body force per unit
volume acting on the pore water, n is the unit vector normal
to the surface of the grains, �QV is the excess charge per unit
pore volume (expressed in Coulomb m�3), hf is the dynamic
viscosity of the pore water (in Pa s), and �Ci is the
concentration of species i per unit pore volume. In the
following, the pressure will be equal to the hydrostatic fluid
pressure (in Pa), p = rf gh, where h is the hydraulic head (in
m), g is the acceleration due to gravity (in m s�2), and rf is
the bulk density of the pore water (in kg m�3).
[8] There are several ways to upscale equations (1) and

(2), which are subjected to the local boundary conditions
given by equations (3) and (4) plus specified macroscopic
boundary conditions. Examples are volume-averaging and
differential-effective-medium approaches [see Pride, 1994;
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Revil, 2002]. In all cases, theories developed in the vicinity
of thermodynamic equilibrium yield macroscopic linear
constitutive equations between the macroscopic current
density J (in A m�2) and the seepage velocity U (in
m s�1). In the viscous laminar flow regime, this yields,

J ¼ �s r8� C0rhð Þ; ð5Þ

U ¼ �K0rhþ C0sr8; ð6Þ

where K0 = k0rfg/hf is the hydraulic conductivity of the
porous medium (in m s�1), k0 is its permeability (in m2), s
is the DC-electrical conductivity of the porous material (in S
m�1), and C0 is its streaming potential coupling coefficient,
expressed here in volts per meter of hydraulic head and
defined by

C0 ¼
@8

@h

� �
J¼0

: ð7Þ

[9] Revil [2002] proposed to use a differential-effective-
medium approach to obtain an expression for the electrical
conductivity and then for the streaming potential coupling
coefficient. This model can be written as [Revil et al., 2002]

k0 ¼
d20

@F F � 1ð Þ2
; ð8Þ

C0s ¼ rfg
ef z
hfF

; ð9Þ

s ¼ sf x; as x � 1; ð10Þ

s ¼ sf

F
Fx þ 1

2
1� xð Þ 1� x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ2þ4Fx

q� �� �
; as x � 1;

ð11Þ

where ef is the dielectric constant of water (ef = 80  e0
where e0 = 8.84  10�12 F m�1 is the dielectric constant of
free space), z is the so-called zeta potential (a key parameter
characterizing the electrical potential of the inner part of the
electrical diffuse layer, see Leroy and Revil, 2004), a is an
empirical constant [see Revil and Cathles, 1999], F = f�m is
the electrical formation factor, and sf is the electrical
conductivity of the brine. The exponent m is often called the
cementation exponent or first Archie’s exponent, x is a
dimensionless number called the Dukhin number, the ratio
between the surface conductivity of the grains to the
electrical conductivity of the pore water [e.g., Shilov et al.,
2001]:

x � sS=sf : ð12Þ

[10] As shown below, equation (10) is used to capture the
non-linear behavior of the relationship between the electri-
cal conductivity of the porous material and the electrical
conductivity of the pore water [see discussion in Niwas

et al., 2006]. equations (10) and (11) imply the existence of
an iso-conductivity point characterized by s = sf = sS. At
this point, the conductivity of the material is equal to the
conductivity of its pore water.
[11] For packing of spheres, the macroscopic surface

conductivity sS is related to the specific surface conductiv-
ity, SS, by [Revil and Linde, 2006],

sS ¼ 6SS

d0
; ð13Þ

where the numerical constant 6 corresponds to spherical
grains. Surface conductivity includes conduction in the
Stern layer of sorbed counterions and in the diffuse (Gouy-
Chapman) layer [Ennis and White, 1996; Revil and Glover,
1997, 1998].
[12] All the material properties entering the constitutive

equations depend on only two textural parameters, the mean
grain diameter and the formation factor, and two electrical
double layer properties, the zeta potential z and the specific
surface conductivity SS. For simple supporting electrolytes,
the zeta potential depends usually on the logarithm of the
salinity (and therefore on the logarithm of the electrical
conductivity) of the pore water [e.g., Kirby and Hasselbrink,
2004] over a wide range of salinity. Such a dependence was
demonstrated theoretically by Revil et al. [1999a] using an
electrical double layer model. So we can write

z ¼ aþ b log10 sf ; ð14Þ

where a and b are two constants.
[13] The dependence of the specific surface conductivity

on salinity is not well known. Most authors consider the
surface conductivity to be a constant that is independent of
the mineralization and composition of the groundwater.
Revil and Glover [1997, 1998], and Leroy and Revil
[2004] have proposed double-layer models for silica and
aluminosilicates to determine the salinity dependence of
surface conductivity. They found that most of the surface
conductivity is due to electrical conduction in the Stern
layer and that the salinity dependence of the surface
conductivity is relatively weak (the situation would be very
different if surface conduction occurred mainly in the
diffuse Gouy-Chapman layer of counterions). The uncer-
tainty in the electrical conductivity and streaming potential
measurements does not allow a salinity dependence of the
surface conductivity to be determined so it is customary to
assume that surface conductivity is independent of salinity.
Because this dependence is probably weak as discussed
above, we will adopt this assumption below.
[14] When the Dukhin number is very small, the stream-

ing potential coupling coefficient is given by the Helmholtz-
Smoluchowski equation:

h!0
limC0 � CHS ¼ ef z

hfsf

; ð15Þ

[15] According to this equation, the streaming poten-
tial coupling coefficient is independent of the texture of
the porous material and therefore independent of the
permeability.
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2.2. Inertial Laminar Flow

[16] Darcy’s law in its classical form implies a linear
relationship between the flux and the gradient of the fluid
pressure when the flow is laminar and the viscous (friction)
force dominates at the interface between the grains and the
pore water. As the Reynolds number increases, we pass
from this viscous-laminar flow regime to another laminar
flow regime in which the inertial force controls the flow. For
a Reynolds number higher than 100–200, flow starts to
become turbulent and vorticities appear in the flow lines in
the pore space of the material. However, we will not
consider the turbulent regime in this paper, as it does not
seem to have practical applications in geohydrology of
porous media.
[17] Teng and Zhao [2000] derived recently a generalized

Darcy equation by volume-averaging the local Navier-
Stokes momentum equation over a representative elemen-
tary volume of a porous material, given by

rf
dU

dt
þ 1þ Re

k0
hfU ¼ �rpþ F; ð16Þ

where F is a macroscopic body force and Re is the Reynolds
number, a key-dimensionless number that expresses the
ratio of inertial to viscous forces in the Navier-Stokes
equation [e.g., Batchelor, 1972]. For a capillary of radius R,
U being the strength of the seepage velocity, the Reynolds
number is then defined by [e.g., Batchelor, 1972],

Re ¼ rfUR
hf

: ð17Þ

[18] In a porous material, the radius of the capillary
should be replaced by a corresponding length scale of the
porous material. The Reynolds number is defined by,

Re ¼ rfUL
hf

; ð18Þ

where L is a characteristic length of the flow (for capillaries
L = R where R is the radius of the capillary). If we replace U
by the Darcy equation (neglecting the electroosmotic
contribution), we can approximate the Reynolds number,

Re ¼ r2f gk0L
h2f 1þ Reð Þ

h

L
; ð19Þ

where h is the hydraulic head and L is the length of the
cylindrical core pack. For a granular medium with a
unimodal particle size distribution, the length scale L is
given by [Revil, 2002]

L ¼ d0

2m F � 1ð Þ : ð20Þ

[19] From equations (19) and (20), the Reynolds number
is the solution of the following equation,

Re2 þ Re�
r2f g

2mah2f

d30

F F � 1ð Þ3
h

L

� �
¼ 0: ð21Þ

[20] The positive root of equation (21) is,

Re ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
� 1

� 	
; ð22Þ

c
br2f g
h2f

d30

F F � 1ð Þ3
h

L

� �
; ð23Þ

where b � 2.25  10�3 is a numerical constant
(determined from the constants given above). Equation
(22) is a new equation that has a strong practical value since
it can be easily used to determine the Reynolds number in a
porous material from the knowledge of the pressure
gradient.
[21] In the present case, the macroscopic body force

corresponds to the electrostatic force associated with the
excess of electrical charge per unit pore volume. Therefore
the generalized Darcy equation, equation (16), can be
written as,

U ¼ � k

hf
rp� �QVr8; ð24Þ

where k is an apparent permeability that is related to the
Reynolds number by

k=k0 ¼ 1= 1þ Reð Þ; ð25Þ

Re!0
lim k=k0 ¼ 1; ð26Þ

where k is the permeability in viscous laminar flow
conditions.
[22] The influence of inertial flow upon electrokinetic

coupling has been the subject of very few publications [see
recently Watanabe and Katagishi, 2006 and references
therein]. Gorelik [2004] used dimensional analysis to dem-
onstrate that the effect of the Reynolds number corresponds
to a multiplication of the Helmholtz-Smoluchowski equa-
tion by an unspecified function of the Reynolds number. In
this paper, we look for an explicit (quantitative) relationship
between the streaming potential coupling coefficient and the
Reynolds number. At the scale of a representative elemen-
tary volume, the current density is given by [Revil et al.,
2005; Linde et al., 2007]

J ¼ �sr8þ �QVU; ð27Þ

J ¼ �sr8� k �QV

hf
rp; ð28Þ

where k is the apparent permeability defined above. The
streaming potential coupling coefficient can be related to the
excess charge of the diffuse layer per unit pore volume, �QV,
by C0 = k0�QV/hfs [Revil et al., 2005]. Equation (27)
expresses the fact that the source current density is equal to
the excess of charge of the pore fluid �QV times the seepage
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velocity U. As the seepage velocity is influenced by the
increase of the Reynolds number (for Re > 0.1), the
Reynolds number also influences the value of the streaming
potential coupling coefficient. Following equations (25) and

(28), the streaming potential coupling coefficient is related
to the Reynolds number by,

C=C0 ¼ 1= 1þ Reð Þ; ð29Þ

Re!0
lim C=C0 ¼ 1; ð30Þ

where C0 is the streaming potential coupling coefficient in
viscous laminar flow conditions and C is the measured
coupling coefficient.
[23] In summary, the generalized coupled constitutive

equations between the seepage velocity and the electrical
current density are,

J ¼ �s r8� C0

1þ Re
rh

� �
; ð31Þ

U ¼ � K0

1þ Re
rhþ C0

1þ Re
sD8; ð32Þ

with a preserved symmetry of the coupling term. This
means that Onsager’s reciprocity holds. The situation would
likely be different in the turbulent flow regime where a
magnetic field is probably associated with vortices of the
local flow lines in the pore space.

3. Experimental Methods

[24] The experimental setup for the measurement of the
streaming potential coupling coefficient is shown in
Figure 1a. It consists simply of a Plexiglas tube with a

Figure 1. Sketch of the experimental setup. The sample is
packed at the bottom of a Plexiglas tube and is maintained
in the tube by a permeable membrane with a coarse mesh
(the mesh is, however, finer than the diameter of the grains).
The record of the self-potentials during the flow of the
electrolyte through the sample is done with Ag/AgCl2
electrodes (‘‘Ref’’ is the reference electrode). The hydraulic
heads are maintained constant at different levels and the
streaming potentials are recorded at these levels at the end-
faces of the sample.

Table 1. Measured Properties of the Glass Bead Packs

Sample
d range
(in mm) d0 (in mm) F a sS (in mS m�1)a k0 (in m2)b c

S1a 50–60 56 3.3 ± 0.2 0.43 ± 0.05 2.0  10�12

S1b 60–80 72 3.2 ± 0.2 0.32 ± 0.05 3.1  10�12

S2 80–106 93 3.4 ± 0.2 0.26 ± 0.04 4.4  10�12

S3 150–212 181 3.3 ± 0.2 0.13 ± 0.02 2.7  10�11

S4 212–300 256 3.4 ± 0.2 0.08 ± 0.02 5.6  10�11

S5 425–600 512 3.4 ± 0.2 0.05 ± 0.02 1.2  10�10

S6 3000 3000 3.6 ± 0.2 0.10 ± 0.02 1.4  10�8

aThe uncertainty is determined from the best fit of the electrical
conductivity data using equation (11).

bDetermined from equation (25) where k is the measured value and Re
the Reynolds number.

cThe uncertainty is roughly equal to 10% of the reported value.

Figure 2. Example of a typical run for sample S3 (grain size
of 150–212 mm) and a water conductivity of 10�3 S m�1. The
filled circles correspond to the measurements of the
streaming potential at the two end-faces of the sample while
the grey columns correspond to the measurement of the
hydraulic heads. The streaming potentials are proportional to
the imposed hydraulic heads. The results are reproducible.
This means that there is no drift of the electrical potential of
the electrodes during the duration of the experiment.
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permeable and electrically insulating membrane, placed at
its bottom, with a mesh of 50 mm. We check that the
permeability of this membrane is always at least ten
times larger than the permeability of the sample (for
the highly permeable sample S6, we use a coarser mesh).
Each sample corresponds to a packing of glass beads
(manufactured by Sigma-Aldrich) of a given particle size.
They are seven glass bead packs investigated in this
study with mean particle size in the range 56–3000 mm,
so approximately covering two orders of magnitude in
size (Table 1). The chemical composition of the glass is
SiO2 �60.5%, Na2O �12 to 18 %, CaO �5 to 12%,
MgO �4%, Al2O3 �1%. The measured mass density of
the grains is 2430 kg m�3. The measured porosity of the
packs is f = 0.40 irrespective of the size of the glass
beads. The other properties of the glass bead packs are
reported in Table 1.
[25] To measure the streaming potential coupling coef-

ficient, we use the following protocol. In some cases, a
given hydraulic head is imposed on the cylindrical
sample inside the tube by adding water to the water
column in the tube in such a way that the hydraulic head
is maintained constant. We use also for some experiments
a falling head method during which the electrical poten-
tial is measured during the decrease of the hydraulic head
in the tube associated with the flow of the water through
the porous pack. The gradient of the fluid pressure is
controlled by the hydraulic head in the tube and the
length of the porous pack (typically between 1 to 60
centimeters). In both cases, the brine is flowing through
the porous sample. The resulting electrical potential is
measured with two non-polarizable Ag/AgCl2 electrodes
(Ref321/XR300, Radiometer Analytical) located in the

vicinity of the end faces of the sample. The difference
of the electrical potential measured between the end
faces of the porous pack divided by the length of the
sample is the streaming electrical field associated with
the flow of the brine through the pack. The voltages are
measured with a data logger (Easy Log, internal imped-
ance of 10 MOhm, sensitivity of 0.1 mV) or with a
voltmeter (Metrix MX-20, internal impedance 100
MOhm, sensitivity of 0.1 mV). Both provided consistent
measurements.
[26] Streaming potential data from a typical run are

shown at Figures 2 and 3. In viscous laminar flow con-
ditions, the differences of the electrical potential measured
in the vicinity of the end-faces of the porous medium are
proportional to the imposed hydraulic heads, as shown in
Figures 2 and 3. The slope of the linear trend of streaming
potential vs. head is the streaming potential coupling
coefficient, defined from equation (5) by

C ¼ @8

@h

� �
J¼0

: ð33Þ

[27] In addition to the streaming potential coupling coef-
ficient, we determine the intrinsic permeability in viscous-
laminar flow conditions by measuring the seepage per unit
time at a given hydraulic head (when the flow was not in the
viscous-laminar flow regime, we performed a correction
using the estimated value of the Reynolds number as
explained below). Measurements of the streaming potential
coupling coefficient and permeability were performed for
different pore water electrical conductivities using different
NaCl solutions. These solutions were prepared by measur-
ing the weight of NaCl salt to add to a given solution of
deionized water or by measuring directly the conductivity
the solution with a calibrated impedancemeter. We use the
following set of brine conductivities (3  10�2, 10�2, 3 
10�3, 10�3, 3  10�4, and 10�4 S m�1) for the streaming
potential measurements. The electrical conductivity of the
electrolytes was measured with a conductivity meter (CDM-
230, MeterLabk). The pH of the solution, measured with
the pH-meter (pH-330, SET1-Fisher), is in the range 5.6 to
5.9 at 24.5�C. Values of the streaming potential coupling
coefficients are reported in Table 2.
[28] We also measure the electrical conductivity using a

frequency-dependent impedancemeter (Waynekerr Analy-

Figure 3. Example of typical runs for sample S4 (grain
size of 212–300 mm) at three water conductivities. We
observe linear relationships between the variation of the
streaming potentials and the variation of the hydraulic heads
at these different salinities. At each salinity, the streaming
potential coupling coefficient is equal to the slope of the
linear trend.

Table 2. Values of the Streaming Potential Coupling Coefficient

C0 (Expressed in mV m�1)a

Sample
3  10�2

(S m�1)
10�2

(S m�1)
3  10�3

(S m�1)
10�3

(S m�1)
3  10�4

(S m�1)
10�4

(S m�1)

S1a �12.5 �22.0 �75 �159 �454 �647
S1b �8.5 �36.0 �142 �245 �748 �1944
S2 �8.1 �24.0 �87 �224 �477 �3215
S3 �7.6 �30.5 �137 �319 �1219 �4793
S4 �7.5 �23.0 �82 �317 �1132 �4502
S5 �11.1 �36.0 �107 �331 �1451 �3483
S6 �17.2 �43.0 �159 �510 �1014 –
CHS

b �6.9 �30.2 �136 �504 �2033 �7063
aThe coefficient C0 is determined from equation (29) where C is the

measured coupling coefficient and Re is the Reynolds number determined
using equation (22) (Measurements made at 25 ± 1�C).

bValues predicted by the Helmholtz-Smoluchowski equation (in mV/m).
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ser 6425) in the frequency range 30 Hz–300 kHz. Elec-
trical conductivity measurements were performed in the
frequency domain with a two-electrode device (with stain-
less steel electrodes) according to the protocol described in
Revil et al. [2002]. We use the following set of brine
conductivities (10�1, 6  10�2, 3  10�2, 10�2, 3 
10�3, 10�3, 3  10�4, and 10�4 S m�1) for the electrical
conductivity measurements. The description of this proto-
col will not be repeated here. Accuracy of the measure-
ment is estimated to be 5%. Values of the electrical
conductivity are reported in Table 3. They are obtained
at a frequency of a few hundreds of Hertz to a few kHz.
[29] Permeability is determined using Darcy’s law and

measuring the volume of water passing through the glass
packs per unit time. Measurements were reproducible with
an uncertainty of 10%. Values of the measured intrinsic
permeability (in the viscous laminar flow regime) are
reported in Table 1.

4. Results and Discussion

4.1. Intrinsic Permeability

[30] In Figure 4, we plot the measured intrinsic perme-
abilities versus the intrinsic permeabilities predicted by
equation (8) corrected for the influence of the Reynolds
number (see equations (22) and (25)). There is very good
agreement between the measured data and the prediction of
equation (8).

4.2. Electrical Conductivity

[31] In Figure 5, we plot the electrical conductivity of the
samples as a function of the electrical conductivity of the
pore water. We use equation (11) to fit these experimental
data in order to determine the value of the surface conduc-
tivity and the electrical formation factor. The mean
formation factor is 3.4 ± 0.1 (see Table 1). Using Archie’s
law, F = f�m and a porosity of 0.40, we obtain a cementation
exponent m = 1.34 (this is consistent with the cementation
exponent of unconsolidated sands and glass beads reported
by Sen et al. [1981]).
[32] The value of surface conductivity of each pack is

reported as a function of the mean diameter of each pack in
Figure 6. We see very clearly that surface conductivity is
inversely proportional to the mean diameter of the beads as
predicted by the theory. The value of the specific surface
conductivity obtained from this trend, SS = 4.0  10�9 S, is
consistent with the double layer model prediction of Revil et
al. [1999a] for a salinity of 10�3 S m�1, and with previous
experimental data [O’Brien and Rowlands, 1993]. Other
estimates of the specific surface conductance are reported in
Table 4. They are consistent with the above estimate.

Brovelli et al. [2005] used a finite element code to simulate
electrical conduction in a partially water-saturated sand-
stone. They obtained SS = 3.3  10�7 S. Wildenschild et al.
[2000] obtained SS in the range (0.5–1.5)  10�7 S using
electrical conductivity data on mixtures of sand and clay
particles. Block and Harris [2006] found SS = 4.2  10�8 S
with sand with a small amount of clay particles. However,
none of these authors discussed the discrepancy between
their estimates and those obtained from electrical triple layer
calculations [see Revil and Glover, 1997, 1998; Revil and
Leroy, 2001; Leroy and Revil, 2004]. Our conclusion is that
the values derived by Wildenschild et al. [2000], Brovelli et
al. [2005], and Block and Harris [2006] are strongly over-
estimated by one to two orders of magnitude because of the
inappropriate mean grain size used by these authors to
estimate the surface conductance from the macroscopic
surface conductivity.
[33] The ‘‘conductivity ratio’’ of the porous samples is

defined as the ratio between the electrical conductivity of
the porous pack to the conductivity of the brine. These
conductivity ratios are plotted in Figure 7 as a function of
the Dukhin numbers for all the samples. As discussed by
Revil et al. [2002], this provides a way to normalize
electrical conductivity plots. We observe that all the data
fall on the same curve that is well reproduced by our model.
This shows the power of our electrical conductivity model
to represent accurately the electrical conductivity response

Table 3. Measurements of the Electrical Conductivity of the Samples s (in 10�4 S m�1) as a Function of the Electrical Conductivity of

the Solution

Sample 10�1 (S m�1) 6  10�2 (S m�1) 3  10�2 (S m�1) 10�2 (S m�1) 3  10�3 (S m�1) 10�3 (S m�1) 3  10�4 (S m�1) 10�4 (S m�1)

S1a 289.5 199.0 100.9 38.4 12.61 6.59 3.38 2.11
S1b 291.4 199.0 101.3 38.6 12.30 6.62 2.54 1.94
S2 291.4 195.6 91.6 32.6 11.77 6.20 2.29 1.78
S3 290.9 193.0 86.8 32.7 11.74 5.11 1.81 1.19
S4 288.0 188.7 86.5 31.9 11.47 3.78 1.33 1.08
S5 283.1 187.3 84.6 31.5 11.14 3.31 1.14 0.94
S6 279.8 182.0 75.6 31.6 9.61 3.59 2.28 0.91

Figure 4. Measured versus modeled intrinsic permeability
for the samples investigated in this study. We use a = 53,
and the formation factor is equal to 3.4. For sample S6, the
measured permeability is corrected for the value of the
Reynolds number using the formulae given in the main text,
equations (22) and (25).
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of granular materials. We point out that popular electrical
conductivity models such as the Waxman and Smits [1968]
model [or all the family of ‘‘linear conductivity models’’,
see Niwas et al., 2006] cannot reproduce these experimental
data as they do not explain the occurrence of an iso-
conductivity point.

4.3. Coupling Coefficient

[34] The model developed for the streaming potential
coupling coefficient in Section 2 can be summarized by
the following equation,

C ¼ CHS

G Reð Þ
H xð Þ ; ð34Þ

where G(Re) = 1/(1 + Re) and H(x) = Fs0(x)/sf. In this
section, we test the accuracy of Equation (34) to determine
the streaming potential coupling coefficient and therefore to
demonstrate that the coupling coefficient is controlled by
the Dukhin and Reynolds numbers.
[35] A preliminary step is to determine the dependence of

the zeta potential on the conductivity of the pore water as

Figure 5. Plots showing the logarithm of the electrical conductivity of four samples s versus the
logarithm of the electrical conductivity of the brine sf. The iso-conductivity point is defined by the
condition s = sf for which we also have ss = sf. The surface conductivity ss and the electrical formation
factor F are inverted from equation (11) and the experimental data. The plain lines represent the best fit of
the model. Note the very good agreement between the model and the experimental data.

Figure 6. Surface conductivity ss versus the inverse of the
mean bead size. The linear trend is used to determine the
specific surface conductivity, which is equal to SS = 4.0 
10�9 S. Note the excellent correlation between the surface
conductivity data and the mean diameter of the beads in the
packs (except for sample S6), in agreement with the theory.
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discussed in Section 2. Using equation (9), we combined the
measurements of the streaming potential coupling coeffi-
cient and the measurements of the electrical conductivity to
determine the values of the zeta potential in viscous-laminar
flow conditions. The results are reported as a function of the
logarithm of the electrical conductivity of the pore water in
Figure 8. These results are consistent with the values
usually reported for silica and glasses [e.g., Kirby and
Hasselbrink, 2004]. The constants a and b of equation (14)
corresponding to the best fit of the zeta-potential values are
reported in Figure 8. With the values of a and b and
equation (14), we can estimate the value of the streaming
potential coupling coefficient via the Helmholtz-
Smoluchowski equation at a given electrical conductivity

of the pore water. These values are reported in the last line
of Table 2.
[36] We first check the relationship between the streaming

potential coupling coefficient and the Dukhin number x. In
Figure 9, we plot the reduced streaming potential coupling
coefficient C0/CHS versus the Dukhin number for the seven
packs. The measured value of the streaming potential
coupling coefficient C, determined from equation (33), is
corrected for the influence of the Reynolds number using
equations (29) and (22). Note that because the formation
factor is roughly the same for all the samples, all the data
fall on the same curve. There is a good match between the
theory and the experimental data (see Figure 9).
[37] Finally, we check the relationship between both the

streaming potential coupling coefficient and the Reynolds
number Re. In Figure 10, we plot the reduced streaming
potential coupling coefficient C/C0 (where C0 = CHS/H(x,

Table 4. Surface Conductivity, Grain Size Relationship (NaCl Solutions) (S: Silica, GB: Glass Beads)

Study Material sS (in 10�4 S m�1) d0 (in mm) sf (in S m�1) T (in �C) pH SS (in 10�9S)

Bull and Gortner [1932]
(using measurements of the streaming
potential coupling coefficient).

S-NaCl 71 ± 4 4.5 2.4  10�3 24.5 5.7 5.3

Lorne et al. [1999a]
(using measurements of the electrical
conductivity).

S-KCl 1.03 ± 0.04 80 10�4 25.0 5.7 1.4

Watanabe and Katagishi [2006]
(using measurements of the electrical
conductivity).

GB-NaCl 1.3 ± 0.1 115 10�4 23.0 7.5 2.5

Figure 7. Reduced conductivity ratio s/sf versus the
Dukhin number x for all the glass bead packs investigated in
this study (F is the electrical formation factor). The curve
corresponds to the electrical conductivity model discussed
in the main text, equation (11). Note the existence of an iso-
conductivity point, (1, 1) in the coordinates of the plot. Note
that the existence of this iso-conductivity point is not
predicted by classical models like the Waxman and Smits
[1968] formula.

Figure 8. Zeta potential (in mV) versus the logarithm of
the electrical conductivity of the pore water (r = 0.95)
(NaCl, pH 5.6–5.9, 24�C). For comparison, we include the
data reported for silica by Kirby and Hasselbrink (KH,
2004) (NaCl, pH 7, 25�C).
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F)) and the reduced permeability k/k0 versus the Reynolds
number for the seven samples investigated in this study. All
the data fall on the same curve. The curves correspond to
equation (33) for the ratio C/C0. Again, we found a good
agreement between the theory and the experimental data. It
is clear from these data that the decrease of the streaming
potential coupling coefficient with the increase of the
Reynolds number is entirely due to the increase of the flow
rate in the sample during the transition from viscous- to
inertial-laminar flows. However, the situation could be
different for turbulent flow.
[38] We can summarize our findings in the following way.

At high Dukhin numbers (�1) and low Reynolds numbers
(�1), the magnitude of the streaming potential coupling
coefficient decreases with the increase of the Dukhin
number and depends on the mean grain diameter (and
therefore permeability) of the medium. At low Dukhin
and Reynolds numbers (�1), the streaming potential cou-
pling coefficient becomes independent of the microstructure
and is given by the well-known Helmholtz-Smoluchowski
equation widely used in the literature. At high Reynolds
numbers, the magnitude of the streaming potential coupling
coefficient decreases with the increase of the Reynolds
number in agreement with the new model developed in
section 2.
[39] A recent paper by Kuwano et al. [2006] investigated

how the apparent permeability and the apparent streaming
current coupling coefficient depend on the Reynolds num-
ber like in the present work. These authors realized experi-
ments showing a decrease of the streaming current coupling
coefficient L and permeability k of glass bead packs with the

Figure 9. Reduced streaming potential coupling coeffi-
cient C0/CHS versus the Dukhin number x (determined from
the measured surface conductivity divided by the con-
ductivity of the brine) for all the samples investigated in this
study (see Table 2). Note that because the formation factor
is roughly the same for all the samples, all the data fall on
the same trend. The curve corresponds to the model
discussed in the main text.

Figure 10. Influence of the Reynolds number determined from equations (22) and (23), upon the
relative coupling coefficient C/C0 (where C is the measured apparent streaming potential coupling
coefficient and C0 is given by equation (15)) and the relative permeability k/k0(where k is the measured
apparent permeability (using Darcy’s law) and k0 is given by equation (8)). These measurements have
been made at different salinities showing the universal character of this trend.
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Reynolds number Re. They also noted qualitatively that L
decreases less than k with Re and suggested that this
difference could be related to the increase in the efficiency
of charge transport in the vicinity of the surface of the
minerals when the Reynolds number increases. This effect
could reflect a change in the shape of the velocity profile of
the water in the pores when the Reynolds number increases.
According to Revil [2007], the data presented by Kuwano et
al. can be fitted with the following parametric function
L(Re) = L0 (1 + Re)-n where n = 1=2. Additional investiga-
tions will be performed to test this point further.

5. Example of Geophysical Application

[40] The modified form of the constitutive equations
described above can be applied to the study of electro-
magnetic signals associated with fracturing (see the recent
paper by Moore and Glaser, 2007, this field will be
explored in a future contribution) and to the study of
leakage in embankments and dams. In this section, we
simulate a leakage problem. The geometry of the basin in
which the leakage occurs is shown in Figure 3. Previous
simulations of such hydroelectric problem were mainly 2D
and were not accounting for the influence of the Reynolds
number [see Wilt and Corwin, 1989; Titov et al., 2000,
2005 and references therein and recently Suski et al.,
2006]. In this paper, we use the finite element code
Comsol Multiphysic 3.2 to simulate the 3D distribution
of the self-potential signals associated with the leakage of
water through a highly permeable pipe located in the wall
of the basin. Dimensions of the pool are reported in
Table 5. The basin is assumed to be filled with water
with an electrical conductivity equal to 3.7  10�2 S m�1

(at 20�C). We assume that the material used for the basin
is a clay material. The pipe is filled with the gravel with a
formation factor equal to 2.9 and an intrinsic permeability
equal to k0 = 4.6  10�9 m2. Because of the strong
contrast of permeability between the material filling the
pipe and the clay, the leakage of water occurs mainly
through the pipe.
[41] Comsol Multiphysic 3.2 is first used to solve the

continuity equation r 
 U = 0 with appropriate boundary
conditions for the pressure head in the basin and equation (32)
for the Darcy velocity and neglecting electro-osmosis. At the
entrance of the pipe, we impose the seepage velocity accord-
ing to the modified Darcy’s law that account for the Reynolds
number, equation (32) where h/L is the hydraulic gradient and
L is now equal to the length of the pipe and h is the total

hydraulic head (including the length of the pipe), k0 is the
permeability of the gravel filling the pipe. At the exit of pipe,
we also imposed the flux that is conservative (in steady state
conditions), assuming therefore no exchange of water be-
tween the pipe and the surrounding clay material. Therefore
the magnitude of the seepage velocity at the entrance of the
pipe is equal to the magnitude of the seepage velocity of the
exit of the pipe. For all other boundary conditions, we have no
flux (only a given head).
[42] For the electrical problem, we solve the continuity

equation for the electrical charge r 
 J = 0 combined
with equation (31). This lead to a Poisson’s equation for
the electrical potential with a source term depending on
the distribution of the fluid pressure [e.g., Titov et al.,
2000 and 2005 and references therein]. The values of the
electrical conductivity of three materials (tap water, clay,
and gravel), voltage and current coupling coefficients and
dimensions of the system are reported in Table 5. At the
outer boundaries of the basin, we use n 
 r8 = 0 as an
appropriate boundary condition (contact with an insulating
body like the atmosphere). A reference for the voltage is
placed at a reference station chosen arbitrarily in the basin
but far enough from the leaking pipe (see ‘‘Ref’’ in
Figure 11).
[43] Figures 12 and 13 show the distribution of the

equipotentials for the self-potential in the pool (for k0 =
4.6  10�9 m2). The leakage is clearly associated with a
negative self-potential anomaly centered on the area of

Table 5. Value of the Variables Used to Compute the Self-

Potential Response to the Seepage Flow Through the Pipe

Property Symbol Value Units

Length of the pipe Lp 8.5 m
Diameter of the pipe d 0.15 m
Length of the basin L 34.5 m
Width of the basin l 21 m
Height of the basin h 3.5 m
Water conductivity sf 3.7  10�2 S m�1

Clay conductivity sc 5.8  10�2 S m�1

Gravel conductivity sg 1.3  10�2 S m�1

Gravel EK current coefficient Lg 7.75  10�9 A m�1 Pa�1

Figure 11. Geometry of water-filled basin with the position
of the gravel-filled pipe, which constitutes the preferential
fluid flow pathways for the water. The embankment is made
of clay (permeability 10 mD, 10�14 m2). The reference for
the electrical potential (position of the reference electrode
where the electrical potential is taken equal to zero) is
placed at the point Ref (ideally it should be located as far as
possible from the self-potential anomaly resulting from the
pipe).
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leakage in agreement with field observations [e.g.,
Bogoslovsky and Ogilvy, 1970; Sheffer, 2002; Sheffer
and Howie, 2001, 2003]. The magnitude of this anomaly
at the entrance of the pipe is equal to four millivolts. This
anomaly can be well resolved using filtering analysis and a
sensitive voltmeter (e.g., the Metrix MX20 has a sensitiv-
ity of 0.1 mV). Simulations indicate that applying our
model for poorly mineralized water (e.g., 10�3 S m�1 at
20�C), the intensity of the self-potential anomaly can reach
very easily 100 mV.
[44] To test the evolution of a self-potential anomaly

associated with the evolution of a leaking area, we modeled
the intensity of the self-potential anomaly resulting from an
increase of the intrinsic permeability k0 over time. In this
case, the model shows a decrease of the maximum of the
self-potential anomaly when the intrinsic permeability
increases (Figure 14). This variation is due to the decrease
of the streaming potential coupling coefficient with the
Reynolds number. There is clearly a domain of intrinsic
permeability for which the magnitude of the self-potential
anomaly can be used to retrieve the magnitude of the
seepage velocity. The self-potential method could be also
combined with other methods (e.g., thermal methods) to
improve its ability to determine the seepage velocity of
leaking areas though joint inversion of self-potential and
temperature measurements.

6. Concluding Statements

[45] In this paper, we show how the streaming potential
coupling coefficient depends non-linearly on two key

Figure 12. Plot showing the distribution of the electrical potential along a cross-section parallel to the
pipe (the reference for the self-potential signals is shown in Figure 4). (a) Distribution at the surface of the
dams. The minimum of the self-potential distribution is located at the entrance of the pipe where a
negative self-potential anomaly is observed (with an amplitude of few mV). Note that in water, the
sensitivity of the measurements is typically 0.2 mV, which warranties a good signal-to-noise ratio.
(b) Distribution of the streaming equipotentials.

Figure 13. 3D-distribution of the electrical equipotentials
in the basin due to the leakage of water through the pipe.
The maximum intensity of the self-potential anomaly is
4 mV at the entrance of the leaking area.

B08204 BOLÈVE ET AL.: STREAMING POTENTIALS OF GRANULAR MEDIA

12 of 14

B08204



dimensionless parameters, the so-called Dukhin and Rey-
nolds numbers. The Dukhin number characterizes the
relative influence of the surface conductivity of the grains
(which depends on the grain size) to the conductivity of
the pore water electrolyte. The Reynolds number charac-
terizes the influence of the inertial force in the Navier-
Stokes equation. In this paper, we have derived (i) a new
expression for the Reynolds number and (ii) a general
equation for the streaming potential coupling coefficient
showing that the Helmholtz-Smoluchowski equation is
recovered when both the Reynolds and the Dukhin numb-
ers are much smaller than unity, that is, when viscous-
laminar flow and pore water conduction dominate. In the
transition between the viscous and inertial laminar flow
regimes, the streaming potential coupling coefficient falls
as 1/(1 + Re) with the increase of the Reynolds number. In
addition, (iii) a new set of experimental data has been
obtained and both these data and the model agree with
each other. Finally (iv) for the first time, we show how
surface conductivity varies with the size of the grains. We
show that the value of the specific surface conductance
agrees with that predicted by double-layer models. Finally,
we show that our model can easily be incorporated in
finite element simulation software to determine the inten-
sity of self-potential signals associated with leakage. We
expect application of this theory also for the potential
breaking of seals in the context of CO2 sequestration.
[46] Extension of the present work will concern mixtures

of beads with different grain sizes and clay-bead mixtures,
the study of heterogeneities with glass bead packs in series
and in parallel, and the application of the present work to
real rocks. However, we believe that we can already apply
the present petrophysical model to the determination of the
relationship between the seepage velocity and the self-
potential anomalies measured in various environments and
especially in geohydrology to interpret quantitatively self-

potential anomalies related to leakage of water in embank-
ments and dams for example [e.g., Sheffer and Howie,
2001, 2003] and to fracturing in active volcanoes [e.g.,
Revil et al., 2003; Finizola et al., 2004].
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