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[1] In this paper, a set of analytical infiltration equations that are commonly used to
evaluate one- and three-dimensional water infiltration from a surface disc source is
studied. Both the quasi-exact analytical formulation and the related approximations for
short and long times are assessed. The analytical properties of the quasi-exact formulation
are evaluated using a proposed scaling procedure in order to define the validity domains of
related approximations. Both quasi-exact and approximate analytical equations are then
studied with respect to their ability to reproduce numerically generated cumulative
infiltrations from a 10 cm radius disc source for four soils (sand, loam, silt, and silty clay)
at several initial saturations. The quasi-exact formulation is suitable for sand, loam, and
silt when their soil-dependent and saturation-independent shape parameters, g and b, are
properly chosen (between 0.75 and 1 and 0.3 and 1.7, respectively). Approximations
derived for the same shape parameters can also be used, provided that their use is restricted
to proposed validity intervals. However, none of these equations applies for silty clay,
since its hydraulic properties do not fulfill the conditions required for the use of the quasi-
exact formulation.

Citation: Lassabatere, L., R. Angulo-Jaramillo, J. M. Soria-Ugalde, J. Šimůnek, and R. Haverkamp (2009), Numerical evaluation of

a set of analytical infiltration equations, Water Resour. Res., 45, W12415, doi:10.1029/2009WR007941.

1. Introduction

[2] Modeling water fluxes in the vadose zone linking
surface waters with groundwater is important for under-
standing the hydrological cycle and the transfer of water-
transported contaminants. Such modeling is usually based
on the Richards’ equation describing variably saturated
water flow, unless preferential flow is involved [e.g.,
Feddes et al., 1988]. In any case, such modeling requires
knowledge of soil hydraulic properties, such as the water
retention curve h(q) and the hydraulic conductivity function
K(q).
[3] Analysis of water infiltration experimental data has

become a widely used practice for obtaining soil hydraulic
properties [e.g., Perroux and White, 1988; Jacques et al.,
2002]. Several experimental devices, often based on the
tension disc infiltrometer or in situ lysimeters, have been
developed for this purpose. Collected infiltration data are
then inversely analyzed using either analytical or numer-
ical models [e.g., Šimůnek and van Genuchten, 1996;
Mallants et al., 1997; Šimůnek et al., 1998; Angulo-
Jaramillo et al., 2000]. Among many water infiltration

experiments, the Beerkan method, consisting of water
infiltrating from a single infiltration ring at a zero pressure
head [Braud et al., 2005], proved to be a low cost and
robust method for characterizing soil hydraulic properties,
even at the watershed scale [Haverkamp et al., 1996;
Galle et al., 2001; Braud et al., 2003]. Lassabatere et al.
[2006] proposed the ‘‘BEST’’ (Beerkan Estimation of Soil
Transfer parameters) algorithm for estimating the entire
set of unsaturated soil hydraulic properties using the
inverse analysis of particle size distribution and the water
cumulative infiltration curve obtained by the Beerkan
method.
[4] Independent of the water infiltration device, there is

great need for an accurate description of one- (1-D) and
three-dimensional (3-D) water infiltration from a surface
disc source. Several analytical solutions have been proposed
to provide either approximate [Braester, 1973; Salvucci
and Entekhabi, 1994] or exact [Green and Ampt, 1911;
Parlange et al., 1985; Basha, 1999, 2002; Zhu and Mohanty,
2002] solutions for 1-D water infiltration. However, most of
these solutions are based on simplifying assumptions related
to soil hydraulic properties, such as constant soil water
diffusivity, or use inappropriate boundary conditions, such
as a constant infiltration flux. Based on the analytical model
for 1-D ponded cumulative infiltration [Parlange et al.,
1985; Haverkamp et al., 1990], and its extension to three
dimensions for a surface disc source [Smetten et al., 1994],
Haverkamp et al. [1994] proposed a set of analytical
equations that were adapted for a constant water pressure
head at the soil surface (hsurf) and a uniform initial water
pressure head profile h0 (z) = h0. Such a model proved to be
consistent with infiltration data [Clausnitzer et al., 1998]. A
specific set was derived specifically for the Beerkan exper-
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iment, i.e., for hsurf = 0 and qsurf = qs, but can be generalized
for all other pressure heads, either negative or positive [Ross
et al., 1996].
[5] The 3-D cumulative infiltration, I3D (t), is related to

the 1-D cumulative infiltration, I1D (t), by an additional term
linear with time [Smetten et al., 1994], usually written using
equation (4) of Haverkamp et al. [1994]:

I3D tð Þ ¼ I1D tð Þ þ g S2

rd Dq
t ð1Þ

where Dq ( = qs � q0) stands for the difference between the
saturated water content, qs, and the initial water content,
q0, t is time, rd is the radius of the disc source, g is a shape
parameter, and S stands for the sorptivity. The shape
parameter g is defined using the ratio between two
estimators of the sorptivity [Haverkamp et al., 1994],
S and Ŝ, the first of which is more precise [Parlange, 1975]:

g ¼
ffiffiffiffiffiffiffi
0:3
p Ŝ2

S2
ð2aÞ

S2 ¼ 2

Zqs
q0

q� qoð Þ
f qð Þ D qð Þ dq ð2bÞ

Ŝ2 ¼ 2 qs � qoð Þ
Zqs
q0

D qð Þ dq ð2cÞ

where D stands for the soil diffusivity, which is defined
using the water retention curve h(q) and the hydraulic
conductivity function K(q) as follows:

D qð Þ ¼ K qð Þ dh
dq

ð2dÞ

f in (2) stands for the flux concentration function [Philip,
1973], which can be precisely estimated using [Parlange,
1975]:

f qð Þ ¼ 2 q� q0ð Þ
qs þ q� 2 q0

ð2eÞ

[6] The 1-D cumulative infiltration equation can be derived
using the analytical method for solving the 1-D Richards
equation described by Haverkamp et al. [1990]. This leads
to a quasi-exact implicit formulation for the 1-D cumulative
infiltration [Haverkamp et al., 1994, equation (5)]:

2DK2

S2
t ¼ 1

1� b
2DK

S2
I1D tð Þ � K0tð Þ � ln

exp 2b
DK

S2
I1D tð Þ � K0tð Þ

� �
þ b � 1

b

0
BB@

1
CCA

2
664

3
775

ð3Þ

where DK (= Ks � K0) stands for the difference between
hydraulic conductivities at the soil surface, Ks, and at initial
saturations, K0 [ = K(q0)], and where b is defined as an
‘‘integral’’ shape parameter [Haverkamp et al., 1994]. The

analytical method is based on the hypothesis that functions
K(q) and D(q) are linked with the shape parameter b as
follows:

K qð Þ � K0

Ks � K0

¼ f qð Þ 1� b

Zqs
q

q� q0ð ÞD qð Þ
f qð Þ dq

Zqs
q0

q� q0ð ÞD qð Þ
f qð Þ dq

0
BBBBBBB@

1
CCCCCCCA

ð4Þ

for all water contents q 2 [q0, q1].
[7] To simplify the solution, Haverkamp et al. [1994]

derived the following direct time expansions, which can be
regarded as good approximations for very short times, short
times, and long times, respectively:

I
O 1ð Þ
1D tð Þ ¼ S

ffiffi
t
p

ð5aÞ

I
O 2ð Þ
1D tð Þ ¼ S

ffiffi
t
p
þ 2� bð Þ

3
DK þ K0

� �
t ð5bÞ

Iþ11D tð Þ ¼ Ks t þ
1

2 1� bð Þ ln
1

b

� �
S2

DK
ð5cÞ

Time derivatives of the quasi-exact formulation and of its
approximations provide corresponding models for infiltra-
tion rates.
[8] The use of this set of analytical formulations requires

adequate values for the shape parameters g and b. While in
their earlier work, Haverkamp et al. [1994] proposed an
averaged value of 0.75 for g and 0.6 for b, in their later
studies [Haverkamp et al., 1999, 2005] they considered the
shape parameters as dependent on both the soil type and the
initial water content. On the basis of equations (2a) and (4),
Fuentes et al. [1992] proposed a direct formulation for the
shape parameters as a function of the initial water content,
q0, and hydraulic functions K(q) and D(q):

b q0ð Þ ¼ 2� 2

Zqs
q0

K qð Þ � K q0ð Þ
Ks � K q0ð Þ

qs � q0
q� q0

D qð Þ dq

Zqs
q0

D qð Þ dq

ð6aÞ

g q0ð Þ ¼
ffiffiffiffiffiffiffi
0:3
p 2 qs � q0ð Þ

Z qs

q0
D qð Þ dq

Z qs

q0
qs þ q� 2q0ð ÞD qð Þ dq

ð6bÞ

[9] The use of the approximate equations requires knowl-
edge of their validity domains. Since no study has yet
focused on the proper definition of these time intervals,
there is a risk that these equations may be used for times for
which they are no longer valid.
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[10] The objective of this paper is thus to study this set of
equations, including both the quasi-exact formulation
(equations (1) and (3)) and the related approximations
(equation (5)) with respect to the optimal choice of the
shape parameters b and g, and their dependence on the soil
type and initial water content conditions, and the definition of
appropriate validity domains for the related approximations.
[11] First, we will define the scaled (dimensionless) one-

dimensional cumulative infiltration, I*(t*), and the scaled
difference between three- and one-dimensional (3-D–1-D)
cumulative infiltrations, DI*(t*). We will then show that
DI*(t*) is a linear function of the scaled time t*, using the
shape parameter g as the proportionality constant. We will
also show that I*(t*) depends only on the shape parameter
b. We will evaluate I*(t*) with respect to its approximate
formulations and their validity domains as a function of the
shape parameters. The scaling procedure will allow us to
transform these dimensionless intervals into real time inter-
vals for both 1-D and 3-D cumulative infiltrations. A similar
approach will be used for infiltration rates.
[12] In the second step, the quasi-exact formulation and

its approximations will be tested against numerically gen-
erated 1-D and 3-D cumulative infiltration data. The 3-D
case will be for infiltration from a 10 cm radius disc source
for four different soil types (sand, loam, silt, and silty clay)
and several initial saturation conditions. Appropriate values
for the shape parameters b and g, and their dependence on
the soil type and initial water content conditions, will then
be estimated by fitting previously scaled numerical data to
scaled functions I*(t*) and DI*(t*). The fitted shape param-
eters will then be used in dimensional equations (1) and (3)
and the adequacy of this analytical model will be discussed
for each soil type and each initial saturation. Finally, the
validity domains of the approximations will be determined
as a function of the shape parameters for each soil type and
initial saturation conditions, and the accuracy of both scaled
and dimensional approximations will be discussed.

2. Theory: Analytical Analysis

2.1. Scaling Procedure and Scaled Variables I*(t*)
and DI*(t*)

[13] The 3-D and 1-D cumulative infiltration equations
(equations (1) and (3)) can be modified to result in simpler
equations using the following procedure:

t* ¼ 1

1� b
I*� ln

exp b I*ð Þ þ b � 1

b

� �� �
ð7aÞ

DI* ¼ gt* ð7bÞ

where 1-D and 3-D cumulative infiltrations are related to the
scaled 1-D cumulative infiltration, I*(t*), and the scaled
difference between 3-D and 1-D cumulative infiltrations,
DI*(t*), through

t ¼ S2

2DK2
t* ð7cÞ

I1D ¼
S2

2DK
I*þ K0 t ð7dÞ

I3D ¼ I1D þ
S4

2DK2 rd Dq
DI* ð7eÞ

These formulations define the scaling factors related to time
(gt), 1-D cumulative infiltration (gI), and the difference
between 3-D and 1-D cumulative infiltrations (gDI), as
previously proposed [Parlange et al., 1982; Rasoulzadeh
and Sepaskhah, 2003; Haverkamp et al., 2005; Varado et
al., 2006].
[14] Notice that the scaled difference DI*(t*) is propor-

tional to the scaled time t*, and that the shape parameter g
serves as the proportionality coefficient. The scaled 1-D
cumulative infiltration I*(t*) depends only on the shape
parameter b. Approximations of (7a) and their validity
domains, as well as its derivative with time t*, i.e., the
scaled infiltration rate, q*(t*), can therefore be studied only
with respect to b. Notice also that when the shape parameter
b is close to zero, equation (7a) leads to the Green and
Ampt model [Green and Ampt, 1911] (see Appendix A):

t* ¼ I*� ln 1þ I*ð Þ ð8Þ

2.2. Analysis of I*(t*) and Related Approximations

[15] Since for long times, I*(t*) tends to infinity, the right
term of equation (7a) can be simplified using the asymptotic
behavior of exponential and logarithmic functions, leading
to (see Appendix A):

Iþ1* t*ð Þ ¼ t*þ 1

1� bð Þ ln
1

b

� �
ð9Þ

[16] At very short times, I*(t*) can be developed using a
square-root-of-time series [Philip, 1969]. Implementation of
such serial expansion into equation (7a) leads to the following
definitions for the first- and second-order approximations:

IO 1ð Þ* t*ð Þ ¼
ffiffiffiffiffiffiffi
2t*
p

ð10aÞ

IO 2ð Þ* t*ð Þ ¼
ffiffiffiffiffiffiffi
2t*
p

þ 2� b
3

t* ð10bÞ

[17] Validity domains of these approximations are directly
linked to their accuracy, and thus to corresponding relative
errors:

x
Io 1ð Þ
* t*ð Þ ¼

I* t*ð Þ � I*O 1ð Þ t*ð Þ
�� ��

I* t*ð Þ ð11aÞ

x
Io 2ð Þ
* t*ð Þ ¼

I* t*ð Þ � I*O 2ð Þ t*ð Þ
�� ��

I* t*ð Þ ð11bÞ

x
Iþ1
* t*ð Þ ¼ I* t*ð Þ � I*þ1 t*ð Þj j

I* t*ð Þ ð11cÞ
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Since it can be shown numerically that the function xI+1* (t*)
is monotonously decreasing in the interval R*+, defining a
bijection from R*+ to (0,1), the inverse function tI+1* (x*)
can also be defined. Therefore, for any time t* � tI+1* (x*),
the relative error x*(t*) will be smaller than the given
tolerance x*. The validity domain for I+1* (t*) is thus defined
as the time interval [tI+1* (x*), + 1). A similar approach
demonstrates that validity domains for I*O(1)(t*) and I*O(2)(t*)
correspond to time intervals [0,t*Io(1)(x*)] and [0,t*Io(2)(x*)],
respectively, where t*Io(1)(x*) and t*Io(2)(x*) are the inverse
functions of x*Io(1)(t*) and x*Io(2)(t*), respectively. Dimen-
sionless times tI+1* (x*), t*Io(1)(x*), and t*Io(2)(x*) are referred
to as long-time, first-order and second-order approximation
validity times. Since there are no analytical expression
available for evaluating these validity times, they will be
calculated numerically in the Results section.

2.3. Analysis of q*(t*) and Related Approximations

[18] An actual scaled infiltration rate q*(t*) can be
obtained by evaluating the derivative of I*(t*) (7a) with
respect to time t*, leading to (see Appendix B):

q* I*ð Þ ¼ 1þ b
exp b I*ð Þ � 1

ð12Þ

[19] When time t* tends to infinity, I*(t*) also tends to
infinity, and thus q*(I*) tends to unity, which defines the
steady state approximation q+1* (t*). Given a tolerance x*,
the flow rate is lower than unity plus the tolerance x*,
provided time is larger than the steady state validity time
t*q+1 (x*) defined as (see Appendix B):

t*qþ1 x*ð Þ ¼ 1

1� bð Þ ln
1þ b

x*

� �1
b

1þ 1

x*

0
BBB@

1
CCCA ð13Þ

The validity domain for the steady state expansion q+1* (t*)
is then defined as [t*q+1 (x*), + 1).
[20] As time approaches zero, I*(t*) tends to zero, and

thus q*(t*) approaches infinity (see (12)). Expanding
equation (12) for small I* leads to (see Appendix B):

q*O 1ð Þ I*ð Þ ¼
1

I*
ð14aÞ

q*O 2ð Þ I*ð Þ ¼
1

I*
þ 1� b

2
ð14bÞ

These approximations can be combined with the short-
time expansions of I*(t*) to give the analytical expres-
sions for the first- and second-order approximations for
q*(t*):

q*O 1ð Þ t*ð Þ ¼
1ffiffiffi
2
p t*�

1
2 ð15aÞ

q*O 2ð Þ t*ð Þ ¼
1ffiffiffi
2
p t*�

1
2 þ 2� b

3
ð15bÞ

Note that the steady state and short-time approximations
of q*(t*) correspond to time derivatives of approxima-
tions of I*(t*). Note also that, from a mathematical point
of view, deriving the expressions for q*(t*) using serial
expansions, rather than taking directly the derivative of
the serial functions for I*(t*), is the proper approach (see
Appendix B). It has been previously demonstrated that
directly derivating term by term serial expansions can
lead to inappropriate functions; the direct derivation of
serial functions requires certain conditions.
[21] As was the case for cumulative infiltration, the

validity domains for the first- and second-order approxima-

Table 1. Analytical Expressions and Approximations for Scaled and 3-D Dimensional Cumulative Infiltration and Infiltration Rate

Scaled Cumulative Infiltration Scaled Infiltration Rate

I*(t*, b) Time Restriction q*(t*, b) Time Restriction

All times t* = 1
1�b

h
I* � ln

�
exp bI�ð Þþb�1

b

	i
None 1 +

b
exp b I�ð Þ�1 None

Very short times
ffiffiffiffiffiffiffi
2 t�
p �t*Io(1) t(x*, b)a 1ffiffiffiffiffi

2 t�
p � t*qo(1)(x*, b)

a

Short times
ffiffiffiffiffiffiffi
2 t�
p

+
2�b
3

t* �t*Io(2)(x*, b)a 1ffiffiffiffiffi
2 t�
p +

2�b
3

� t*qo(2)(x*, b)
a

Long times t* + 1
1�b ln

�
1
b

	
�t*I+1(x*, b)a 1 � t*+1(x*, b)

b

Dimensional Cumulative Infiltration Dimensional Infiltration Rate

I3D(t) Time Restriction q3D(t) Time Restriction

All times S2

2DK
I* +

�
K0 +

g S2

rd Dq

	
t None DK q* + K0 + g S2

rd Dq None

Very short times S
ffiffi
t
p

� S2

2DK2t*Io(1)(x*, b) S
ffiffi
t
p

� S2

2DK2 t*qo(1)(x*, b)

Short times S
ffiffi
t
p

+

�
2�bð Þ
3

DK + K0 +
gS2

rdDq

	
t � S2

2DK2t*Io(2)(x*, b) Sffiffiffi
2t
p +

�
2�bð Þ
3

DK + K0 +
gS2

rdDq

	
� S2

2DK2 t*qo(2)(x*, b)

Long times

�
Ks +

gS2

rdDq

	
t + 1

2 1�bð Þ ln
�
1
b

	
S2

DK
� S2

2DK2t*I+1(x*, b)
�
Ks +

gS2

rdDq

	
� S2

2DK2 t*q+1(x*, b)

aCalculated numerically from the study of the error functions.
bCalculated numerically from the study of the error functions or estimated through equation (13).
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tions of infiltration rates can be evaluated from relative
errors:

x*qo 1ð Þ ¼
q* t*ð Þ � q*O 1ð Þ t*ð Þ
�� ��

q* t*ð Þ ð16aÞ

x*qo 2ð Þ ¼
q* t*ð Þ � q*O 2ð Þ t*ð Þ
�� ��

q* t*ð Þ ð16bÞ

Like those for scaled cumulative infiltration, functions
x*qo(1) and x*qo(2) are monotonously increasing (see the Result
section). Therefore, the validity domains for approxima-
tions q*O(1), q*O(2) are defined as time intervals (0,t*qo(1)(x*)]
and (0,t*qo(2)(x*)], where t*qo(1)(x*) and t*qo(2)(x*) are inverse
functions of x*qo(1)(t*) and x*qo(2)(t*), respectively. The first-
and second-order validity times, t*qo(1)(x*) and t*qo(2)(x*),
respectively, can, again, be calculated numerically (see the
Result section). The steady state validity time is defined
exactly using equation (13).
[22] The scaled variables and their analytical properties, i.

e., their related approximations and validity times, are given
in Table 1. Since in this section, both the cumulative
infiltration and the infiltration rate have been shown to be
time and b dependent, they have to been referred to as I*(t*,
b) and q*(t*, b). Similarly the scaled difference between
3-D and 1-D, DI*(t*, g), has to be regarded as both time
and g dependent.

2.4. Derivation of Dimensional I1D(t), I3D(t), q1D(t),
and q3D(t) and Their Validity Domains

[23] Dimensional 1-D and 3-D quasi-exact cumulative
infiltrations can then be defined using the scaled cumulative
infiltration, the scaled difference between 3-D and 1-D
cumulative infiltrations, and the definition of scaling factors
(gt, gI, and gDI) using equation (7):

I1D tð Þ ¼ S2

2DK
I*

2DK2 t

S2
; b

� �
þ K0 t ð17aÞ

I3D tð Þ ¼ S2

2DK
I*

2DK2 t

S2
;b

� �
þ K0 t þ

S4

2 rd DqDK2

�DI*
2DK2 t

S2
; g

� �
ð17bÞ

Infiltration rates can be derived as time derivatives of the
above equations:

q1D tð Þ ¼ DK q*
2DK2 t

S2
; b

� �
þ K0 ð17cÞ

q3D tð Þ ¼ DK q*
2DK2 t

S2
;b

� �
þ K0 þ g

S2

rd Dq
ð17dÞ

Similarly, the dimensional approximations can be derived
from equation (17) and the scaled approximations. Such

derivation produces the same expressions as those devel-
oped by Haverkamp et al. [1994], i.e., equation (5).
[24] The discrepancy between the dimensional approxi-

mations and the dimensional quasi-exact formulation can be
linked to the accuracy of the scaled functions. Let the
relative errors be defined for scaled, yapprox* (t*) and y*(t*),
and dimensional, yapprox(t) and y(t), variables as follows:

xapprox t; yð Þ ¼
y tð Þ � yapprox tð Þ
�� ��

y tð Þ ð18aÞ

xapprox* t*; y*ð Þ ¼
y* tð Þ � yapprox* tð Þ
�� ��

y* tð Þ ð18bÞ

where y stands for either dimensional q or I, and y* for
scaled I* or q*, in both one dimension and three
dimensions. The use of scaling equation (17) leads to the
following relationships:

xapprox t; I1Dð Þ ¼ 1

1þ K0

DK

t*

I*

xapprox* t*; I*ð Þ ð19aÞ

xapprox t; q1Dð Þ ¼ 1

1þ K0

DK

1

q*

xapprox* t*; q*ð Þ ð19bÞ

xapprox t; I3Dð Þ ¼ 1

1þ K0

DK
þ g S2

rd Dq

� �
t*

I*

xapprox* t*; I*ð Þ ð19cÞ

xapprox t; q3Dð Þ ¼ 1

1þ K0

DK
þ g S2

rd Dq

� �
1

q*

xapprox* t*; q*ð Þ ð19dÞ

Insofar as q*(t*) is between infinity and unity, 1/q* and
t*/I* are always between zero and unity, implying that:

1

1þ K0

DK

xapprox* t*; y*ð Þ � xapprox t; y1Dð Þ � xapprox* t*; y*ð Þ ð20aÞ

1

1þ K0

DK
þ g S2

rd Dq

xapprox* t*; y*ð Þ � xapprox t; y3Dð Þ � xapprox* t*; y*ð Þ

ð20bÞ

Equation (19) shows that relative errors for dimensional
approximations are smaller than the errors for scaled
approximations for both one dimension and three dimen-
sions. Consequently, relative errors are smaller than the
tolerance x in intervals with boundaries defined as the
product of the time scaling factor and the scaled validity
times.
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[25] Such an approach leads to the following definition
of the validity time for any dimensional approximation
yapprox(t), revealing its dependency on the initial saturation
degree Se0:

txDy approx Se0;bð Þ ¼ S2

2DK2
ty approx* bð Þ ð21aÞ

txDy approx Se0;bð Þ ¼ S2 q Se0ð Þ; qsð Þ
2 Ks � K q Se0ð Þð Þð Þ2

ty approx* bð Þ ð21bÞ

where x is equal to either 1 or 3 and ty_approx* (b) stands for
the corresponding scaled validity time. When the parameter
b varies little with the initial saturation degree, the scaled
validity time, ty_approx* (b), remains constant. Dimensional
times for nonzero initial saturation degrees ty_approx

xD (Se, b)
can then be calculated using the dimensional time for a zero
initial saturation degree ty_approx

xD (0, b) using:

txDy approx Se0;bð Þ ¼ R Se0ð Þ txDy approx 0;bð Þ ð22aÞ

R Se0ð Þ ¼ S2 q Se0ð Þ; qsð Þ
S2 qr; qsð Þ

K2
s

Ks � K Se0ð Þð Þ2
ð22bÞ

Reference validity times and ratios are discussed in the
Results section. The analytical properties of the dimensional
variables (approximations and validity times) are presented
in Table 1.

3. Material and Methods: Numerical Modeling

[26] Beerkan infiltration experiments (for ponding con-
ditions, i.e., qf = qs) were modeled for four soil types and for

several uniform initial saturation conditions (i.e., h0, q0),
which correspond to conditions, for which equation (3) was
developed [Haverkamp et al., 1994]. Soil hydraulic
parameters for four studied soil types, i.e., sand, loam, silt,
and silty clay, were obtained from the ROSETTA database
[Schaap et al., 2001] implemented into HYDRUS codes
[Šimůnek and van Genuchten, 2008; Šimůnek et al., 2008].
Their water retention curves and hydraulic conductivity
functions were described using the van Genuchten-Mualem
model [van Genuchten, 1980; Mualem, 1976]:

q hð Þ ¼ qr þ qs � qrð Þ 1þ hj j
hg

� �n� ��m
h < 0

q hð Þ ¼ qs h � 0

8><
>: ð23aÞ

m ¼ 1� 1

n
ð23bÞ

K hð Þ ¼ Ks � Kr hð Þ ¼ Ks � Sle 1� 1� S
1=m
e

� 	mh i2
ð23cÞ

where qr and qs denote the residual and saturated water
contents, respectively; Kr and Ks are the relative and
saturated hydraulic conductivities, respectively, hg is the
scale parameter for water pressure, n is a pore size
distribution index, and l is a pore connectivity parameter,
assumed to be 0.5 by Mualem [1976]. Soil hydraulic
parameters for four soil textural classes are given in Table 2.
[27] One dimensional water flow was modeled using

HYDRUS-1D [Šimůnek et al., 2008]. The transport domain
was assumed to be 2 m deep for sand, 1 m for loam and silt,
and 40 cm for silty clay. For the initial conditions, values of
h0 and q0 were chosen to represent saturations common for
field conditions, as well as to explore the entire saturation
range from dry soils to soils close to full saturation, i.e.,
from about 5% to 95% (Table 3). Free drainage (or unit
hydraulic gradient) was selected as the lower boundary
condition, which is often used to represent conditions with a
deep water table. Finite elements (FE) of 2 mm were used to
discretize the transport domain for all soils except silty
loam, for which 0.2 mm elements were used for runs with
low initial pressure heads (5 � 104 and 2 � 1010 cm). This
spatial discretization was chosen using a sensitivity
analysis. Several FE meshes were tested, and numerical

Table 2. Values for Hydrodynamic Parameters for the Four

Studied Soils

Sand Loam Silt Silty Clay

n 2.68 1.56 1.37 1.09
I 0.5 0.5 0.5 0.5

qr 0.045 0.078 0.034 0.07

qs 0.43 0.43 0.46 0.36

Ks (cm min�1) 4.95 � 10�1 1.73 � 10�2 4.17 � 10�3 3.33 � 10�4

hg (cm) 6.90 27.8 62.5 200

Table 3. Initial Conditions in Terms of Pressure Heads h0 and Corresponding Saturation Degrees Se0 Used in Numerical Simulations for

Four Studied Soils

Sand Loam Silt Silty Clay

h0 (cm) Se0 (%) h0 (cm) Se0 (%) h0 (cm) Se0 (%) h0 (cm) Se0 (%)

�5 80.2, �20 84.5 �40 89.0 �40 98.7
�10 44.0 �40 69.4 �60 83.5 �60 98.1
�20 16.1 �60 59.1 �80 78.9 �80 97.4
�40 5.2 �80 51.9 �100 75.0 �100 96.9
�60 2.6 �100 46.6 �500 45.6 �103 85.4
�80 1.6 �300 26.2 �5 � 103 19.8 �5 � 104 60.8
�100 1.1 �500 19.7 �5 � 104 8.4 5 � 105 49.5
�1000 0.02 �103 13.4 �2 � 105 5.0 �5 � 106 40.2

�5 � 103 5.5 �108 30.7
�104 3.7 �2 � 1010 19.1
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results were plotted against mesh density. Maximum time
was chosen to be higher than time needed to reach a steady
state (a constant flow rate at the top). Minimum time steps
were fixed at 10�3 min for sand, loam and silt, and 10�4 min
for silty clay. Precision tolerances for pressure heads and
water contents were fixed for all soils at HYDRUS default
values of 1 cm and 0.001, respectively.
[28] Three-dimensional water flow was simulated using

the axisymmetrical option of HYDRUS [Šimůnek et al.,
2006]. Transport domains were assumed to be 40 cm in both
radial and vertical directions. Quadrilateral FE elements of
2 mm were used for all soils. The same initial conditions
were used as in the 1-D analysis (Table 3). No flux boundary
conditions were used at all boundaries except for the bottom
of the transport domain where free drainage was used, and
the center part (a radius of 10 cm) of the soil surface
representing the infiltration disc where zero pressure head
was applied. Parameters of the time discretization were the
same as for 1-D numerical simulations.
[29] Simulation results included pressure head and water

content maps, as well as dimensional cumulative infiltra-
tions and infiltration rates. Other calculations and minimum
least squares error optimizations were carried out using the
scilab free code [Campbell et al., 2006].

4. Results

[30] In what follows, we will first discuss the properties
of the scaled quasi-exact functions I*(t*, b) and q*(t*, b)
with respect to the shape parameter b and their approxima-
tions and associated validity domain. The scaled difference
between 3-D and 1-D cumulative infiltrations will not be
discussed any further because of its simplicity (a simple
linear law). Second, the accuracy of analytical models will
be evaluated by comparing them with numerically gener-
ated cumulative infiltrations for selected scenarios involving
3-D and 1-D water infiltrations into four soil types (sand,
loam, silt, silty clay) and several initial saturation condi-
tions. This comparison will allow us to discuss the shape
parameters and validity domains of approximations.

4.1. Analytical Analysis of I*(t*, b) and q*(t*, b)
4.1.1. Case of the Usual Value b0 = 0.6
[31] Figure 1 shows scaled cumulative infiltration I*(t*,

b0) and infiltration rate q*(t*, b0), as well as their long time/
steady state, and first- and second-order approximations. All
functions were evaluated for the shape parameter b0 = 0.6.
Related validity times are calculated assuming a tolerance
x*0 of 2.5%. The scaled cumulative infiltration I*(t*, b0)
and infiltration rate q*(t*, b0) curves have required
properties, i.e., I*(t*, b0) increases with time t* and is
concave, and q*(t*, b0) decreases toward unity and is
convex.
[32] The proposed analytical expressions (10) and (9) are

good approximations of the scaled quasi-exact formulation
(7a) for I*(t*, b0) in their validity intervals. Similarly, the
proposed analytical expressions (15) are accurate approx-
imation in their validity intervals for q*(t*, b0). This
confirms the suitability of the proposed analytical expres-
sions. As illustrated in Figures 1c–1d, the related relative
errors xI+1* (t*, b0) and xq+1* (t*, b0) are monotonously
decreasing and xIo(1)* (t*, b0), xIo(2)* (t*, b0), xqo(1)* (t*, b0),
and xqo(2)* (t*, b0) are monotonously increasing functions.

Consequently, the long-time approximation validity time
t*I+1(x*, b0) and the steady state validity time t*q+1(x*, b0)
are decreasing functions and the first- and second-order
validity times t*Io(1)(x*, b0), t*Io(2)(x*, b0), t*qo(1)(x*, b0),
and t*qo(2)(x*, b0) are increasing functions (Figures 1e–1f).
For small tolerances x*, the validity times increase in the
following order: first order < second order < long time/
steady state. For instance, for x* = x0* = 2.5%, these
correspond to 0.006 < 0.74 < 2.73 and 0.0015 < 0.26 < 4.13
for I*(t*, b0) and q*(t*, b0), respectively. When the tolerance
x* increases, this order shifts to first order < long time/steady
state < second order (Figure 1e–1f), and when x* > 0.15 to
long time < first order < second order. Intersections between
the long time/steady state and second-order validity times
correspond to a relative error of 5.5% and 12% for I*(t*, b0)
and q*(t*, b0), respectively. This means that the quasi-exact
formulations I*(t*, b0) and q*(t*, b0) can be replaced first
with their second-order and then long-time/steady state
approximations while having relative errors lower than 5.5%
and 12%, respectively.
[33] It may be noted that relative errors are higher for

q*(t*, b0) than for I*(t*, b0) (Figures 1c–1d). This means
that the use of the approximation is less accurate for the
infiltration rate than for the cumulative infiltration. There-
fore, the validity domains for q*(t*, b0) need to be reduced
for the first- and second-order approximations, and
increased for the steady state approximation to ensure the
same precision as for I*(t*, b0).
4.1.2. Sensitivity Analysis of I*(t*, b) and q*(t*, b)
as a Function of b
[34] The scaled functions I*(t*, b) and q*(t*, b) were also

studied with respect to the value of their shape parameter b.
The value range of this parameter is not known a priori,
even though it was originally restricted to between zero and
unity for mathematical reasons related to the integration
method developed by Haverkamp et al. [1990] and
generalized by Ross et al. [1996]. In the latter study, the
parameter b is regarded as an integral shape parameter, as
suggested by Haverkamp et al. [1994], and thus allowed to
have larger values. In agreement with its definition by (6a),
(as suggested by Fuentes et al. [1992]) b is restricted here to
values smaller than two (a positive value of the integrals 6a).
The same constraint appears from the analysis of the first-
and second-order approximations of I*(t*, b). Since
I*O(2)(t*, b) is defined as I*O(1)(t*, b) plus a second term
involving b (see equation (10)), this term must be positive to
ensure that I*O(1)(t*, b) � I*O(2)(t*, b) � I*(t*, b). If such an
inequality was not ensured, the second-order approximation
would be less precise than the first-order approximation,
which would be meaningless. Such a condition implies that:

2� b
3
� 0; i:e:;b � 2 ð24Þ

The scaled functions are therefore studied for b 2 [0,2]. As
explained above, the case with b = 0 corresponds to the
Green and Ampt formulation.
[35] A change of the parameter b affects the scaled

functions I*(t*, b) and q*(t*, b) without changing their
monotonic behavior and analytical properties. In particular,
relative errors of approximations keep the same monotonic
properties with regard to time, and likewise similar

W12415 LASSABATÈRE ET AL.: EVALUATION INFILTRATION

7 of 20

W12415



definitions of validity domains and validity times t*Io(1)(x*,
b), t*Io(2)(x*, b), t*I+1 (x*, b), t*qo(1)(x*, b), t*qo(2)(x*, b), and
t*q+1 (x*, b).
[36] Cumulative infiltrations I*(t*, b) and infiltration

rates q*(t*, b) are decreasing functions with regard to b
(Figures 2a and 2b). This decrease can be demonstrated for
I*(t*, b) by studying the right term of equation (7a) with
regard to b. The effect of b on the validity times t*Io(1)(x*,
b), t*Io(2)(x*, b), and t*I+1 (x*, b) is illustrated in Figures 2c–
2f. For the tolerance x*0, the time needed to apply the
long-time approximation, t*I+1 (x*0, b), decreases with b
(Figure 2c). This results from the fact that q*(t*,b) decreases
with b, i.e., a steady state is reached earlier when b increases
(Figure 2b). The second-order approximation validity time,
t*Io(2)(x*0, b), roughly decreases with b (Figure 2c). The time

interval that requires the application of the quasi-exact
formulation I*(t*, b) instead of its approximations, i.e., the
time between the second-order and long-time approximations
validity domains, reduces with b (Figure 2c). On the contrary,
the first-order approximation validity time t*Io(1)(x*0, b) is an
increasing function until it reaches the value of the second-
order validity time t*Io(2)(x*0, b) for b = 2. This equality results
from the fact that the first- and second-order approximations
correspond when b = 2.
[37] Similar conclusions can be drawn for higher toler-

ances x*. The value of x* only affects the order between the
validity times. For tolerances x*0 = 2.5% and x*1 = 5%, the
validity times are in the following order: t*Io(1)(x*0, b) �
t*Io(2)(x*0, b) � t*I+1 (x*0, b) and t*Io(1)(x*1, b) � t*Io(2)(x*1, b) �
t*I+1 (x*1, b) (Figures 2c and 2d). For a tolerance x*2 = 7.5%

Figure 1. One-dimensional scaled analytical models for b0 = 0.6. (a) Scaled cumulative infiltration
I* (t*, b0) and (b) scaled infiltration rate q*(t*, b0) (black lines) along with related approximations (gray
lines) and validity times (diamonds, very short time; gray circles, short time; gray squares, long time)
calculated for the tolerance x0* = 2.5%. Relative errors (xI* or xq*) of approximations as a function of time
t* for (c) scaled cumulative infiltration and (d) scaled infiltration rate. Validity times (tI* or tq*) as a
function of the tolerance x* (an inverse function) for (e) scaled cumulative infiltration and (f) scaled
infiltration rate.
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and values of b between 0.2 and 1.8, the order becomes:
t*Io(1)(x*2, b) � t*I+1(x*2, b) � t*Io(2)(x*2, b). The same order
applies for a tolerance x*3 = 10% and for any value of b
(Figure 2f). This means that the second-order and long-time
approximations can be successfully used to model infiltra-
tion for all values of b provided that a tolerance of 7.5% is
acceptable for I*(t*, b). Similar results are obtained for the
validity times related to the scaled infiltration rates, except
that in the latter cases, the related relative errors are higher.

4.2. Reproduction of Numerically Generated I1D(t),
I3D(t), q1D(t) and q3D(t)

4.2.1. Numerical Cumulative Infiltrations
[38] Numerical results are presented in terms of the depen-

dence of 1-D and 3-D cumulative infiltrations upon initial
saturations (Figures 3a–3d) and corresponding water content

profiles for a specific initial saturation (Figure 3e–3h). For
sand, both 1-D and 3-D cumulative infiltrations depend very
little upon initial saturations, and are quasi linear (Figure 3a).
Dimensionality mainly affects the slope, with an additional
contribution of the 3-D lateral flux, due to capillary forces, to
the 1-D vertical infiltration dominated by gravity. On the
contrary, cumulative infiltrations are strongly saturation
dependent for the other soils (Figures 3b–3d). The finer the
soil, the more initial saturation dependent cumulative infil-
trations. Moreover, as the soil becomes finer, the concavity of
cumulative infiltrations becomes more pronounced, and the
differences between 1-D and 3-D infiltrations become
smaller. This means that water infiltration is less gravity
and more capillarity driven. These numerical results are in
complete agreement with experimental data [e.g., Smith et
al., 2002].

Figure 2. One-dimensional scaled analytical model as a function of b (from zero Green and Ampt
(GA) model to two). (a) Scaled cumulative infiltrations I*(t*, b), (b) infiltration rates q* (t*, b), and
validity times for four tolerances: (c) x0* = 2.5%, (d) x1* = 5%, (e) x2* = 7.5%, and (f) x3* = 10%.
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4.2.2. Modeling Scaled Data Using the Quasi-Exact
Implicit Formulation
[39] In all cases, the correspondence between numerical

and analytical models is evaluated using model relative
errors defined as follows:

Er x; yð Þ ¼ ŷ xð Þ � y xð Þ
y xð Þ ð25Þ

where y(x) is the numerically generated value at point x and
ŷ(x) is the corresponding analytical model value. Note that

positive values indicate model overestimations, whereas
negative values indicate model underestimations.
[40] Scaled differences between 3-D and 1-D cumula-

tive infiltrations DI*num(t*) follow the same linear law for
all initial saturations for loam and silt (Figure 4). A linear
trend is also followed for sand, but the proportionality
coefficient differs for the higher initial saturation Se0 of
80%. The proportionality coefficient g depends upon the
soil type as detailed in Table 4. Optimized values of g are
close to the usual value of 0.75, as suggested by Haverkamp
et al. [2005], for loam and silt, but substantially higher for

Figure 3. Numerically simulated data. Cumulative infiltrations (1-D and 3-D) as a function of the initial
saturation Se0 for a 10-cm radius disc source for (a) sand, (b) loam, (c) silt, and (d) silty loam (see Table 3
for Se0 values). Water contents versus time (min) for (e) sand (h0 = 40 cm, Se0 = 10%), (f) loam (h0 =
100 cm, Se0 = 45%), (g) silt (h0 = 500 cm, Se0 = 45%), and (h) silty clay (h0 = 5 104 cm, Se0 = 50%); the
isoclines corresponds to h0 to zero by h0=10 increments.
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sand (1.03). Although all these values are significantly
higher than those calculated using the relationship (6b) of
Fuentes et al. [1992] (Table 4), they are in agreement with
the previous work of Warrick and Lazarovitch [2007]. In
particular, the latter authors also found lower values for
medium textured soils (loam, silty loam) and larger values

for coarser soils (sand) and finer soils (clay). Relative errors
show that the linearity is well followed for large times t*,
but deviations from it may not be negligible close to zero
(Figures 4b, 4d, and 4f), as previously highlighted by
Smetten et al. [1994] and Turner and Parlange [1974]. In
conclusion, the linear extension of 1-D cumulative infiltra-

Figure 4. Scaled differences between 3-D and 1-D cumulative infiltrations DI*num(t*) (numerically
generated) and DI*(t*, g) (obtained from quasi-exact formulations) as a function of (a, c, e, g) soil, initial
saturation and parameter g and (b, d, f, h) model errors. Initial saturations are shown on the right.
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tion to 3-D using equation (7b) is accurate provided that the
value of the shape parameter g is chosen based on the soil
type, and that the time is long enough.
[41] As with the scaled difference DI*num(t*), the scaled

cumulative infiltration I*num(t*) does not depend signifi-
cantly on the initial saturation (Figure 5) and a unique value
of b can be optimized independently of the initial saturation
for sand, loam, and silt (Table 4). The resulting quasi-exact
formulation for I*(t*, b) is in good agreement with
numerical data I*num(t*) (Figures 5a, 5c, and 5e). Model
errors show a little autocorrelation (non random distribution
of errors as a function of time), but are always lower than
10%, and usually below 5% (Figures 5b, 5d, and 5f).
Although the model errors are slightly higher for silt, they
stay in an acceptable range. It should be noted that for loam
and silt, the model errors can be higher for very small times
(Figures 5d and 5f). The optimized values of the shape
parameter b vary significantly between different soil types,
with a minimum value of 0.344 for sand and a maximum
value of 1.56 for silt. These values differ significantly from
the common value of 0.6 [Haverkamp et al., 1994], but
resemble values calculated using the Fuentes et al. [1992]
relationship (6a). These results prove that the quasi-exact
formulation (7a) is accurate for modeling the scaled
cumulative infiltration, provided that the shape coefficient
b reflects the soil type and is taken as proposed in Table 4.
[42] However, the textural class of silty clay remains an

exception. Scaled numerically generated curves I*num(t*) do
not fall on one line (Figure 5g), and model errors for several
initial saturations are on the order of 10% and show a very
strong autocorrelation (Figure 5h). The sign of the model
errors indicates that numerically generated infiltration data
are highly underestimated at low times t* and overestimated
at larger times t*. Thus, the analytical model underestimates
the concavity of numerically generated infiltration curves.
Moreover, this discrepancy depends strongly upon the
initial saturation (Figure 5h), indicating that an average
value of b cannot be considered for all initial saturations.
The linear law for the scaled 3-D–1-D difference is also no
longer valid for silty clay (Figure 4g). Numerically
generated differences DI*num(t*) show a significant con-
cavity that depends strongly on the initial saturation (Se0).
Relative errors are no longer acceptable for any considered
times t*(Figure 4h). This indicates that equation (7) is no
longer valid for modeling scaled cumulative infiltrations in
silty clay. This discrepancy results from the nonfulfillment
of the constraints related to equation (4), which is
documented in Figure 6 (a plot of relative errors between

the right and left terms of equation (4) for the four soils).
Note that these relative errors are significantly larger for
silty clay than for the other three soils (Figure 6).
4.2.3. Modeling Dimensional Data Using the
Quasi-Exact Formulation
[43] Dimensional modeled cumulative infiltrations are

calculated using scaled cumulative infiltrations for opti-
mized values of g and b, and using scaling equation (17).
This procedure is equivalent to the use of equations (1) and
(3) along with optimized values of g and b. Model errors
are calculated using one- and three-dimensional numerically
generated data and equation (25). Resulting model errors are
in most cases lower than 10%, and quite frequently below
5% (Figures 7a–7f). Therefore, equations (3) and (1) are
validated for such applications. Again, silty clay is an
exception, with relative errors higher than 10% and even
close to 50% in certain cases (Figure 7g–7h), resulting from
the inadequacy of the scaled quasi-exact formulation as
discussed above.
4.2.4. Modeling Scaled Data With Approximations
and Related Validity Domains
[44] Approximate solutions are first studied with regard

to scaled numerically generated data. The long-time and
close-to-zero approximations are illustrated in Figures 8a,
8c, 8e, and 8g, together with scaled numerically generated
data. The accuracy of approximations is evaluated using
equation (25) and displayed in Figures 8b, 8d, 8f, and 8h.
Maximum errors are then calculated in the validity intervals,
determined for the tolerance x0* = 2.5% and the optimized
values of the shape parameter b.
[45] As with the quasi-exact formulation, the accuracy of

approximate equations is not acceptable for silty clay
(Figures 8g–8h). The model relative errors reach absolute
values that are, in most cases, higher than 10–20%, which
renders these approximations unsuitable to properly model
water infiltration into silty clay. This was expected, as
approximate equations were derived from the quasi-exact
formulation, which was also not suitable for silty clay, as
discussed above.
[46] The long-time and close-to-zero approximations

seem accurate for sand, loam and silt (Figures 8a, 8c, and
8e) in their corresponding validity domains. The first-order
approximation is characterized by a very sharp increase of
model errors for all three soils (Figures 8b, 8d, and 8f). Very
low values of the first-order validity time t*Io(1)(x*0, b) for
sand and loam, along with too few numerically generated
data points in the related validity interval [0, t*Io(1)(x*0, b)],
did not allow for precise estimation of the model errors. For
silt, the first-order approximation has a maximum model
error close to 10% in the validity domain [0, t*Io(1)(x*0, b)].
For the second-order approximation, the model errors
increase with time for sand (Figure 8b). For loam and silt,
the model errors are quite high for very small times,
especially for low initial saturations (Figures 8d and 8f).
The errors then sharply decrease before reaching a
minimum, and then begin increasing again (Figures 8d
and 8f; arrows indicate the error minima). For these two
soils, the error minima are located within the validity
domains [0, t*Io(2)(x*0, b)]. Thus, after disregarding high
errors close to zero (local phenomenon), the maximum error
in absolute value is evaluated for the time interval [t*Io(2)(x*0,
b)/10, t*Io(2)(x*0, b)]. In these intervals, the model relative

Table 4. Proposed Values for the Shape Parameters b and g
Related to the Use of Quasi-Exact Formulation as a Function of the

Soil Typea

g b

Optimized Fuentes Optimized Fuentes

Sand 1.03 0.587 0.334 0.535
Loam 0.756 0.593 1.25 1.22
Silt 0.748 0.59 1.56 1.46
Silty clay 0.977 0.575 1.65 1.90

aQuasi-exact formulations use equation (7). Also given are Fuentes
values estimated [Fuentes et al., 1992] using equations (6).
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errors are never higher than 5%. For the long-time
approximations, the model errors are decreasing functions
(Figures 8b, 8d, and 8f). When restricted to their validity
intervals, [t*I+1(x*), +1), the model errors are at most 5%
for sand and loam, and a little higher for silt (between 5 and
7.5%). In conclusion, the approximations can be considered
to be good estimations of numerically generated data in
their corresponding validity domains.

4.2.5. Modeling Dimensional Data With
Approximations and Related Validity Domains
[47] The relative error functions evaluating the accuracy

of the dimensional approximate expansions in reproducing
dimensional numerically generated data are similar to those
shown in Figure 8 (data not shown). As with the scaled data,
the maximum errors of dimensional expansions were deter-
mined for their validity domains, defined using scaled
validity times and time scaling factors (equation (22)).

Figure 5. Scaled 1-D cumulative infiltrations I*num(t*), the quasi-exact formulations I*(t*, b) and (a, c,
e, g) estimated global values of b and (b, d, f, h) their model errors accuracy. Initial saturations are shown
on the right.
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Again, to avoid high error values very close to zero time,
the maximum errors were evaluated over the intervals
[tI_approx
xD (Se0, b)/10, tI_approx

xD (Se0, b)], as with the scaled
data.
[48] The maximum errors for different soils and dimen-

sions and zero initial saturation are given in Table 5. Errors
for the first-order approximations for loam and sand could not
be evaluated for the same reasons as with scaled data. Again,
most errors were smaller than 5%, which indicates that the
validity times were well chosen, and that the approximations
were sufficiently accurate for their corresponding domains.
As with the quasi-exact formulation, the approximations are
no longer valid for silty clay, for which they produce errors
higher than 20–25%. This indicates that the approximations,
as with the quasi-exact solution, are not suitable for fine soils.
The difficulty of applying common analytical models to
describe infiltration into fine soils has been reported many
times [e.g., Lin and McInnes., 1995; Messing and Jarvis,
1993, Vandervaere et al., 2000a, 2000b].
[49] The results discussed above indicate that the pro-

posed validity intervals ensure an acceptable error of model
predictions for sand, silt and loam. Values of the dimensional
validity times are calculated using equation (22a) from the
reference validity times tIo(1)(0, b), tIo(2)(0, b) and tI+1(0, b).
Due to great differences in values of scaling factors for
different soil types (sand < loam < silt < silty clay),
corresponding reference times are of a different order of
magnitude (Table 5 and Figure 9a). Their values provide
practical information with respect to infiltration experi-
ments, which usually have duration on the order of 1 to 2 h,
and the cumulative infiltration is described at approximately
one minute time intervals. For sands and loams, the validity
times of the first-order approximations are too short to
allow determination of sorptivity using the usual method
[Vandervaere et al., 2000a, 2000b]:

lim
t!0

dI1D

d
ffiffi
t
p � lim

t!0

dI3D

d
ffiffi
t
p � S ð26Þ

The validity time for the second-order approximation,
tIo(2)(0, b), is on the order of two minutes (Table 5). This
suggests that, except for specific experimental protocols
and setups (precise measurements of the infiltrated height
and time), commonly collected information using the
Beerkan protocol may require the use of the quasi-exact
formulation or the long-time approximation (Figure 9a).
For loam, the second-order approximation can be used
only when short time steps are used in the experimental
protocol. However, steady state conditions are reached
only after about 3 h, which may be at the very end of
infiltration experiments. For silt, the validity times for the
first- and second-order approximations are on the order of
few hours (Table 5), suggesting that the use of these
approximations may be sufficient. On the contrary, steady
state conditions are only reached after about 12 h, which is
impractical for most experimental conditions, and thus the
long-time approximations may not be used.
[50] When soils are initially wet, these restrictions may be

relaxed, since dimensional times depend on the initial
saturation (Figure 9b). In particular, it has been shown that
values of b do not depend upon the initial saturation degree.
Thus, as described in the theory section, the validity times
are obtained by multiplying the reference validity time with
the ratio R (equation (22)). These ratios can be reduced by
several orders. Note that, independent of the soil type
(except for sand close to saturation), there is a decreasing
linear relation between the ratio R and the saturation degree
Se0 (Figure 9b). As a result, the validity times could be
estimated using values given in Table 5 and assuming a
simple decreasing linear relationship between R and the
initial saturation (Se0).

5. Conclusions

[51] Understanding and modeling the physical process of
water infiltration into the soil are necessary for proper water
management. The quasi-exact formulation and its related
direct approximations developed by Haverkamp et al.

Figure 6. Relative error between the right and left terms of equation (4) for the four soils in function to
the saturation degree during water infiltration between an initial saturation degree Se0 = 25% and water
saturation.
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[1994] for describing 1-D and 3-D water cumulative
infiltrations are studied in this paper. The 3-D case involves
a specific case of water infiltrating from a surface disc
source.
[52] A scaling procedure was proposed in the first part of

the paper to derive equations describing one- and three-
dimensional cumulative infiltrations and infiltration rates

from the scaled cumulative infiltration and the scaled
difference between 3-D and 1-D cumulative infiltrations.
The analysis of analytical properties of scaled functions
allows (1) complete demonstration of the analytical expres-
sions of both scaled and dimensional direct approximations
and (2) determination of related validity domains. In the
second part of the paper, the focus was on the accuracy of

Figure 7. Accuracy of (a, c, e, g) I3D(t) and (b, d, f, h) I1D(t) defined using equations (1) and (3) with
regard to numerically generated data. Initial saturations are shown on the right.
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the analytical models with respect to numerically generated
one- and three-dimensional cumulative infiltrations for four
soils (sand, loam, silt, and silty clay) and several initial
saturations. The quasi-exact formulation was validated for
sand, loam, and silt, provided that shape parameters g and b,

regarded as integral shape constants, are chosen as a
function of the soil type. The proposed approximations
derived for the same shape parameters and the proposed
validity intervals were also validated for the same soils.
Optimized values of the shape parameters b and g were

Figure 8. Scaled 1-D cumulative infiltrations I*num(t*) and first-order, second-order, and long-time
approximations. (a, c, e, g) Numerical and analytical data and (b, d, f, h) relative errors between analytical
and numerical curves (points) and between approximations and the quasi-exact formulation (lines). The
arrows indicate the minimum second-order approximation model error.

16 of 20
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quite different from the averaged values suggested by
Haverkamp et al. [1994] (i.e., 0.75 and 0.6, respectively),
but were close to those predicted by the Fuentes formulation
[Fuentes et al., 1992], especially for b. None of the
analytical functions worked well for silty clay (a fine-
textured soil), probably due to its unique hydraulic proper-
ties, which do not fulfill the conditions required for the
validity of the quasi-exact formulation.
[53] This study proves that Haverkamp’s formulations

can be used to describe both 1-D and 3-D cumulative
infiltrations, provided that great care is taken to determine
the values of the corresponding shape parameters. Their
values for three soil types from the ROSETTA database,
i.e., sand, loam, and silt, are recommended. When the use of
the quasi-exact formulation appears to be too complicated
(due to its implicit formulation), direct approximations can
be used, provided that these are restricted to the proposed
validity intervals. Proposed values for validity times for
sand, loam, and silt can be considered as good indicators for
the choice between long-time, first-, or second-order
approximations to analyze infiltration data.
[54] Further research is needed in several directions. First,

the difference between 3-D and 1-D cumulative infiltrations
in this study was only evaluated for one radius of the disc
source, while Warrick and Lazarovitch [2007] and Warrick
et al. [2007] have shown the dependency of the parameter g
upon the geometry of the infiltration source. The validity
of the linear relationship for the difference between 3-D and
1-D cumulative infiltrations versus time, and the existence
of the proportionality coefficient g, needs to be confirmed
for other radii of the disc source. Second, the dependence of
the shape parameters b and g on soil textural parameters
should be established. Estimation of b using the approach
used here for all textural classes of the ROSETTA database
could confirm the hypothesis of an increase in b values for
finer soils observed in this study. Third, there is a need to
study constraints on soil hydraulic properties with regard to
the conditions required by the quasi-exact formulation
(equation (3)). This could help in defining the soils for
which the quasi-exact formulation can be used, and those for
which its use is not suitable. In particular, one should define
the shape parameters of the analytical expressions of water
retention and hydraulic conductivity functions, which fulfill
conditions of the quasi-exact formulation. Additionally,

correct values of b and g need to be implemented into the
BEST algorithm to avoid erroneous estimations of soil
hydraulic characteristics.

Appendix A: Analysis of Scaled Cumulative
Infiltration I*(t*)

[55] This appendix presents analytical properties of I*(t*)
and, in particular, its asymptotic behavior close to infinity or
zero, when values of b are between zero and two. Let the
function I*(t*) be implicitly defined as follows:

t* ¼ 1

1� b
I*� ln

exp b I*ð Þ þ b � 1

b

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RHS

ðA1Þ

[56] When t* tends to infinity, I* also tends to infinity.
Using the properties of exponential and logarithmic
functions, the following simplifications can be performed:

ln
exp bI*ð Þ þ b � 1

b

� �
� ln

exp bI*ð Þ
b

� �
¼ bI*þ ln

1

b

� �

ðA2Þ

Table 5. Dimensional Validity Times for Zero Initial Saturation

and Errors of Approximations in Reproducing Dimensional 1-D

and 3-D Numerical Cumulative Infiltrations

tIo(1) tIo(2) tI+1

Sand <100 203000 1202700

Loam 203200 470 3h150

Silt 4005000 3h05800 19h220

Silty clay 3h0 12h080 2d14h
1-D Maximum Model Errors

Sand NA 1.3% 3.4%
Loam NA 4.8% 3.6%
Silt 8.7% 5.2% 5.7%
Silty clay 25.6% 18.4% 17.9%

3-D Maximum Model Errors
Sand NA 7.6% 5.6%
Loam NA 3.7% 2.40%
Silt 9.9% 4.9% 5.1%
Silty clay 17.3% 17.8% 21.8%

Figure 9. (a) Dimensional validity times for four types of
soil and a zero initial saturation degree and time limits with
regard to experimental constraints (horizontal lines) and
(b) decrease of dimensional validity times versus the initial
saturation Se0.
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Implementing (A2) into (A1) and resolving I* as a
function of t* leads to the formulation of the long-time
approximation:

Iþ1* tð Þ � t*þ 1

1� bð Þ ln
1

b

� �
ðA3Þ

[57] Close to zero, I*(t*) can be analyzed using a square-
root-of-time series:

I* t*ð Þ ¼
Xþ1

k¼1 Akt*
k=2 ðA4Þ

considering only the first two terms of (A4), this
corresponds to

I* t*ð Þ ¼ A1

ffiffiffiffi
t*
p
þ A2 t*þ 	 t*ð Þ ðA5Þ

where 	(t*n) represents neglected terms:

	 t*nð Þ ¼
Xþ1
k�nþ1

Akt
k=2 ðA6Þ

The right term of equation (A1), RHS, can be developed as a
serial function when implementing the serial expansions of
the exponential and logarithmic functions; then gathering
exponent terms, we get

t* ¼ 1

2
A2
1 t*þ A1 A2 �

A2
1

2

2� b
3

� �� �
t
3=2 þ 	 t

3=2
� 	

ðA7Þ

From equation (A7), we can obtain A1 =
ffiffiffi
2
p

and A2 =
2�b
3
.

The expressions for the first- and second-order approxima-
tions can be written as

I*O 1ð Þ t*ð Þ ¼
ffiffiffiffiffiffiffi
2t*
p

ðA8aÞ

I*O 2ð Þ t*ð Þ ¼
ffiffiffiffiffiffiffi
2t*
p

þ 2� b
3

t* ðA8bÞ

Appendix B: Analysis of Scaled Infiltration
Rate q*(t*)

[58] The scaled infiltration rate q*(t*) can be obtained
by evaluating the time derivative of both terms of the
equation (A1), leading to

1 ¼ 1

1� b
q*� q*

d

dI*
ln

exp b I*ð Þ þ b � 1

b

� �� �
ðB1aÞ

which leads to

q* I*ð Þ ¼ 1þ b
exp b I*ð Þ � 1

ðB1bÞ

[59] From the property of the exponential function, it is
clear that q*(I*) tends toward unity for long times. Given a
tolerance x, q*(I*) for time t* is as follows:

q* I* t*ð Þð Þ � 1þ x ðB2Þ

When using equation (B1b) and evaluating for I* we get

I* � Iqþ1* ¼ 1

b
ln 1þ b

x

� �

t* � t*qþ1

ðB3Þ

where tq+1* is the time that corresponds to Iq+1* . This can be
derived from the equation (A1), leading to

t*qþ1 x*ð Þ ¼ 1

1� bð Þ ln
1þ b

x*

� �1
b

1þ 1

x*

0
BBB@

1
CCCA ðB4Þ

This corresponds to equation (13) for the steady state
validity time in the theory section.
[60] Close to zero time, the scaled cumulative infiltration

I*(t*) tends to zero. Hence, the scaled infiltration flux q*(t*)
tends to infinity (equation (B1b)). Short time approxima-
tions of q*(I*) can be defined using the series expansions of
exp(x) and (1 + x)�1 leading to

q*O 1ð Þ I*ð Þ ¼
1

I*
ðB5aÞ

q*O 2ð Þ I*ð Þ ¼
1

I*
þ 1� b

2
ðB5bÞ

These approximations can be combined with the short-time
expansions of I*(t*) to give

q*O 1ð Þ t*ð Þ ¼
1ffiffiffi
2
p t*�

1
2 ðB6aÞ

q*O 2ð Þ t*ð Þ ¼
1ffiffiffi
2
p t*�

1
2 þ 2� b

3
ðB6bÞ

[61] These expressions correspond to equations (14) and
(15) in the theory section. Note that these approximations,
such as q*(t*), are not defined at time zero (they converge
to infinity when time approaches zero). Also note that the
proposed approach to determine the expressions for
q*O(1)(t*) and q*O(2)(t*) using the serial expansions is a more
proper way than directly calculating derivatives from the
analytical expressions for I*O(1)(t*) and I*O(2)(t*) (equations
(A8a) and (A8b)). Actually, derivating term by term a serial
function does not always lead to a proper definition of its
derivate. To do so, the series require specific analytical
properties [Ayres and Mendelson, 1999].

References
Angulo-Jaramillo, R., J. P. Vandervaere, S. Roulier, J. L. Thony, J. P.
Gaudet, and M. Vauclin (2000), Field measurement of soil surface

18 of 20
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