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Abstract. This paper investigates the influence of mean
areal rainfall estimation errors on a specific case study: the
use of lumped conceptual rainfall-runoff models to simu-
late the flood hydrographs of three small to medium-sized
catchments of the upper Loire river. This area (3200 km2)
is densely covered by an operational network of stream and
rain gauges. It is frequently exposed to flash floods and the
improvement of flood forecasting models is then a crucial
concern. Particular attention has been drawn to the devel-
opment of an error model for rainfall estimation consistent
with data in order to produce realistic streamflow simulation
uncertainty ranges. The proposed error model combines geo-
statistical tools based on kriging and an autoregressive model
to account for temporal dependence of errors. It has been
calibrated and partly validated for hourly mean areal pre-
cipitation rates. Simulated error scenarios were propagated
into two calibrated rainfall-runoff models using Monte Carlo
simulations. Three catchments with areas ranging from 60
to 3200 km2 were tested to reveal any possible links between
the sensitivity of the model outputs to rainfall estimation er-
rors and the size of the catchment. The results show that
a large part of the rainfall-runoff (RR) modelling errors can
be explained by the uncertainties on rainfall estimates, es-
pecially in the case of smaller catchments. These errors are
a major factor limiting accuracy and sharpness of rainfall-
runoff simulations, and thus their operational use for flood
forecasting.

Correspondence to: L. Moulin
(laetitia.moulin@gmail.com)

1 Introduction

Despite decades of developments and testing, rainfall-runoff
(RR) models are still seldom used by operational flood fore-
casting services. This is particularly true in flash-flood prone
areas where accurate RR simulations would yet be neces-
sary to compute short lead-time forecasts. The lack of ac-
curacy and robustness of RR models, while not striking (see
Chahinian et al. (2006) for a review of models and perfor-
mances), remains critical for some applications.

This raises the question of the sources of uncertainties af-
fecting RR simulations: what are the major factors limiting
the accuracy of RR simulations? Which ones need partic-
ular attention? Is there any possibility of improving simu-
lations? A better insight into these questions is necessary
to give some guidance to future research work on RR mod-
elling. It will also improve the assessment of the capabilities
and limits of existing models. Among the various sources of
uncertainty affecting RR modelling (Melching, 1995), uncer-
tainties of computed precipitation play a particular role (Sun
et al., 2000; Bardossy and Das, 2008). Rainfall rates are the
main input data of RR models and, in that sense, are one of
the first factors controlling the accuracy of RR simulations.
The general issue of the impact of rainfall inputs on RR sim-
ulation accuracy encompasses at least two main questions:

– the level of spatial and temporal discretisation needed
to represent accurately the RR processes dynamics in
hydrological models, generally assessed through sensi-
tivity analyses (Michaud and Sorooshian, 1994; Vischel
and Lebel, 2007; Segond et al., 2007),
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– the assessment of the intrinsic quality of the mean areal
precipitation (MAP) estimated over the whole catch-
ment under consideration in the case of lumped RR
models (or over each of the sub-units defined in dis-
tributed models); and then the assessment of its con-
sequences on RR simulations.

The first question is linked to the debate about the relative
merits of distributed versus lumped hydrological models. It
is not the focus of this paper but will be mentioned in the con-
clusion section. The answer to the second question depends
on the rainfall measuring techniques. Weather radar cov-
erage has dramatically increased over the last few decades
giving access to measurements at high spatial and tempo-
ral resolutions. Radar signal treatment methods have signifi-
cantly been improved (Krajewski and Smith, 2002; Gourley
and Vieux, 2006; Chapon et al., 2008). However, quantita-
tive precipitation estimates still present difficulties. Research
works are ongoing to evaluate radar rainfall estimation errors
and the suitability of radar data for hydrological applications
(Carpenter et al., 2001; Borga, 2002; Carpenter and Geor-
gakakos, 2004; Borga et al., 2006; Cole and Moore, 2008).
But in many cases, quantitative precipitation estimates used
as input to hydrological models and especially flood fore-
casting models still rely on raingauge measurements. It is
especially the case for the upper Loire catchment, the se-
lected study area, where due to implementation problems, no
quantitative precipitation estimates can be retrieved from the
radar data. The question of the assessment of the uncertain-
ties of MAP estimated through raingauge measurements re-
mains therefore active. Moreover, an accurate assessment of
both the associated uncertainties and their impact on RR sim-
ulations would define a reference state to evaluate the gains
due to improvements of rainfall measurement techniques.

When raingauge data are used to estimate Mean Areal
Precipitation (MAP), the major source of input uncertainty
comes from the lack of representativeness of a discrete set
of gauges of a network (Dulal et al., 2006; Refsgaard et al.,
2006; Rode and Suhr, 2007; Villarini et al., 2008) and from
the necessity to interpolate the rain rates between these
points. Beyond the acknowledgment of the importance of
MAP estimation uncertainties, a detailed assessment of their
possible impact on the RR simulations has two main practi-
cal objectives:

– To evaluate the possible gains that could be obtained
through an improvement of the rainfall measuring tech-
niques, especially the radar system.

– To determine the rainfall estimation uncertainty level to
be able to turn from the standard deterministic hydro-
logical forecasting approach (disappointing since it fre-
quently fails to deliver correct forecasts), to a stochas-
tic approach taking into account all the possible stream-
flow variation given the uncertainties about actual rain-
fall amounts.

Most of the previous studies on MAP uncertainty propaga-
tion in RR models were either empirical or purely theoretical
sensitivity analyses. Empirical analyses are generally based
on the comparison of various interpolation approaches (Cre-
utin and Obled, 1982; Lebel et al., 1987; Johansson, 2000)
or based on under-sampling of relatively dense raingauge
networks (Anctil et al., 2006; Balme et al., 2006; Bardossy
and Das, 2008). Theoretical analyses are based on an a pri-
ori chosen error model to corrupt the computed MAPs (Xu
and Vandewiele, 1994; Paturel et al., 1995; Nandakumar and
Mein, 1997; Carpenter and Georgakakos, 2004; Oudin et al.,
2006). It is typical in those cases that no validation of the
error model is done to ensure consistency with the available
data.

The main contributions of the present work are the ef-
fort made to build, calibrate and validate a realistic error
model on MAP estimates and the detailed analysis of the link
between MAP estimation uncertainties, catchment area and
streamflow simulation uncertainties. The following presenta-
tion of developments around the definition and validation of
a rainfall estimation error model may appear sophisticated.
This sophistication is however not a scientific gadget: the
realism of the error model is a necessary condition to draw
any valuable conclusion from the propagation of these errors
into RR models. Inspired by the methodology used by Storm
et al. (1989) and Datin (1998), the proposed approach relies
on geostatistical tools. The selected method for evaluating
MAP errors and their impact on the simulated streamflows is
composed of three steps :

1. Calibration and validation of an hourly rainfall interpo-
lation error model.

2. Calibration and validation of a temporal dependence
model for these errors to be able to produce realistic
hourly MAP error series.

3. Use of Monte Carlo simulations of rainfall scenarios
based on the calibrated error model and propagation of
these scenarios into two selected lumped RR models.

The two selected RR models are modified versions of the
GR4J model (Perrin et al., 2003) and of TOPMODEL (Beven
and Kirby, 1979; Mathevet, 2005). Various catchment areas
are considered to reveal a possible link between the sensitiv-
ity to MAP uncertainties and the considered catchment area.

The paper is structured as follows. The study area and data
sets are presented in Sect. 2. The interpolation method and
principles of the proposed error model are outlined in Sect. 3.
The cross-validation approach and the error model validation
results are presented in Sect. 4. Section 5 is devoted both to
the propagation of the MAP errors into the RR models and
to the interpretation and discussion of the results obtained.
Conclusions drawn from the study are summarised in Sect. 6.
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Table 1. Main hydroclimatic characteristics of the three studied catchments (P̄ : mean annual precipitation ;̄Q: mean annual flow;Q10:
10-year specific flow).

Drainage Period P̄ Q̄ Q̄/P̄ Q10
River area (km2) of record (mm/y) (mm/y,[m3/s]) (m3/s/km2)

Loire at Rieutord 62 1983–2002 1530 1420 [2.7] 0.90 5.6
Lignon at Chambon 139 1977–2003 945 726 [3.2] 0.77 1.4
Loire at Bas-en-Basset 3234 1977–2003 900 364 [37.3] 0.40 0.4

2 The study area and data

The upper Loire River is located in the northern part of
the Cevennes-Vivarais Hydro-Meteorological Observatory
region (Delrieu, 2003; Delrieu et al., 2005). The catchment
of the upper Loire River at Bas-en-Basset covers 3234 km2

(Fig. 1). It is an upland, mainly rural area with dominantly
plutonic, metamorphic and locally volcanic bedrocks. The
soils are relatively shallow (from a few centimeters to a few
meters, on average less than one meter deep). The elevation
of the catchment ranges from about 450 to 1700 m a.s.l.

The study area is exposed to various climatic influences.
Mediterranean storms induce flash-floods that affect head-
water catchments in the south-eastern part of the area. This
explains the very high 10-year flood specific flow values of
these catchments, which range from 0.4 to 5.6 m3 s−1 km−2

(Table 1). Conversely, the north-western part of the up-
per Loire river basin is influenced by a typical oceanic cli-
mate, with moderate flood events. Due to the altitudes and
the mid-mountain climatic influence, snowfall and snowmelt
may sometimes be non negligible elements of the water bud-
get in the south-eastern part of the upper Loire. Neverthe-
less, they have little influence on the major flood events that
predominantly occur in autumn and which are here the main
concern. Consequently, in this study, no snowmelt routine is
implemented in the tested RR models.

The density of the raingauge network has progressively in-
creased over the years: the number of automatic raingauges
has grown from six in 1977 to 40 at present. The auto-
matic raingauge network now in operation, developed for
flash flood forecasting purposes, is relatively dense (about
1/80 km2) if compared to the average density of automatic
raingauges in France (1/500 km2). Moreover, the upper Loire
hydrologic network of rain and stream gauges is considered
to be among the best-maintained operational networks in
France. A weather radar system, located in the North-West
of the upper Loire catchment, has been in operation since
1996. But due to technical problems, such as the high eleva-
tion of the radar (1116 m a.s.l.), ground clutter, and masking
effects caused by the surrounding trees and topography of
the region, it has not yet been possible to use weather radar
to estimate rainfall rates. Mean areal precipitation (MAP) es-
timations can therefore only rely on the raingauge network.

Fig. 1. The upper Loire river catchment at Bas-en-Basset
(3234 km2) with two subcatchments shown in gray: the Loire river
at Rieutord (62 km2) and the Lignon river at Chambon-sur-Lignon
(139 km2). Raingauges stations indicated correspond to the hourly
network available in 2003.

Three nested catchments have been selected for this study.
This choice has been dictated by the quality and length
of the available streamflow series (20 years for Rieutord,
27 years for both Chambon-sur-Lignon and Bas-en-Basset),
their location in areas affected by flash floods, and the de-
sire to cover a large range of catchment areas (62, 139,
and 3234 km2). Some intermediate-sized catchments are
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available but affected by dam management. The main char-
acteristics of these three catchments are summarised in Ta-
ble 1.

3 Methodology for estimating precipitation uncertain-
ties

3.1 A geostatistical framework

Geostatistical methods and especially kriging are now gen-
erally accepted as the most effective approaches to interpo-
late point rainfall measurements. These methods, and in par-
ticular “climatological” kriging, have been widely used and
tested in the past and appear to deliver reasonable rainfall
estimates, particularly in the case of sparse networks (Lebel
et al., 1987; Haberlandt, 2007).

Kriging is basically a linear interpolation approach. The
estimated values of point rainfall amountsPt (x0) at any lo-
cationx0 as well as mean areal precipitation MAPt (S) over
a given domainS (of areaS km2) are, at any timet , consid-
ered as linear combinations of the point rainfall amountsPt,j

measured by the raingauges of the surrounding raingauge
network (Eqs. 1 and 2) :

Pt (x0) =

n∑

j=1

µt,jPt,j + εt (x0) (1)

MAPt (S) =

n∑

j=1

λt,jPt,j + εt (S) (2)

with n the number of the considered raingauges,εt (x0) and
εt (S) the estimation errors ofPt (x0) and MAPt (S). The
value of the weightsµt,j andλt,j are adjusted to minimise
the variance of the errorsεt (x0) and εt (S) given some as-
sumptions concerning the spatial structure of the rainfall
fields. Kriging is flexible in the sense that a large variety of
hypotheses about this spatial structure can be accounted for:
observed anisotropy of rainfall fields, general trends linked to
the relief for instance, spatial rainfall structure varying with
seasons or rainfall types, etc. Nevertheless, ordinary kriging
assumptions are generally selected for interpolating rainfall
rate fields (Chen et al., 2008), especially when small time
steps are considered. Moreover, accounting for anisotropy
(Lebel et al., 1987; Haberlandt, 2007) or trends (Kieffer-
Weisse and Bois, 2002) does not generally significantly im-
prove the interpolation accuracy, in particular in the case of
short time steps. The kriging was performed in a standard-
ised mode, which means that instead of working on the abso-
lute values (Pt (x0) or MAPt (S)), these values are standard-
ised by the variance of the fieldSDt (empirically computed
on a window covering the largest of the study catchment).
In that case the normalised field variance, and the sill of the
variogram, is brought to 1. Next the following assumptions

were used : (a) the spatial correlation structure of the rain-
fall intensities divided by the estimated standard deviation
of the rainfall fieldSDt (normalised rainfall intensities and
normalised variogram or correlogram) is the same for every
time step and rainfall events (hypothesis for climatological
kriging), (b) the variogram is isotropic, (c) the possible in-
fluence of altitude and exposition is neglected for the inter-
polation (i.e. the interpolation is only based on inter-station
distances), (d) a spherical variogram (Eq.3) is used.

γ (h, α, β) =





α ·

[
3

2
·
h

β
−

1

2
·

(
h

β

)3
]

h ≤ β

α h > β

(3)

whereγ is the semi-variogram,h is the distance between two
locations (inter-distance),α is the sill (equal to unity in the
case of climatological kriging, given the normalisation with
rainfall field variance) andβ is the range of the variogram (in
km).

The main adjustment factor of this kriging model is the
variogram shape taken here as spherical), and particularly its
rangeβ. Information from previous works conducted in the
same region (Lebel et al., 1987) led to the calibration of a
relation between the time step considered and the rangeβ

for a spherical variogram (Eq. 4).

β(km) = 251t0.3 (4)

whereβ is the range (in km) and1t is the time step (in hours)
of the rainfall data. According to this relationship, the range
of the variogram of hourly rain rates is set equal to 25 km.
This estimate of range appears to be well suited to the upper
Loire river area when plotting empirical variograms.

Note that since with these hypotheses, the weightsλ

change only if the neighbourhood used for kriging and there-
fore the available network of stations changes. It must also be
mentioned that the estimation residual for a point normalised
valuept (x0) is at the maximum (whenx0 far from every rain-
gauge) equal to its field varianceSD2

t set to 1. For the abso-
lute valuePt (x0)=pt (x0)×SDt rainfall field standard devia-
tion, its residual is also rescaled by this rainfall field standard
deviation.

3.2 The rainfall interpolation errors and the error model

3.2.1 Model for interpolation errors

Interpolation models based on kriging deliver not only inter-
polated values but also an estimate of the associated uncer-
tainty through the computation of a theoretical interpolation
error varianceσ 2 or a standard deviationσ , also named krig-
ing standard deviation (Eqs.5 and 6).

σ 2
t (x0) = E{(εt (x0))

2} (5)

σ 2
t (S) = E{(εt (S))2} (6)
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When a climatological variogram̄γij is used between
points xi and xj (inter-distancedij ), the weightsµt,j and
λt,j are supposed constant over the time if the raingauge net-
work remains unchanged. The kriging interpolation errors
may then be normalised by the standard deviation of rain-
fall field SDt . Since the normalised variogram is supposed
to be constant, the resulting normalised standard deviation
σ̄t depends then only on the topology on the raingauge net-
work, i.e. on the configuration (distance, direction) and on
the number and configuration of the surrounding raingauges
available at timet . Thus it may be constant over several time
steps (Lebel et al., 1987) and constant over the whole period
in case of a stationary network (no evolution of network and
no failure in data collection).

σ̄ (x0) = σt (x0)/SDt (7)

σ̄ (S) = σt (S)/SDt (8)

Errors σ̄ (x0) and σ̄ (S) (Eqs. 7 and 8) can be minimised
by the method of Lagrange multipliers. The valuesξ(x0)

and ξ(S) are used to impose unbiased rainfall estimates :∑n
i=1 µi=1 and

∑n
i=1 λi = 1 (Eqs. 9 and 10).

ξ(x0) = γ̄i0 −

n∑

j=1

µj γ̄ij , ∀i (9)

ξ(S) = γ̄iS −

n∑

j=1

λj γ̄ij , ∀i (10)

with γ̄i,0 the normalised semi-variogram function depending
on the distanceh between the locationsi andx0, γ̄iS the av-
erage value of the semivariogram between the raingaugexi

and any point of the surfaceS (Eq. 11) andγ̄SS the average
value of the semivariogram between the points of the surface
S (Eq. 12).

γ̄iS =
1

S

∫

S

γ̄ (xi − x) dx (11)

γ̄SS =
1

S2

∫

S

∫

S

γ̄ (x − x′) dxdx′ (12)

This ordinary kriging method with a climatological vari-
ogram yields:

σ̄ 2(x0) =

n∑

i=1

µi γ̄i,0 + ξ(xo) (13)

σ̄ 2(S) =

n∑

i=1

λi γ̄i,S − γ̄SS + ξ(S) (14)

The model for normalised interpolation errors proposed
here assumes that these errors in estimates of both point and
areal hourly precipitations, follow a zero-mean Gaussian dis-
tribution whose standard deviation isσ̄t (depending on the

available raingauge network at timet). A normalised stan-
dard deviationσ̄ (x0) (or σ̄ (S)) lower than 0.5 means that
more than 75% of normalised rainfall field variance at the lo-
cationx0 (respectively on the area) is explained (kriging stan-
dard deviation=0.5; then kriging variance=0.52=0.25; ex-
plained variance=1–0.25=0.75). When it is lower than 0.7,
more than 50% of the observed signal is explained.

In Fig. 2, the distribution of theoretical normalised kriging
standard deviation̄σ(x0) for point estimates is mapped for
interpolated daily and hourly rainfall rates for the upper Loire
river catchment with the available network in the year 2003.
It appears that for hourly rain rates, the theoretical point krig-
ing standard deviation is higher than 0.7 on more than 50%
of the study area. In other words, the spatial interpolation
explains less than 50% of the variance of the observed signal
on more than half of the area.

Likewise, Fig. 3 shows the evolution over time of the pro-
portion of the upper Loire area whereσ̄ (x0) for point rainfall
estimates is lower than 0.5 or 0.7 (more than 75% or 50%
of the variance of the signal is explained). Despite the in-
crease of the density of the raingauge network for the last 20
years, from 1 tipping bucket raingauge for 500 km2 to 1 for
80 km2, high uncertainties remain on point rainfall rates es-
timated through spatial interpolation in many parts of the re-
gion, especially when short time steps are considered (hourly
rainfall rates). In other words, poor or even no information on
the hourly rain rates is available on the majority of the area.
Nevertheless, the situation for MAP estimation uncertainties
is generally less dramatic due to averaging especially when
large time steps and/or large areas are considered (Villarini
et al., 2008). For instance, in year 2003, the kriging standard
deviation of MAPσ̄ (S) with all raingauges available is 0.15
for the MAP computed on the catchment of Loire at Bas-
en-Basset, 0.24 for catchment at Chambon-sur-Lignon and
0.32 at Rieutord. These values result in explained variances
of 0.98, 0.94 and 0.90 respectively, increasing with area as
expected.

3.2.2 Modelling temporal structure of interpolation errors

Possible time dependence between successive interpolation
errors must be considered in an error model to produce re-
alistic error time series. At a given time, interpolation errors
are due to the spatial sampling that may not capture some fea-
tures of the rainfall field: typically over or under-estimations
linked to the relative position of intense rainfall cells and
raingauges. If the time step is short according to the displace-
ment of the cells, the same type of error may affect several
successive estimates. Interpolation errors for both point and
areal estimates may be dependent in time.

www.hydrol-earth-syst-sci.net/13/99/2009/ Hydrol. Earth Syst. Sci., 13, 99–114, 2009



104 L. Moulin et al.: Impact on streamflow simulations of uncertainties on mean areal precipitation

Fig. 2. Maps of theoretical normalised kriging standard deviation (σ̄ ) for the network over the upper Loire river catchment area available in
2003 and for two time step: daily time step (left) and hourly time step (right)

.

Fig. 3. Evolution of the percentage of the upper Loire river area
where the theoretical normalised kriging standard deviation is lower
than 0.5 (75% of variance is explained) or 0.7 (50% of variance is
explained) for the cases of both daily and hourly time step.

The dependence in time between hourly rain rate interpo-
lation errors will be analysed using the available raingauge
measurements. Raingauges are removed in turn from the net-
work and the rainfall intensities computed at the correspond-
ing location using the remaining network (cross validation
detailed in Sect. 4.1). The comparison of the measured and

computed intensities delivers series of hourly point rainfall
estimation errors. The temporal structure of these series can
be then examined and simulated.

A linear autoregressive model has been first tested to re-
produce the observed dependence in time between these
errors (Eq. 15).

ηt+1 = ρ · ηt +

√
(1 − ρ2) · σ̄t · νt+1 (15)

whereηt is the normalised interpolation error at time stept ,
ρ is the autocorrelation coefficient between two successive
errors,σ̄t is the theoretical standard deviation of the interpo-
lation normalised error distribution andνt+1 a random vari-
able with a standard normal distribution. Note that, the pro-
posed model does not affect the standard deviationσ̄t of the
normalised interpolation errors.̄σt does only change if the
raingauge network structure changes, which rarely happens
within a rainfall event.

This model will be calibrated, tested and validated for
point rainfall estimates. Without reference values for MAPs,
it is not possible to conduct the same tests and validations for
the errors on MAPs. As for the spatial interpolation model,
the evaluation of its adequacy can only rely on point rainfall
validation.

Due to the linearity of both the kriging interpolation model
and the autoregressive (AR) model, the selected AR model
for point rainfall errors will also hold for MAP errors pro-
vided that its parameters – i.e. the autocorrelation coefficient
– are independent of location. In Eq. 15,σ̄t is then consid-
ered equal tōσt,S (MAP estimate) rather than tōσt,x0 (point

Hydrol. Earth Syst. Sci., 13, 99–114, 2009 www.hydrol-earth-syst-sci.net/13/99/2009/
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estimate). One of the goals of the validation of the AR er-
ror model will therefore also be to verify the stability ofρ.
Other rainfall estimation error models taking into account
the dependence in time have been suggested (Retnam and
Williams, 1988; Andrieu et al., 2003), but the proposed MAP
estimation error model has the advantage of being simple, ro-
bust and suited to the observed data, as will be shown in the
coming section.

It is important to mention that there is no constraint on the
value of the interpolation error in the proposed model (Gaus-
sian distribution). The addition of a randomnly drawn error
to an interpolated intensity may therefore provide negative
intensity estimates. The analysis of the Monte Carlo simula-
tions conducted (see the next section) revealed that 6 to 7%
of the simulated intensities are negative accounting for 2 to
3% of the total rainfall amounts. The percentage depends on
the location or catchment area considered. Negative values
are only generated for low intensities; they are generally only
slightly negative and do therefore not significantly affect the
major rainfall events of the studied series. For the purpose
of rainfall-runoff simulation, these negative values were set
equal to zero.

4 Step-by-step validation of the error model: example
on the upper Loire river area

4.1 Validation of hourly precipitation error model

The validation of the kriging interpolation model has two ob-
jectives: (a) first to verify if the interpolated values can be
considered as satisfactory and especially if they appear to be
unbiased and (b) to verify the theoretical interpolation nor-
malised error model. The related questions are the following:
Are the observed estimation error variances consistent with
the theoretical variances? Are the distributions of the inter-
polation errors well approximated by Gaussian distributions
with zero mean? In other words, are these distributions fully
determined by their standard deviationσ̄?

The empirical point rainfall interpolation error at pointx0
for the time stept can be defined as the difference between
P̂t (x0), the estimated value at this point based on interpola-
tion of values of the surrounding raingauges using the cho-
sen variogram andPt (x0), the “real” – measured if there is a
raingauge reading available, unknown if not – value of pre-
cipitation at this pointx0 at timet .

A cross-validation approach was first conducted to check
the consistency between theoretical (i.e. given by the pro-
posed error model) and observed (i.e. difference between
measured and interpolated rainfall rate values) hourly point
rainfall estimated normalised standard deviations of error. It
consists of removing in turn one raingauge from the net-
work to compare the measured and interpolated rain rates
at the specific site. Then the distribution of theoretical er-
rors (obtained from the error model) can be compared with

Table 2. Percentage of computed interpolation errors contained in
various theoretical confidence intervals for four raingauges. See
also Fig. 4.

Raingauge 68% CI (±σ ) 95% CI (±2σ ) 99.7% CI (±3σ )

Fay 53.5 77.3 89.8
Goudet 59.4 80.7 90.3
Machabert 63.1 84.8 93.4
Mazet 59.8 81.8 91.0

the distributions of empirical errors (differences between ob-
servations and computed values). The validation can only
be performed for point rainfall estimates, i.e. the only esti-
mates for which reference values (observations) are available
for the computation of estimation errors. This point cross-
validation was carried out on the 40 raingauges available in
this area.

A MAP is a weighted average of the linearly correlated
point rainfall estimates. Therefore, if the hourly point rainfall
estimation errors appear to follow a zero-mean Gaussian law
with the theoretical kriging standard deviation at any location
of the considered area, the hourly MAP estimation errors will
also follow a zero-mean Gaussian law with the theoretical
kriging standard deviation.

Table 2 and Fig. 4 compare the theoretical zero-mean
Gaussian normalised error distributions and the observed
hourly normalised rainfall interpolation error distributions
for a representative selection of four of the 40 validation
raingauges, distributed over the upper Loire river catchment
area. First, a relatively good correspondence between em-
pirical and theoretical distributions can be observed. The re-
sults obtained for other gauges and for other periods – i.e.
other raingauge network structures, with a differentσ̄ – are
similar. These results confirm that the selected range of the
variogram is well suited to the upper Loire river area and
that the observed normalised error distributions can be well
approximated by a zero-mean, Gaussian type distribution.
Large normalised error values, especially negative errors cor-
responding to an underestimation of the rainfall intensity, are
nevertheless over-represented in the empirical validation set
if compared to the theoretical Gaussian distribution. This is
particularly noticeable in Table 2, where proportions of es-
timated values contained in the theoretical confidence inter-
vals appear to be lower than the theoretical proportions. This
is a common feature of rainfall interpolation techniques that
smooth the rainfall fields and tend to underestimate extreme
local values (Fig. 5).

Considering the simplicity of the interpolation model (lin-
ear interpolation with one parameter which is the variogram
range) and of the error model (Gaussian error distributions),
the validation results, still far from perfect, are nevertheless
satisfactory. Of course, the match between observed and the-
oretical point rainfall estimation normalised errors is never
perfect. But a good agreement at every validation gauge
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Fay Goudet

Machabert Mazet

Fig. 4. Comparison between the distributions of theoretical and empirical (obtained with cross-validation and represented as histograms)
normalised rainfall estimation errors for four rain gauges of the network. See also Table 2.

will ensure that the theoretical MAP Gaussian normalised
error model will deliver realistic error ranges and distribu-
tions. The higher density of largely underestimated values
in the observed distributions, if compared to the theoretical
Gaussian one, explains both the bias and the higher standard
deviation of the empirical error distributions. Overall, the
Gaussian theoretical interpolation error model gives a reli-
able image of the kriging error distributions for interpolated
hourly rain rates. It slightly underestimates the error ranges
and percentiles and hence will tend to underestimate the ef-
fect of these errors on RR model outputs.

Figure 5 also reveals another feature of the proposed error
model. The standard deviation of the interpolation error de-
pends of the standard deviation of the rainfall fieldSDt . It
is fluctuating but shows a general tendency to increase when
the measured rainfall intensity increases.

4.2 Validation of temporal dependence model

The simplest way to check if time dependence is correctly
accounted for by the proposed model consists of comparing
theoretical (simulated) and observed (empirical) estimation
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Table 3. Standard deviations of the empirical normalised error on
mean intensities over various durations: observed (normalised er-
rors obtained with the cross validation) and simulated with time-
dependent error model. A constant correlation coefficient is equal
to 0.6. See also Fig. 6.

Time step Fay Goudet Machabert Mazet
(hours) Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.

1 1.05 0.74 0.76 0.66 0.76 0.77 0.97 0.69
2 0.95 0.65 0.66 0.58 0.69 0.68 0.72 0.61
4 0.79 0.54 0.55 0.49 0.55 0.56 0.57 0.51
6 0.70 0.47 0.49 0.42 0.48 0.49 0.47 0.44
12 0.58 0.36 0.39 0.33 0.40 0.38 0.36 0.34
24 0.49 0.26 0.29 0.24 0.32 0.27 0.28 0.24

errors for rainfall amounts accumulated over several time
steps. As far as the temporal dependence model is con-
cerned, the first objective of the cross-validation is a compari-
son of theoretical and observed estimation error distributions
for point rainfall amounts accumulated over a large range of
time steps with an autocorrelation coefficientρ estimated at
each location. The second objective is to determine if this
coefficientρ is not too dependent on location, in order to be
able to extrapolate the model to MAP errors.

The distributions of modelled and empirical normalised
interpolation errors for rainfall amounts, accumulated over
various time steps, are first compared to adjust the corre-
lation coefficient and assess the reliability of the proposed
temporal dependence model. Such a comparison is shown
in Fig. 6 for the Goudet validation raingauge. Monte Carlo
runs based on Eq. 15 are used to simulate series of hourly
rain rate interpolation errors and then to build their distribu-
tion for various accumulation durhessations. The impact of
the correlation coefficient on the error series structure and
especially on the error distributions of rainfall amounts ac-
cumulated over more than one hour is clearly noticeable in
Fig. 6. The comparison with the distributions of observed
errors clearly reveals the necessity of taking into account the
time-dependence of interpolation errors and the adequacy of
the proposed time-dependence model. This adequacy is con-
firmed for other validation raingauges (Table 3). In most
cases, the proposed model reproduces the evolution of the
interpolation error distributions for rainfall amounts accumu-
lated over a large range of time steps and for various locations
of the raingauge network (not shown). Moreover, the corre-
lation coefficient appears not to be too much dependent on
the location in space, which is another very positive result of
this cross-validation. Even if far from perfect, the proposed
error model appears to be able to generate reliable point rain-
fall estimation error series. Although it could not be directly
verified, according to the properties of the model presented in
the previous section and to the stability of the temporal cor-
relation coefficient, it can be assume that the proposed model
certainly also provides reliable MAP estimation error series.

Fig. 5. Point hourly precipitations ranked in ascending order versus
corresponding interpolated values (cross validation) plus or minus
computed standard deviation (grey lines). Mazet rain gauge.

5 Propagation of rainfall uncertainties through
rainfall-runoff models

The interpolation error model is now selected and at least ver-
ified on point values since its validity for MAP could not be
completely tested. Monte Carlo runs were then implemented
to simulate different scenarios of possible hourly MAP series
corresponding to the available point rainfall measurements.
These scenarios are then fed into calibrated RR models to
evaluate the impact of rainfall estimation uncertainties on RR
simulation results and hence on RR modelling efficiency.

5.1 Methodology

5.1.1 Rainfall-runoff modelling

The choice of adapted RR models is not the focus of the
present study. A large body of scientific literature has been
devoted to this question. The authors came to the conclusion
that the data sets routinely available in hydrology support the
development of models with only limited complexity – i.e.
the calibration of models with a limited number of parame-
ters, typically 4 to 8 (Jakeman and Hornberger, 1993; Perrin
et al., 2001).

For these reasons, it has been decided to use robust lumped
conceptual RR models run on a continuous basis. Based on
both, the available rainfall data and the time to peak of the
considered catchments – between 3 and 18 h –, an hourly
time step was selected for the computations. An automatic
local optimisation multi-start algorithm is used for the cali-
bration of the models (Edijatno et al., 1999; Mathevet, 2005).
It is based on a gradient search procedure to evolve step by
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Correlation coefficient = 0 Correlation coefficient = 0.6

Fig. 6. Comparison of characteristics of distribution of simulated (with the AR error model, left: no temporal dependence; right: temporal
dependence with a correlation of 0.6) interpolation errors (red arrows for mean± standard deviation ; blue “+” for 2.5 and 97.5 percentiles)
accumulated over 1 to 24 h at Goudet raingauge with those of observed interpolation errors obtained with a cross validation process (black
crosses “x” for mean± theoretical standard deviation; black triangles for 2.5 and 97.5 percentiles).
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Fig. 7. Distribution of highest errors on MAP generated for each
one of 100 scenarios and for each one of the three catchments of the
upper Loire river (rieu = Rieutord (62 km2) ; cham=Chambon-sur-
Lignon (139 km2); basb=Bas-en-Basset (3234km2))

step in the parameter space towards the optimum parame-
ter values, corresponding to a maximisation of the objective
function used. The selected objective function is the stan-

dard Nash and Sutcliffe (1970) efficiency on streamflow val-
ues (Eq. 16). A split sample test procedure (Klemeš, 1986)
is used to evaluate the performances of the models. The test
consists of dividing the total period of the available data set
into sub-sets. One is used for the calibration of the param-
eters and the others for the evaluation of the model perfor-
mances in validation mode. The periods can be exchanged to
multiply the number of validation tests. The Nash-Sutcliffe
efficiencies obtained on the validation data sets are consid-
ered in order to evaluate the performances of the models.

NSE= 1 −

∑n
i=1(QS(ti) − Qo(ti))

2

∑n
i=1(Qo(ti) − Q̄o(ti))2

(16)

where Qs(ti) and Qo(ti) are the simulated and observed
streamflows at time stepi, n is the number of time steps in
the period, andQ̄o(ti) is the mean observed streamflow dur-
ing this period. This Nash–Sutcliffe efficiency criterion takes
its values in the interval [-∞, 1].

The four-parameter GR4J model and the modified eight-
parameter TOPMO model (Perrin et al., 2003; Mathevet,
2005) based on Topmodel (Beven and Kirby, 1979), have
been selected to study the influence of MAP interpolation
uncertainties. A comparison with other RR models on the
upper Loire river data set has shown that these two models
had on average the best performances (Moulin, 2007).
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Rieutord (62 km2) Chambon (139 km2) Bas-en-Basset (3234 km2)

Fig. 8. Percentiles of uncertainty on MAP for Rieutord (left), Chambon-sur-Lignon (center) and Bas-en-Basset (right).

5.1.2 Simulated rainfall scenarios and their properties

To assess the impact of MAP uncertainties on streamflow
simulations, Monte-Carlo simulations of errors added to the
historical rainfall observations were conducted: 100 “pos-
sible” scenarios of MAP were generated with the above de-
fined time-dependent error model for MAPs. These scenarios
were then used as input to the RR models. Figure 7 presents
the ranked highest simulated MAP errors for each of the 100
scenarios. The range and statistical distributions of these er-
rors appear to vary depending on the catchment, and espe-
cially on its area, in a complex way linked both to the spatial
and temporal dependencies and to the structure of the rain-
gauge network. The maximum simulated MAPs and hence
MAP error values affect the smaller catchments as illustrated
in Figs. 7 and 8. This is due to the smoothing effect related
to averaging that increases as the catchment area grows and
tends to reduce the variance of the computed MAPs. Another
important and less obvious result appears in Fig. 8: the rel-
ative errors (divided by either measured or median values)
of estimated hourly MAPs have a tendency to increase with
the catchment area. The ratio between the maximum com-
puted MAP (about 50 mm/h) at Rieutord and the width of
its estimated 90% confidence interval (about 20 mm/h) is of
40%. It is close to 50% for the Chambon-sur-Lignon catch-
ment (respectively 28 mm/h and 14 mm/h) and to 100% for
the Bas-en-Basset catchment (resp. 18 mm/h and 18 mm/h).
This tendency is observed for all the MAP quantiles. To sum-
marise, absolute errors on MAPs decrease while relative er-
rors on MAPs increase when the considered area increases.
Apparently MAP errors are less affected by the smoothing
effect due to averaging than the MAPs themselves.

The consequences on simulated peak streamflows are diffi-
cult to anticipate and will therefore be tested through numer-
ical simulations. If the RR models were linear and if the RR
relation was independent of the scale, the results would be
similar for simulated streamflow relative errors (i.e. higher
relative errors for larger catchments). But the RR relation

is non-linear ; its smoothing or amplification effect on in-
put errors may depend on the absolute values of the MAPs
which vary with the catchment size. Moreover, the RR re-
lation depends on the catchment size and especially on the
time of concentration of the catchment. The RR smoothing
effect has a general tendency to increase with the area of the
catchment since the streamflows result from an averaging of
a larger amount of local processes over a longer period of
time.

5.1.3 Impact assessment of MAP scenarios propagation in
RR models

The 100 MAP scenarios were fed into the two calibrated RR
models for the three test catchments. Particular attention is
drawn to the width of the simulated streamflow uncertainty
ranges in the analysis of the results. A specific criterion has
been used to measure the sharpness of the streamflow simu-
lation : the root mean square range criterion (RMSR, Eq. 17)
between predefined percentiles of rainfall or streamflow sce-
narios distribution.

RMSR10−90 =
1

n

n∑

i=1

√
(X90(ti) − X10(ti))2 (17)

where RMSR10−90 is the criterion on the variable X (precip-
itation or streamflow) for the confidence interval 80%,n is
the number of time steps, and X10(ti) and X90(ti) are the 10
and 90 percentiles of the variable X for the timeti .

5.2 Results and discussion: impact on streamflow simula-
tions

5.2.1 Sharpness of RR simulations

For each of the three catchments, the RMSR value was com-
puted for both rainfall and streamflow series, and for vari-
ous confidence intervals (Table 4). When comparing RMSR
on streamflows (in mm/h) with RMSR on precipitation (in
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Table 4. Root mean square range (RMSR) of hourly precipitation P (in mm/h) and of streamflow Q (in mm/h) computed for 50%, 80%,
90%, 95% and 100% confidence intervals.

25–75 10–90 5–95 2.5–97.5 0–100 Ratio Q/P

Rieutord P 0.278 0.514 0.644 0.749 0.982
Rieutord Q GR4J 0.078 0.148 0.186 0.217 0.279 ≈28%
Rieutord Q TOPM 0.076 0.145 0.182 0.212 0.275 ≈28%

Chambon P 0.244 0.433 0.536 0.619 0.794
Chambon Q GR4J 0.036 0.067 0.085 0.097 0.126 ≈15%
Chambon Q TOPM 0.037 0.068 0.085 0.098 0.126 ≈15%

Bas-en-Basset P 0.194 0.360 0.447 0.515 0.660
Bas-en-Basset Q GR4J 0.012 0.024 0.030 0.038 0.051 ≈7%
Bas-en-Basset Q TOPM 0.011 0.022 0.028 0.035 0.044 ≈7%

Table 5. Proportion (in %) of the observed values contained in the 90% simulated confidence interval, with and without a 20% tolerance
on observed streamflow values (in [ ] in case of a tolerance of 20% but without taking into account uncertainties on MAP).Q̄ is the mean
streamflow ;Q10 is an estimate of the 10-year flow.

Rieutord Chambon Bas-en-Basset
Qobs Qobs±20% Qobs Qobs±20% Qobs Qobs±20%

All data 22.2 55.3 [39.0] 18.6 42.0 [24.2] 10.9 28.0 [15.4]
Qobs>10Q̄ 34.2 68.7 [42.0] 28.4 53.6 [24.7] 21.9 50.6 [28.9]
Qobs>Q10 66.7 100.0 [33.0] 47.5 65.0 [40.0] 77.8 88.9 [33.3]

mm/h), it appears that this ratio increases with decreasing
catchment areas: RMSR on streamflow represent about 28%
of RMSR on precipitation for the catchment of the Loire
at Rieutord (62 km2), 15% for the Lignon at Chambon-sur-
Lignon (139 km2) and around 7% for the Loire River at
Bas-en-Basset (3234 km2). There is almost no difference in
sharpness between the two tested RR models.

This confirms the expected higher smoothing effect of the
RR process for large catchments – at least, as simulated by
the RR models. As shown in Fig. 9, the 90% relative confi-
dence intervals on simulated streamflows do not appear to de-
pend anymore on the catchment: the ratio between the width
of the confidence interval and the simulated streamflow val-
ues is stable and close to 50% in each case. As a first con-
clusion of the MAP uncertainty propagation exercise, it turns
out that, for different reasons, uncertainties in MAP estima-
tions affect streamflow simulations independent of the catch-
ment area. This last conclusion holds for the given gauge
network structure and density.

5.2.2 Accuracy of RR simulations

Overall, the computed 90% confidence intervals on simu-
lated streamflow series are large. These confidence intervals
have been reported on Fig. 10, along with both the measured
hydrographs and the ranges of the simulated hydrographs for
one of the major flood events in the record period for the up-
per Loire river area. The impact of the MAP uncertainties on

the streamflow simulations appears to be dramatic. The up-
per bound of the 90% simulated confidence interval is about
1.5 times higher than the lower bound throughout the range
of flows. Even if the RR models were perfect, which they
are of course not, MAP estimation uncertainties set a rela-
tively low limit to the accuracy of streamflow simulations or
forecasts. Moreover, the measured hydrograph appears to be
mostly contained in, or very close to, the 90% confidence
interval for the two examples presented in Fig. 10 : i.e. the
distance between simulated and measured hydrographs may
be explained by errors in the estimation of MAPs. Similar
observations are made for all the catchments and simulated
streamflow series.

Table 5 gives the proportion of measured streamflows
comprised in the computed 90% confidence limits for the
whole test period (20–27 years) and the three catchments. A
significant proportion of measured streamflows appears to be
comprised in this confidence interval. This is particularly
true for severe flood events (observed streamflow greater than
10 times the mean streamflow) and when a tolerance of plus
or minus 20% is considered for the measured streamflows.
This tolerance stands for both the streamflow measurement
uncertainties and the level of efficiency of RR models ex-
pected by operational forecasters. For the smallest catch-
ment (Rieutord), the simulated 90% confidence interval con-
tains, depending on the discharge threshold selected, 55 to
100% of the measured streamflow values when a tolerance
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Rieutord (62 km2) Chambon (139 km2) Bas-en-Basset (3234 km2)

Fig. 9. Percentiles of uncertainty on streamflow (mm/h) for Rieutord (left), Chambon-sur-Lignon (center) and Bas-en-Basset (right). “+”
indicate measured values versus median of simulated values.

Bas-en-Basset (3234 km2) Chambon (139 km2)

Fig. 10. Two examples of observed flood hydrographs (red lines), 90% confidence interval for the 100 simulated streamflows (grey areas)
and limits of the simulated streamflow values obtained after 20 Monte Carlo runs (blue lines). Flood of 11 November 1996 at Bas-en-Basset
(3234 km2, left) and Chambon-sur-Lignon (139 km2, right).

factor of 20% is considered (Table 5). In other words, rainfall
estimation uncertainties may explain a large part of the differ-
ences between measured and simulated streamflows. Rain-
fall estimation uncertainties appear in this case as a major
factor limiting the accuracy of streamflow simulations. Con-
versely, according to the existing uncertainties on estimated
MAPs and their impact on RR simulations, RR simulation
accuracy will hardly be improved without a significant re-
duction of the MAP estimation errors. This pleads for an
improvement of the rainfall measurement networks and tech-
niques.

For the largest catchments of the Lignon at Chambon and
of the Loire river at Bas-en-Basset, theoretical uncertainties
on MAP are nevertheless far from explaining all of the RR
modelling errors, especially when low discharge values are
considered. The Lignon catchment located on a relief is fre-
quently affected by heavy rainfalls that are not well captured
by the existing surrounding raingauge network. The pro-
posed error model tends to under-estimate the error standard
deviation in this area according to the cross-validation re-
sults obtained for the Fay raingauge located on the Lignon
catchment (see Table 3). In the case of the Loire river at Bas-
en-Basset, other error sources seem to affect significantly the
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RR simulations. A detailed analysis of the simulated and ob-
served hydrographs reveals delays and apparent fluctuations
of both the runoff rates and the times-to-peak between events.
These can undoubtedly be attributed, to a great extent, to the
spatial repartition of the rainfall. Higher runoff rates are gen-
erally observed during convective events when the rainfall is
concentrated on a limited part of the catchment if compared
to stratiform events with a more homogeneous rainfall repar-
tition. Likewise, the time-to-peak depends on the location
of the rain cells on the catchment and their distance to the
outlet for convective rainfall events. The tested lumped mod-
elling approach becomes limited on catchments of this size.
For larger catchment areas, according to the results presented
herein, the use of distributed or semi-distributed hydrologi-
cal models might bring some improvements to the RR sim-
ulations. Nevertheless, this possible gain should be put into
perspective by considering the number of calibrated parame-
ters: problems such as over-parameterisation might emerge.

As a conclusion to this MAP uncertainty propagation ex-
ercise, a significant part of the streamflow simulation error
may be attributed to MAP estimation errors, except on large
catchments (typically areas over 500 km2) where the shape
of the hydrograph can be influenced by the spatio-temporal
pattern of the rainfall event, and where a spatialised mod-
elling approach might bring improvement if compared to the
tested lumped models. Even if the RR models were perfect,
MAP estimation uncertainties are clearly a major constraint
on both accuracy and sharpness of stream flow simulations
or forecasts.

6 Summary and conclusions

The objective of this study was twofold: to propose a reli-
able estimate of MAP uncertainties when MAPs are obtained
through the interpolation of raingauge measurements and to
investigate the possible impact of MAP estimation errors on
RR simulations.

When compared to previous published results on the same
issue, the main originality of this study lies in the develop-
ment and partial validation of a reliable error model (con-
sistent with the data) to represent uncertainties in MAP.
Whereas most of the previous studies use either completely
empirical error estimations or a priori error models, we pro-
pose a time-dependent spatial error model based on geostatis-
tics and which has been validated to the greatest possible ex-
tent.

Monte Carlo simulations based on this error model reveal
that uncertainties on MAP estimations induce large uncer-
tainties in RR simulations. For different reasons, all the
tested catchments are equally affected by this phenomenon:
the relative size of the computed confidence interval is inde-
pendent on the catchment area. The higher relative error val-
ues on MAPs appear to be compensated by a higher smooth-
ing effect of the RR transformation when larger catchment
areas are considered.

Comparison with measured streamflows shows that a sig-
nificant part of the lumped RR simulation errors may be ex-
plained by the uncertainties in MAP estimations. This is par-
ticularly true for the smallest catchments studied, whereas on
the larger catchment the shape of the hydrograph can be in-
fluenced by the spatio-temporal pattern of the rainfall event
and distributed RR models might bring an improvement if
compared to the tested lumped models. This implies that
for a certain range of catchment areas (up a few hundred
square kilometers), MAP estimation uncertainties drastically
restrict the possible accuracy of streamflow simulations and
set a limit to both future developments and improvements
of RR models. Even in an optimal situation – good qual-
ity and long datasets, intensive effort in RR model selection
and calibration – RR simulation errors can be reduced with
difficulty, without a significant improvement of the rainfall
measurement networks and techniques.

From a practical point of view, operational forecasting ser-
vices should be aware of these limits to the efficient use of
RR models and if possible evaluate the RR simulation uncer-
tainties in real time to be able to deliver confidence intervals
along with their traditional deterministic forecasts. Ensem-
ble or Monte Carlo forecasts are now used routinely in me-
teorological forecasting; there is no reason why they should
be disregarded by hydrologists. The error scenario simula-
tion model developed here could help to build such ensem-
ble forecasts in the case where MAP amounts are estimated
through a rain gauge network. The same type of model is
still to be developed for the case where quantitative radar es-
timations are used.
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Kleměs, V.: Operationnal testing of hydrological simulation mod-
els, Hydrolog. Sci. J., 31(1), 13–24, 1986.

Krajewski, W. F. and Smith, J.: Radar hydrology : rainfall estima-
tion., Adv. Water Resour., 25(8-12), 1387–1394, 2002.

Lebel, T., Bastin, G., Obled, Ch., and Creutin, J.: On the accuracy
of areal rainfall estimation: a case study, Water Resour. Res., 23,
2123–2134, 1987.

Mathevet, T.: Quels mod̀eles pluie-debit globaux au pas de temps
horaire? D́eveloppements empiriques et intercomparaison de
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