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[1] This paper presents the African Monsoon Multidisciplinary Analysis (AMMA) Land
Surface Models Intercomparison Project (ALMIP) for Microwave Emission Models
(ALMIP-MEM). ALMIP-MEMcomprises an ensemble of simulations of C-band brightness
temperatures over West Africa for 2006. Simulations have been performed for an incidence
angle of 55�, and results are evaluated against C-band satellite data from the Advanced
Microwave Scanning Radiometer on Earth Observing System (AMSR-E). The ensemble
encompasses 96 simulations, for 8 Land SurfaceModels (LSMs) coupled to 12 configurations
of the Community Microwave Emission Model (CMEM). CMEM has a modular structure
which permits combination of several parameterizations with different vegetation opacity
and soil dielectric models. ALMIP-MEM provides the first intercomparison of state-of-the-
art land surface and microwave emission models at regional scale. Quantitative estimates of
the relative importance of land surface modeling and radiative transfer modeling for the
monitoring of low-frequency passive microwave emission on land surfaces are obtained.
This is of high interest for the various users of coupled land surface microwave emission
models. Results show that both LSMs andmicrowave model components strongly influence
the simulated top of atmosphere (TOA) brightness temperatures. For most of the LSMs,
the Kirdyashev opacity model is the most suitable to simulate TOA brightness temperature
in best agreement with the AMSR-E data. When this best microwave modeling
configuration is used, all the LSMs are able to reproduce the main temporal and spatial
variability of measured brightness temperature. Averaged among the LSMs, correlation is
0.67 and averaged normalized standard deviation is 0.98.

Citation: de Rosnay, P., M. Drusch, A. Boone, G. Balsamo, B. Decharme, P. Harris, Y. Kerr, T. Pellarin, J. Polcher, and J.-P.
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1. Introduction

[2] Soil moisture is a crucial variable of the Earth system.
It controls the partitioning of energy in latent and sensible
heat fluxes that occurs at the soil-atmosphere interface and
it is a major variable of the continental hydrological cycle
[Dirmeyer et al., 1999; Entekhabi et al., 1999; Milly and
Dunne, 1994]. Soil moisture strongly influences the seasonal
and interannual dynamics of the vegetation which is an
essential component of the coupled hydrological and carbon
cycles [Calvet et al., 2008; Ciais et al., 2005; Foley et al.,

1996; Nepstad et al., 1994]. Soil moisture is a main variable
for specifying the lower boundary condition of the atmo-
sphere. Accurate estimation of initial state soil moisture
conditions is thus important for numerical weather and
climate predictions. Koster et al. [2004] showed that precip-
itation is somewhat affected by soil moisture conditions and
they identified three hot spot regions where feedback mech-
anisms between soil moisture and precipitation are strongest,
in the Great Plains of North America, the Sahel, and India.
Over Sahel, Taylor et al. [2007] and Taylor [2008] pointed
out that soil moisture and land surface processes highly
influence the dynamics of the mesoscale convective systems.
[3] Coordinated land surface modeling activities have

improved our understanding of land surface processes. The
Project for the Intercomparison of Land Surface Parameter-
ization Schemes (PIPLS) [Lettenmaier, 2003; Henderson-
Sellers et al., 1995] has provided local-scale off-line (i.e.,
decoupled from an atmospheric model) intercomparisons of
Land SurfaceModels (LSMs) for more than a decade. Within
the wider context of Global Energy and Water Experiment
(GEWEX), PILPS is part of the Global Land Atmosphere
System Study (GLASS). The Global Soil Wetness Project-2
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(GSWP-2) provided global estimates of soil moisture and
land surface fluxes [Dirmeyer et al., 2006]. GSWP-2 simu-
lations were performed globally with a 1�� 1� grid, using the
International Satellite Land Surface Climatology Project
(ISLSCP) Initiative II data set for 1986–1995 [Hall et al.,
2001]. The AMMA (African Monsoon Multidisciplinary
Analysis) Land Surface Model Intercomparison Project
(A. Boone et al., The AMMA Land Surface Model Inter-
comparison Project (ALMIP), submitted to Bulletin of the
American Meteorological Society, 2009) is being conducted
for 2002–2006, at a 0.5� � 0.5� grid. Within the AMMA
project [Redelsperger et al., 2006], one of the key objective of
ALMIP is to get a better understanding of the role of soil
moisture in land surface processes inWest Africa. For 2004–
2006, ALMIP simulations are of particular interest since they
use a forcing data set which combines model fields and
satellite data for precipitation and radiative fluxes (Boone
et al., submitted manuscript, 2009).
[4] In this paper, results of the ALMIP-MEM (Microwave

Emission Model) project are presented. ALMIP-MEM aims
at coupling the ALMIP soil moisture and soil temperature
outputs provided by an ensemble of LSMs for the year 2006,
to the Community Microwave EmissionModel [Drusch et al.,
2009; Holmes et al., 2008] to simulate C-band (6.9 GHz)
brightness temperatures as seen by the AdvancedMicrowave
Scanning Radiometer on Earth Observing System (AMSR-E)
lowest-frequency channel. AMSR-E brightness temperature
data are used to provide an integrated evaluation of the
coupled ALMIP-MEM approach. The CMEM forward model
has been developed by the European Centre for Medium-
RangeWeather Forecasts (ECMWF) to simulate top of atmo-
sphere (TOA) low-frequency (1.4 GHz to 20 GHz) passive
microwave emission. CMEM considers different dielectric
layers (soil, vegetation, atmosphere) contributing to the TOA
brightness temperature. Microwave emission models for
these different components have been individually devel-
oped, calibrated and validated at local scale on the basis of
different field experiments for different soil, vegetation and
climate conditions. Some of them have been used at the field
scale, on the basis of aircraft measurements [Wigneron et al.,
2007; de Rosnay et al., 2006; Jackson et al., 1999;Wigneron
et al., 1996; Schmugge, 1992; Jackson and Schmugge, 1991;
Jackson and O’Neill, 1990; Wang and Schmugge, 1980].
Gao et al. [2004] used the L-MEB model [Pellarin et al.,
2003] to simulate a 10-year time series of synthetic L-band
(1.4 GHz) temperature from the GSWP-2 output of four
LSMs. They used aircraft measurements acquired during the
GSWP-2 period to evaluate the coupled approach. All these
studies contributed to improve our understanding of the
microwave emission over land surfaces. They were the basis
for the development of the current microwave emission
models.
[5] Emission models are a key component of the satellite

data inversion and data assimilation systems. The future
SMOS (Soil Moisture and Ocean Salinity) [Kerr et al.,
2001] is a European Space Agency (ESA) Earth Explorer
demonstration satellitemission. It is expected to be launched in
2009 andwill be followed by the NASASMAP (SoilMoisture
Active and Passive) mission in 2013. SMOS will be the first
satellite devoted to soil moisture remote sensing over land. For
NWP (Numerical Weather Prediction), assimilation of SMOS
data is envisaged and several meteorological centers are

currently developing Extended Kalman Filter techniques for
soil moisture analysis [Mahfouf et al., 2009; M. Drusch et al.,
Towards a Kalman filter based soil moisture analysis system
for the operational ECMWF Integrated Forecast System,
submitted to Geophysical Research Letters, 2009]. SMOS
data will be used for many applications, including NWP,
hydrology, and climate modeling, by several groups with
different land surface and different forward emission models.
[6] The present work represents the first coordinated

microwave emission models regional intercomparison ex-
periment. ALMIP-MEM takes advantage of the experience
of the land surface modeling community in intercomparison
studies. ALMIP-MEM combines 8 LSMs with 12 micro-
wave emission model configurations of CMEM. In total 96
ALMIP-MEM brightness temperatures simulations were
performed for each ALMIP experiment. They are evaluated
against AMSR-EC-band data for the year 2006 over theWest
African Region. In contrast to the previous studies above
mentioned, the purpose of this study is not to calibrate again
the microwave emission models to obtain the best fit with
AMSR-E data over the particular studied region. Rather, this
study aims at investigating the relative importance of Micro-
wave Emission Models and Land Surface Models on the
accuracy of simulated brightness temperatures, when com-
pared to the AMSR-E C-band brightness temperatures. For
the future SMOS and SMAP users, as well as for the space
agencies, it is of high interest to quantify the relative impor-
tance of the different elements of the modeling system,
including land surface and microwave components. For
NWP, it is crucial to identify the best microwave modeling
approach to be used for low-frequency brightness tempera-
ture data assimilation and soil moisture analysis.
[7] Section 2 presents the data and method. This includes

AMSR-E data, the Community Microwave Emission Model,
the AMMA Land Surface Model Intercomparison Project,
the ALMIP-MEM experiments and the method for compar-
ing AMSR-E data and ALMIP-MEM outputs. Section 3
presents the ALMIP-MEM results and section 4 provides
summary and conclusions.

2. Data and Method

2.1. AMSR-E Satellite Data

[8] AMSR-E on the NASA’sAQUA satellite was launched
in 2002. AMSR-E instruments operate in polar Sun-synchro-
nous orbits, with equator crossings at 0130 local time (LT)
(descending orbit) and 1330 LT (ascending orbit), measur-
ing microwave brightness temperatures at five frequencies
with an incidence angle of 55�. C-band and X-band channels
(6.9 and 10.7 GHz) are suitable for soil moisture monitoring
[Njoku et al., 2003]. At C-band brightness temperature is
sensitive to the very top (�2 cm) soil moisture, vegetation
water content and effective temperature. AMSR-E products
include measured brightness temperature. They are archived
and distributed routinely by NASA National Snow and Ice
Data Center (NSIDC) Distributed Active Archive Center
(DAAC) on a global cylindrical 25-km Equal-Area Scalable
Earth Grid (EASE-Grid) cell spacing [Njoku, 2004].
[9] Possible Radio Frequency Interference (RFI) is observed

in the 6.9 GHz and 10.7 GHz (X-band) channels [Njoku et al.,
2005; Li et al., 2004]. RFI contamination is observed in
Japan, Europe, the Middle East, and southern Africa and
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North America. In other areas, the accuracy of the measured
brightness temperature is better than 1K. Sun-glint effects,
which are not due to instrument errors, might also affect the
signal of the ascending orbit.
[10] In this study C-band brightness temperatures of

AMSR-E are used over West Africa and for the descending
orbit. They are not affected by RFI nor Sun-glint effects.

2.2. Soil Moisture Ground Data

[11] In the framework of the AMMA Enhanced Observing
Period [Redelsperger et al., 2006] West Africa has been
extensively instrumented. In particular, the Agoufou site
located in Mali at 15.3�N, 1.5�W includes a soil moisture
measurement network that will be used for the future vali-
dation of SMOS. The soil moisture scaling properties have
been investigated by de Rosnay et al. [2009] from which a
relationship has been determined to derive kilometric-scale
soil moisture from the most representative station of the
network. The Agoufou soil moisture data set has also been
used to evaluate AMSR-E soil moisture products by Gruhier
et al. [2008]. This data set is used in this study to illustrate
at local scale the consistency between ground measurements
of surface (5 cm) soil moisture and soil temperature and
brightness temperatures (observed and simulated).

2.3. Community Microwave Emission Model

[12] The CommunityMicrowave EmissionModel (CMEM)
is the observation operator developed by the ECMWF to
simulate low-frequency passive microwave brightness temper-
atures (from 1 GHz to 20 GHz) of the surface [Drusch et al.,
2009; Holmes et al., 2008]; http://www.ecmwf.int/research/
ESA_projects/SMOS/cmem/cmem_index.html. The TOA
brightness temperature results from the contribution of three
dielectric layers (soil, vegetation, atmosphere). It is expressed at
polarization p,

TBtoa;p ¼ TBau;p þ exp�tatm;p � TBtov;p ð1Þ

TBtov;p ¼ TBsoil;p � e�tveg;p þ TBveg;p 1þ rr;pe
�tveg;p

� �

þ TBad;p � rr;p � e�2�tveg;p : ð2Þ

TBtov,p (K) is the top of vegetation brightness temperature. In
this formulation vegetation is represented as a homogeneous
layer with an optical depth tveg,p along the viewing path, with
a brightness temperature TBveg,p (K). TBau,p (K) and TBad,p (K)
are brightness temperatures resulting from upward and
downward radiations; tatm,p is the atmospheric optical depth.
TBsoil,p (K) is the soil brightness temperatures and rr,p is
the soil reflectivity of the rough surface. In equation (2), the
soil brightness temperature is expressed according to the
Rayleigh-Jeans approximation for the microwave domain
as the product of the soil emissivity er,p and the effective
temperature,

TBsoil;p ¼ Teff � er;p: ð3Þ

On the basis of equations (1), (2), and (3), CMEM includes a
modular choice of the physical parameterizations for the soil,
vegetation and atmosphere dielectric layers, such as those

used in the L-Band Microwave Emission of the Biosphere
(L-MEB) [Wigneron et al., 2007] and Land Surface Micro-
wave Emission Model (LSMEM) [Drusch et al., 2001]. For
the soil, as described by Drusch et al. [2009], three param-
eterizations are considered for the dielectric constant, four for
the effective temperature, two for the smooth emissivity
model and five for the soil roughness. The vegetation opti-
cal depth can be represented by a choice of four differ-
ent parameterizations and the atmospheric opacity by three
parameterizations. Consequently, CMEM provides a total of
1440 different combinations. This study does not test all these
possible configurations. The soil effective temperature and
the atmospheric opacity models of Choudhury et al. [1982]
and Pellarin et al. [2003] are chosen. The smooth emissiv-
ity is represented with the Fresnel Law and the effects of
soil roughness are parameterized using the Choudhury et al.
[1979] parameterization.
[13] The sensitivity of the simulated brightness tempera-

ture is investigated for different configurations of the vege-
tation optical depth and the soil dielectric constant. These two
components of the microwave emission model are strongly
related to soil moisture and vegetation water content which
are the main contributors affecting the sensitivity of the TOA
brightness temperature, as shown by Jones et al. [2004]. Soil
water content and vegetation water content have opposite
effects on the microwave emission. When vegetation water
content increases the scatter and absorption increases and the
emission is more important. In contrast, when the soil is
getting wet, the soil dielectric constant increases and the
emission is reduced.
[14] Table 1 summarizes the microwave modeling param-

eterizations used in this study concerning vegetation opacity
and dielectric models. It indicates the 12 configurations of
vegetation opacity and dielectric models and gives an index
number for each, which will be used in the following. A short
description of the soil dielectric constant and vegetation
opacity models used in this study is provided hereafter. More
detailed descriptions of all parameterizations used in CMEM
can be found in the references listed in Table 1 and given by
Drusch et al. [2009].
2.3.1. Soil Dielectric Models
[15] Microwave remote sensing of soil moisture relies on

the large contrast between the dielectric constant of water
(�80) and that of dry soils (�4). The soil dielectric mixing
model relates the soil dielectric constant to the volumetric soil
moisture and soil texture, frequency of detection and surface
soil temperature. Several dielectric models have been pro-
posed in the literature. The Wang and Schmugge [1980] and

Table 1. Physical Parameterizations Used in CMEM for

ALMIP-MEMa

Vegetation Optical Depth

Dielectric Constant

Dobson et al.
[1985]

Mironov et al.
[2004]

Wang and
Schmugge
[1980]

Jackson and O’Neill [1990] 1 5 9
Kirdyashev et al. [1979] 2 6 10
Wegmüller et al. [1995] 3 7 11
Wigneron et al. [2007] 4 8 12

aTwelve configurations are considered for different combinations of soil
dielectric and vegetation optical depth models.
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theMironov et al. [2004] models consider the effect of bound
water on the dielectric constant. They are limited to rather
low frequencies in the range of about 1 GHz to 10 GHz. The
Dobson model is valid for a larger range of frequency (1 GHz
to 18 GHz), but the dielectric constants computed from the
Wang and Schmugge and the Mironov models are in better
agreement with measurements for a large range of soil texture
types [Vall-llossera et al., 2005;Mironov et al., 2004]. These
three models are implemented in CMEM (Table 1).
2.3.2. Vegetation Opacity Models
[16] The emission of the vegetation is described in CMEM

using the so-called t-w approach in which the vegeta-
tion brightness temperature is expressed as a function of
the canopy temperature Tc corrected by an emissivity factor
related to the extinction across the vegetation,

TBveg;p ¼ Tc � 1� wp

� �
� 1� e�tveg;pð Þ: ð4Þ

The extinction accounts for the vegetation optical depth tveg,p
and the single scattering albedo wp at polarization p. On the
basis of the t-w approach several parameterizations have
been proposed to compute the vegetation optical thickness.
The four approaches implemented in CMEM are indicated in
Table 1. For each of them, the values of the parameters are
indicated in Table 2 according to Holmes et al. [2008],
Wigneron et al. [2007] and Pellarin et al. [2003].
[17] Jackson and Schmugge [1991] related the optical thick-

ness to the vegetation water content (VWC) and an empirical
parameter b relating the vegetation structure,

tveg;p ¼ b � VWC

cos q
: ð5Þ

The b parameter is determined from field experiments for
different vegetation types and the VWC is expressed as a
linear function of the Leaf Area Index (LAI) [Pellarin et al.,
2003]. In this parameterization the single scattering albedo is
constant for low and high vegetation types.
[18] In the Wigneron et al. [2007] vegetation optical

thickness model, the single scattering albedo depends on
both vegetation type and polarization. The polarized optical
thickness is expressed as

tveg;p ¼ tnadir � cos2 qþ ttp sin
2 q

� � 1

cos q
ð6Þ

tnadir ¼ b0 � LAI þ b00; ð7Þ

where ttp parameters represent the angular effect on vegeta-
tion optical thickness for each polarization and vegetation
types. tnadir is the nadir optical depth and b0, b00 are the
vegetation structure parameters. Parameters used at C-band
for this study for short vegetation types (crops and grass,
Table 2) are based on work by Wigneron et al. [1995] and
Pellarin et al. [2006].
[19] The Kirdyashev et al. [1979] parameterization is sim-

ple in terms of number of parameters, but it accounts for the
observing frequency. It expresses the vegetation optical thick-
ness as a function of the wave number k (between 1 GHz and
7.5 GHz), the dielectric constant of vegetation water, �00vw
(imaginary part), VWC, incidence angle q, water density
rwater and a vegetation structure parameter ageo,

tveg;p ¼ ageo � k �
VWC

rwater
� �00vw � 1

cos q
: ð8Þ

This parameterization has been used by Kerr and Njoku
[1990] to investigate the multifrequency microwave signal
over semiarid regions. It was extended to a larger range of
frequencies (1–100 GHz) by Wegmüller et al. [1995], by
accounting for the wave number in the attenuation along the
viewing path.
2.3.3. Subgrid-Scale Variability
[20] The brightness temperature at the top of the vegeta-

tion, TBtov,p, equation (2), can be computed for each model
grid box taking the subgrid-scale variability of the land
surface into account. Up to seven tiles can be considered in
each CMEM grid box: bare soil, low vegetation, high
vegetation (each are either free of snow or snow-covered)
and open water. For low- and high-vegetation tiles, the
dominant type is determined from the land cover data base.
Within each grid cell, brightness temperatures are computed
separately for each tile. The grid cell averaged brightness
temperature is computed using a linear averaging of the
brightness temperatures depending on the relative occurrence
of each type of land cover.
2.3.4. Forcing Variables and Parameters
[21] To simulate TOA brightness temperatures CMEM

requires (1) dynamic fields: the soil moisture and soil tem-
perature profiles, 2-m air temperature, LAI, snow depth and
snow density, and (2) static fields: soil texture, land cover,
and geopotential at the surface which represents the surface
elevation. More details concerning CMEM input/outputs are
provided by Drusch et al. [2009]. For the ALMIP-MEM
simulations performed in this study, the dynamic fields are
obtained from the individual ALMIP simulations for each
LSM. Soil texture, vegetation cover and LAI are important

Table 2. CMEM Vegetation Parameters for the Four Considered Parameterizations

Parameterizations Parameter

Low Vegetation Types High Vegetation Types (Forest)

Crops Grass Rain Deciduous Coniferous

Jackson and O’Neill [1990] w 0.05 0.05 0.05 0.05 0.05
Kirdyashev et al. [1979] and Wegmüller et al. [1995] VWC 0.5.LAI 0.5.LAI 10 4 3
Kirdyashev et al. [1979] and Wegmüller et al. [1995] ageo 0.33 0.33 0.66 0.66 0.66
Jackson and O’Neill [1990] b 0.2 0.15 0.33 0.33 0.33
Wigneron et al. [2007] b0 0.2 0.2 0 0 0

b00 0 0.00 0.7 0.69 0.7
w 0.05 0.05 0.095 0.07 0.08
tth 1 1 1 0.49 0.8
ttv 1 1 1 0.46 0.8
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parameters which influence the simulated TOA brightness
temperatures. Holmes et al. [2008] found a global sensitivity
of 4 K in simulated brightness temperature to the vegetation
map. For continental- to global-scale applications CMEM
uses the ECOCLIMAP database for soil texture and land
cover [Masson et al., 2003].

2.4. AMMA Land Surface Models Intercomparison
Project (ALMIP)

[22] ALMIP is being conducted within the AMMA project
Boone et al., submitted manuscript, 2009) http://www.
cnrm.meteo.fr/amma-moana/amma_surf/almip/index.html).
It intercompares results from several LSMs in order to
determine which processes are missing or not adequately
modeled by the current generation of LSMs over this region.
[23] LSMs require the following input forcing fields: pre-

cipitation, short-wave and long-wave radiative fluxes, wind
speed (and direction), 2-m air humidity and temperature,
surface pressure. The ALMIP forcing data are obtained from
short-range ECMWF forecasts (FC) fields merged with the
satellite based precipitation products obtained in EPSAT-SG
(Estimation des Pluies par SATellite - Seconde Génération)
[Chopin et al., 2004] and the OSI-SAF (OceanS and Ice-
Satellite Application Facility) and Land-SAF radiative fluxes
for 2004 and 2005–2006, respectively [Geiger et al., 2008;
Boone et al., submitted manuscript, 2009].
[24] Forcing data for 2002–2003 have been used repeti-

tively to spin up the LSMs. ALMIP simulations were
performed at a 0.5� resolution in latitude and longitude over
the West African domain (from 5�S to 20�N in latitude and
from 20�W to 30�E in longitude). Outputs have been pro-
vided from each LSM at a 3 hour time step for 2004–2006
Boone et al., submitted manuscript, 2009). They include,
among other surface fields, soil moisture and soil temperature
profiles, sensible and latent heat fluxes and runoff.
[25] In ALMIP-MEM 8 LSMs have been coupled to the

CMEM forward operator (Table 3). Five of them are com-
pletely independent and three are derived versions of TES-
SEL and ISBA LSMs. Apart from ISBA-FR, which uses a
force restore approach, all these LSMs use a physically based
explicit representation of the soil hydrology by solving the
Darcy equation extended to unsaturated soil. The thickness of
the surface soil moisture layer is highly variable between the
LSMs, ranging from millimeters (ORCHIDEE-CWRR and
Noah) to 1 cm (ISBA-FR), 3 cm (ISBA-DF), 7 cm (HTES-
SEL, TESSEL, and CTESSEL) and 10 cm (JULES). For the
coupling with CMEM, the top layer soil moisture is used,

except for ORCHIDEE-CWRR and Noah which consider a
very fine vertical discretization. For these two LSMs, soil
moisture is aggregated over the first top four layers and top
two layers, respectively, leading to a thickness of 2.15 cm for
ORCHIDEE-CWRR and 2 cm to 10 cm for Noah which uses
variable soil depths.
[26] HTESSEL (H stands for Hydrology) [Balsamo et al.,

2009] is an improved version of TESSEL [van den Hurk
et al., 2000; Viterbo and Beljaars, 1995]. HTESSEL is
currently used operationally at ECMWF for NWP. It accounts
for variable runoff infiltration as a function of soil texture and
orography. CTESSEL (Carbon TESSEL) [Jarlan et al.,
2007] results from the coupling between TESSEL and
ISBA-A-gs [Calvet et al., 1998]. It describes the coupling
between carbon and water cycles through a diagnostic
computation of plant LAI and control of latent heat flux by
the plants. ISBA-DF (diffusion scheme) is an option of ISBA
[Noilhan and Planton, 1989] which accounts for multilay-
ered explicit soil heat and water transfer [Boone et al., 2000].
JULES is the Met Office Surface Exchange Scheme (MO-
SES) [Essery et al., 2003], coupled to Top-down Represen-
tation of Interactive Foliage and Flora Including Dynamics
(TRIFFID). It accounts for plant transpiration, soil evapora-
tion, plant growth and soil respiration [Blyth et al., 2006].
Noah is used in the National Center for Environmental
Prediction (NCEP) global Medium-Range Forecast model
[Chen and Dudhia, 2001]. In this study, a recently improved
version is used in which runoff is computed via a subgrid
distribution of the topography using a new TOPMODEL
approach [Decharme, 2007]. ORCHIDEE is the Institut
Pierre-Simon Laplace land surface model [Krinner et al.,
2005]. In the CWRR version used in this study, the soil water
dynamics is physically based and the latent heat flux is
controlled by the soil water and plant roots profiles
[d’Orgeval et al., 2008; de Rosnay et al., 2002]. More
detailed descriptions of these models can be found in the
references given in Table 3.

2.5. ALMIP-MEM Experiments

[27] ALMIP-MEM considers the coupling between the
8 LSMs of Table 3 and the 12 microwave modeling config-
urations of Table 1. Combining these different LSMs and
microwave models, ALMIP-MEM consists in one set of 96
simulations. Simulations are performed for the complete year
2006 in the AMSR-E configuration at 6.9 GHz (C-band) and
at 55� incidence angle.
[28] ALMIP-MEM experiments are conducted without

any calibration of the coupled LSMs-microwave emission

Table 3. Land Surface Models Used for ALMIP-MEM

Name Group Soil Hydrology Reference

ISBA-FR CNRM/Météo-France Force Restore Noilhan and Planton [1989]
ISBA-DF CNRM/Météo-France Diffusion Boone et al. [2000]
HTESSEL ECMWF Diffusion Balsamo et al. [2009]
TESSEL ECMWF Diffusion van den Hurk et al. [2000]

Viterbo and Beljaars [1995]
CTESSEL ECMWF Diffusion Jarlan et al. [2007]
JULES MetOffice Diffusion Blyth et al. [2006]

Essery et al. [2003]
Noah NCEP/EMC Diffusion Chen and Dudhia [2001]

Decharme [2007]
ORCHIDEE-CWRR IPSL Diffusion d’Orgeval et al. [2008], Krinner et al. [2005]

de Rosnay et al. [2002]
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models. Rather, we perform an intercomparison of different
combinations of state-of-the-art LSMs and microwave emis-
sion models. We address the sensitivity of the TOA bright-
ness temperatures, to the different components of the earth
modeling system, including soil moisture and land surface
modeling parameterizations as well as microwave emission
parameterizations of vegetation and soil contributions.

2.6. Statistical Comparison Between ALMIP-MEM
and AMSR-E

[29] In this study, C-band AMSR-E brightness temperature
products are used to evaluate the ALMIP-MEM ensemble
simulations over West Africa. To this end AMSR-E data are
linearly interpolated to the ALMIP regular 0.5� latitude–
longitude grid and a temporal collocation is performed by
using the time step of ALMIP-MEM outputs which is the
nearest to the AMSR-E observing time. The results presented
in this paper focus on horizontally polarized brightness
temperature which is the most sensitive to the soil moisture
and vegetation water content variability.
[30] To quantify each model’s skill to simulate the ob-

served brightness temperatures, we have computed for each
modeling configuration the annual mean bias and three
nondimensional statistics:
[31] 1. The correlation coefficient (R) is computed for

spatiotemporal fields and indicates whether the simulated
and observed fields have similar spatiotemporal patterns.
[32] 2. The normalized standard deviation (SDV). It is the

ratio of simulated ssim by observed sobs standard deviations
of brightness temperatures,

SDV ¼ ssim=sobs: ð9Þ

It gives the relative amplitude of the variations of the sim-
ulated field compared to those of the observed field.
[33] 3. The centered root mean square error between

simulated and observed patterns is normalized by sobs the
observed field standard deviation (E). E quantifies errors in
the pattern of variations. Note that E does not include any
information on the overall biases since means of the fields
are subtracted before computing second-order errors. It is
expressed as

E2 ¼ RMSE2 � Bias2
� �

=s2
obs: ð10Þ

As shown by Taylor [2001], these three different statistics are
complementary but not independent. They are related by

E2 ¼ SDV2 þ 1� 2 � SDV � R: ð11Þ

On the basis of this relation, Taylor diagrams are generally
used to represent on two-dimensional plots of these three
different statistics [Taylor, 2001]. They display the normal-
ized standard deviation (SDV) as a radial distance and the
correlation with observations as an angle in the polar plot.
Observed data are represented by a point located on the x axis
at R = 1 and SDV = 1. The centered normalized RMS
difference (E) between the simulated and observed patterns,
is the distance to this point.
[34] Statistics are computed on a West African subwindow

which is delimited by 9�N–20�N and 10�W–10�E. This
window includes the north–south climatic gradient which

characterizes the Sahelian area, but it excludes the coastal
grid points and the southern area where C-band signal is
expected to be constantly saturated by the tropical forest
vegetation water content.

3. Results

3.1. General Features of C-Band Brightness
Temperature Over West Africa

[35] Figure 1 illustrates an example of observed (AMSR-E)
and simulated (ALMIP-MEM for ORCHIDEE in this exam-
ple) brightness temperature (TB) at horizontal polarization
on Days of Year (DOY) 200–201 and 220–221, for the
descending orbit and in the CMEM configuration for which
the dielectric constant is simulated with the Mironov model
and the optical thickness with the Kirdyashev model.
[36] High values of soil moisture are characterized by low

emission and thus low values of TB. In contrast, areas with
high vegetation water content, as encountered at latitude
between 4�S and 10�N, have high brightness temperature
values. Figure 1a clearly shows the presence of wet soil
centered on 2�W, 15�N in the Sahelian region on DOY 200–
201, with low values of TB. This typically corresponds to
the occurrence of a monsoon season mesoscale convective
rainfall event [Janicot et al., 2008]. This wet patch is very
well reproduced by the ALMIP-MEM simulation (Figure 1a,
right), with a spatial correlation R = 0.66. On DOY 220–221
(Figure 1b) the pattern is different indicating wet soil patches
pattern has been evolving in space and time according to
rainfall occurrence. The extend of the wet patches is slightly
overestimated in the ALMIP-MEM simulation, but the
correlation (R = 0.71) indicates a good agreement between
simulated and observed brightness temperatures.
[37] This result is extended to the whole annual cycle and

for the eight ALMIP-MEM LSMs in Table 4 which shows
statistics of the comparison between ALMIP-MEM and
AMSR-E data. The microwave modeling configuration uses
the Wang and Schmugge and Kirdyashev models (Table 1,
configuration 10). This configuration provides the overall
best performances in the microwave modeling approach for
most LSMs as shown later.
[38] Land Surface Models that best represent the observa-

tions have highest correlation (R), lowest normalized root
mean square error (E) and SDV value closest to one. Five
LSMs show SDV values lower than 1, which indicate an
underestimation of the amplitude of the variations compared
to the observations. Two LSMs (TESSEL and CTESSEL)
present SDV values higher than one, which indicate an
overestimation of the signal amplitude. The overestimation
of the SDV for these two models is related to their strong bias
and it is due to the fact that they consider a uniform loamy
textured soil instead of a coarse texture soil over Sahel. One
LSM, HTESSEL, is able to reproduce the correct SDV, and
two LSMs (Noah and ORCHIDEE-CWRR) show SDV in a
10% agreement with the observations. In term of bias, Table 4
shows that Noah, HTESSEL and ORCHIDEE-CWRR pro-
vide the best agreement with the AMSR-E data.
[39] A condensed quantitative view of the ALMIP-MEM

results for the horizontal brightness temperature is provided
by Figure 2, for CMEM configuration 10 (Table 1). This
Taylor diagram quantifies the relative skill with which the
different LSMs participating in ALMIP-MEM simulate the
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spatial and temporal patterns of C-band brightness temper-
atures. Models lying on the dashed red arc have the correct
standard deviation, which indicates that the amplitude of sim-
ulated variations are in agreement with that of observations.
[40] In agreement with statistics provided in Table 4,

Figure 2 shows that the SDV is in the range of 0.67 to 1.36
and correlation values betweenmodeled and observed bright-
ness temperatures vary between 0.54 and 0.73 depending
on the considered LSM. HTESSEL SDV is very close to
one. It captures very well the amplitude of the spatiotemporal
variations of C-band brightness temperatures over West

Africa for 2006. ISBA-DF has a low value of SDV, which
indicates that it underestimates the amplitude of the varia-
tions. But it shows very good correlation and lowest RMS
difference with the observations. When statistics are consid-
ered individually, model performances seem unrelated to the
LSMs soil layer thickness. For example TESSEL and JULES
both consider a relatively thick top soil layer (7 cm and
10 cm), but their performance to reproduce the observed SDV
are drastically different (overestimates and underestimates,
respectively). Some LSM perform well in terms of correlation
with poor agreement with data in terms of SDV (ISBA-DF);
others do a good job to reproduce SDV with poor correlation
(HTESSEL).
[41] All the LSMs use the same atmospheric forcing and

the same microwave emission model. Therefore, the scatter
shown in Figure 2 results from differences in land surface
processes parameterizations which lead to different simulated
soil moisture and temperature. Many components of the
LSMs influence the spatial and temporal structure of soil
moisture, such as the vegetation seasonality, surface rough-
ness and albedo, subgrid-scale representations of soil, vege-
tation and water bodies, routing and feedbacks between
horizontal and vertical hydrology. However, it is clear from
this Taylor diagram that the three LSMs that account for finest
near surface soil moisture layers in the soil (ORCHIDEE-
CWRR, Noah and ISBA-FR) provide overall best results
when the three statistics are considered. This result is an
indication that a fine top soil discretization is required to

Figure 1. C-band brightness temperature (K) at horizontal polarization (left) observed by AMSR-E
and (right) simulated by ALMIP-MEM for DOY (a) 200–201 and (b) 220–221. This example shows
ORCHIDEE-CWRR results coupled to the Mironov dielectric model and the Kirdyashev opacity model
(CMEM configuration 6 of Table 1).

Table 4. Statistics of the Comparison Between ALMIP-MEM

Simulated and AMSR-E Observed C-band Brightness Tempera-

tures at Horizontal Polarization for 2006 (Descending Orbit)a

R E SDV Bias

ISBA-FR 0.69 0.74 0.86 4.5
ISBA-DF 0.73 0.68 0.71 5.2
HTESSEL 0.54 0.96 1.01 1.6
TESSEL 0.67 1.02 1.36 �12.9
CTESSEL 0.69 0.98 1.36 �13.5
JULES 0.63 0.78 0.67 10.9
Noah 0.72 0.72 0.90 1.1
ORCHIDEE 0.71 0.75 0.94 2.0

Average 0.67 0.83 0.98 �0.14
aThese results are for the CMEM configuration 10 (Table 1). Best

agreement betweenmodeled and observedAMSR-E brightness temperatures
are obtained for R = 1, SDV = 1, E = 0 and Bias = 0 (section 2.6).
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simulate C-band microwave emission in good agreement
with satellite data.

3.2. Temporal Evolution of the Microwave Emission

[42] Figure 3 shows the maps of the temporal correlation
over the year 2006 between the AMSR-E data and the
simulated TB at horizontal polarization, for the eight
ALMIP-MEM LSMs for the studied window (9�N–20�N
and 10�W–10�E). For all the LSMs, simulated TB show
contrasting results between the northern part of the window
(Sahelian area) where correlation values indicate a good
agreement with the observations, and the south of the
window (Soudanian area) where correlation values are lower.
The Sahel is characterized by a very marked annual cycle
with a short monsoon season. For the very north, only a few
precipitation events occur in the year. The resulting con-
trasted annual cycle is well reproduced by the models,
leading to high values of correlation of simulated TB with
AMSR-E data. In contrast the very south of the window has
more constant annual cycle of TB, due to the constant pres-
ence of high vegetation types permitted by more important
rainfall all along the year. This explains the low correlation
values in the south between simulated and observed TB.
[43] To investigate further the latitudinal contrast in model

performances shown in Figure 3, Figure 4 plots the mean
temporal evolution of observed and simulated horizontal TB
for two subwindows between 15�N and 20� (north) and
between 9� and 15�N (south). For each model, brightness
temperature is plotted after removal of the mean bias in each
subwindow. This allows us to focus on the simulated signal
variability, and this is suitable for future assimilation of
brightness temperature for NWP for which a bias correction
will be applied.

[44] The annual cycle is well reproduced by the simula-
tions for all models. Over Sahel (north, Figure 4a, left),
vegetation density and vegetation water content are rather
limited. The surface emission is mainly controlled by the
annual cycle of soil moisture and soil temperature. Maximum
values of TB are reached before the monsoon season starts,
around DOY 120–150 (May), which is the period of the year
with highest soil temperatures and lowest soil moisture
values. During the monsoon season, seasonal brightness
temperature dynamics are controlled by both soil moisture
and temperature with low effect of vegetation. At this time of
the year, availability of soil moisture leads to high values of
latent heat fluxes which decrease the surface temperature.
Accordingly, the seasonal soil moisture increase and soil
temperature decrease, both contribute to decrease TB values.
At the end of the monsoon season, between DOY 240 and
280 (September–October) the occurrence of rainfall events is
reduced and lower values of soil moisture are associated to
lower latent heat fluxes and higher temperatures, both leading
to increased TB values. Between DOY 300–365 and 1–150,
the soil is very dry with low variability and brightness tem-
perature variability is controlled by the soil temperature. It
reaches a minimum in December–January when the winter
of the northern hemisphere is associated with lower values of
short-wave radiations.
[45] Over the southern window (Figure 4b, left), between

9�N and 15�N, the monsoon onset occurs earlier in the year
and the seasonal decrease of TB related to themonsoon, starts
around DOY 120 (end of April). Vegetation cover is more
important than in the northern part of the window and its
impact on surface emission is larger. In particular persistent
vegetation cover all the year along leads to a lower amplitude
of the signal during the dry season.

Figure 2. Taylor diagram illustrating the statistics of the comparison between ALMIP-MEM synthetic
horizontal brightness temperature andAMSR-E data at C-band for different LSMs coupled to CMEMusing
the Wang and Schmugge dielectric model coupled to the Kirdyashev vegetation opacity model (CMEM
configuration 10, Table 1). Each circle indicates for the considered LSM: the correlation value (angle), the
normalized SDV (radial distance to the origin point), and the normalized centered root mean square error
(distance to the point marked ‘‘Data’’). One color is used for each LSM, according to Figures 4, 5, and 7.
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[46] At shorter temporal scale, at which precipitation events
occur, the agreement between the models and AMSR-E data is
still very good in terms of correlation, for the Sahelian area
(Figure 4a, right). AMSR-E data show four minima of TB on
DOY 201, 207, 216 and 218. All of them are associated with a
decrease in simulated TB and the amplitudes are rather well
captured for ISBA-FR, HTESSEL and ORCHIDEE-CWRR.
[47] On the southern part of the window (Figure 4b, right),

where vegetation is denser, model performances at the
precipitation event scale are clearly degraded as depicted in
Figure 3. The amplitudes of the variations of brightness

temperature are underestimated by all the LSMs. This is par-
ticularly the case on DOY 207 after a strong precipitation
event occurred.
[48] Figure 5 shows the temporal evolution for DOY 229–

233 in August 2006 of simulated horizontal brightness
temperature, soil temperature and soil moisture for the
ALMIP-MEM grid point corresponding to the Agoufou
super site in Sahel. This case study is limited to a few days
but it illustrates the relationship between soil moisture and
brightness temperature over Sahel for a typical convective
rainfall event. The occurrence of a major rainfall event on

Figure 3. Map of the temporal correlation between observed and simulated C-band horizontal brightness
temperature for the eight ALMIP-MEMLSMs coupled to theWang and Schmugge dielectric model and the
Kirdyashev opacity model (CMEM configuration 6 of Table 1).
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DOY 231 leads to a drastic increase of observed soil moisture
from very dry conditions on DOY 230 to wet conditions on
DOY 231, followed by a rapid decrease on DOY 232 due to
the high infiltration rate of the sandy soil in the area.
[49] The soil moisture evolution is very well captured by

most of the LSMs, which also validates the precipitation
forcing in terms of date of occurrence and intensity. There is
however a large scatter in simulated soil moisture values
between the LSMs. JULES, ISBA-DF tend to underestimate
soil moisture values while TESSEL, CTESSEL, ORCHIDEE-

CWRR overestimate soil moisture values. ISBA-FR and
HTESSEL perform well on this site, and Noah underesti-
mates the dynamics with overestimation of soil moisture in
dry conditions and underestimation in wet conditions. The
scatter in soil temperature conditions is much lower than that
of brightness temperatures. Observed AMSR-E horizontal
TB show a 55 K decrease between DOY 203 and 231. The
decrease is very well simulated by most of the LSMs, with
however a large scatter in TB values. The scatter is about
45 K in dry conditions and 25 K in wet conditions. For each

Figure 4. Temporal evolution (time in DOY) of simulated and observed horizontally polarized brightness
temperature (K) from the eight ALMIP-MEM simulations (CMEMconfiguration 10 of Table 1). Brightness
temperatures are spatially averaged for the (a) north and (b) south of the studied window. (left) Annual cycle
with a running average of 15 days. (right) Variability on shorter temporal scale is depicted between DOY
200 and 220. For each LSMs, a bias correction was applied on the basis of the mean annual mean bias
computed on each subwindow.
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LSM, errors in simulated soil moisture are translated into
errors in simulated TB. On DOY 231, in wet conditions,
models which underestimate surface soil moisture (ISBA-DF,
JULES, and Noah) overestimate TB values. ISBA-FR and
HTESSEL simulate soil moisture values in agreement with
field observations and provide horizontal TB in good agree-
ment with AMSR-E data. In contrast, LSMs that overesti-
mate soil moisture underestimate TB.

3.3. Time-Latitude Distribution

[50] Time-latitude diagrams in Figure 6 show 10-day mean
brightness temperature of C-band horizontal polarization for
both AMSR-E observations and simulations from the eight
LSMs listed in Table 3 (with CMEM configuration 10).
AMSR-E C-band data show a wet patch over the Sahel dur-
ing the rainy season, centered DOY 210 and latitude 15.5�
north. This wet patch is reproduced by all the LSMs, but the
amplitude is either overestimated or underestimated depend-
ing on the LSM. In agreement with Figure 4 (left), Figure 6
underlines the general good agreement for most LSMs
between the forward approach and the satellite data at the
annual cycle scale.

3.4. Relative Role of LSMs and Microwave
Emission Models

[51] Figure 7 shows the latitudinal plot of simulated and
observed horizontal brightness temperatures averaged for the
monsoon season July–August–September (JAS). It con-
siders the simulations performed in the configuration 10 of
CMEM (Table 1), but in contrast to Figures 4 and 6 no bias
correction has been applied to this plot.
[52] From 7�N to about 12�N, there is a generally good

agreement between the simulated and observed TB. The
scatter between the LSMs is very low, which indicates that
the different soil moisture and soil temperature patterns
simulated by the LSMs do not affect much the signal. Rather,
this indicates that the vegetation plays a dominant role in the
determination of TB.
[53] From 12�N to 16�N the latitudinal gradient is charac-

terized by a decrease in both vegetation cover and soil
moisture which have opposite effects on the simulated TB.
The observed decrease in TB indicates that the vegetation
contribution still dominates the signal. The simulations
reproduce this latitudinal decrease in TB, although it is

Figure 5. Temporal evolution of simulated and observed (a) horizontal brightness temperature, (b) surface
soil temperature, and (c) surface soil moisture at 5 cm depth, between DOY 229 and 233 (17–21 August).
Brightness temperature observations are AMSR-E C-band data. Soil moisture and soil temperatures obser-
vations are field measurements obtained on the Agoufou super site at 15.3�N, 1.5�W [de Rosnay et al.,
2009]. Simulated TB are obtained with the configuration 10 of Table 1.
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overestimated by some of the models. The scatter between
the models is increasing with latitude, as the relative contri-
bution of soil emission becomes more important. It reaches a
maximum amplitude (40 K) at 16�N. The strong negative

bias of TESSEL and CTESSEL over Sahel is due to an over-
estimation of soil moisture by these models. Accounting for
soil texture in HTESSEL leads to simulation of TB in a better
agreement with the other LSMs and with the observations.
[54] From 16�N to 20�N, simulated TB increases for all

the LSMs. For all of them this corresponds to a latitudinal
decrease in soil water content. In contrast, AMSR-E observa-
tions do not show any latitudinal gradient in this range of lati-
tude, indicating the end of the transition zone to the desert area.
[55] The latitudinal distribution of simulated and observed

horizontal TB is shown Figure 8 for the 8 LSMs and for the
12 CMEM configurations. For each LSM, the scatter due to
microwave emission model configuration is as important as
the scatter shown in Figure 7 for one microwave model and
several LSMs. It reaches about 40K at 10�N for most of the
LSMs. In contrast to that obtained for different LSMs, the
scatter due to the microwave emission model is more impor-
tant for southern latitudes where it is related to the vegetation
opacity model. Above 12�N vegetation cover decreases, and
the scatter due to the opacity model decreases until the
latitude 16�N is reached. Despite of the large scatter shown
between the microwave emission models, it is interesting
to notice that the results obtained by the Wigneron’s opacity
model are very close to those obtained with the Wegmüller

Figure 6. Time-latitude diagram of the horizontally polarized brightness temperature (K) observed by
AMSR-E and simulated by ALMIP-MEM (CMEM configuration 10 of Table 1). For each ALMIP-MEM
simulation a bias correction was applied according to Table 4.

Figure 7. Zonal distribution of observed and simulated
brightness temperatures (K) at horizontal polarization, aver-
aged over July August, and September, for the eight ALMIP-
MEM LSMs coupled to CMEM using Wang and Schmugge
and Kirdyashev models (CMEM configuration 10 of Table 1).
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model. For any LSM considered in this study, the Kirdyashev
opacity model (black lines) is shown in Figure 8 to be the
closest to the AMSR-E observations for the JAS average.
This result must be taken with care because it might be
sensitive to uncertainties related to the vegetation data base
which is used [Holmes et al., 2008]. However the robustness
of the good performances of the Kirdyashev among the
different LSMs is noteworthy. North to 16�N there is no
more vegetation in the ALMIP simulations and the scatter in
simulated TB is due to the dielectric model only. Therefore
the 12 microwave models converge to 3 microwave models
which differ in their parameterization of the soil dielectric
constant.

[56] Along the north–south gradient, the scatter due to the
soil dielectric model is lower than that resulting from vege-
tation opacity. It is increasing with the latitudinal decrease of
vegetation density. For any LSM and any latitude the Wang
and Schmugge model (Figure 8, solid lines) leads to higher
brightness temperatures than the Dobson model (Figure 8,
dotted lines). The Mironov model (Figure 8, dashed lines)
provides intermediate values close to those of the Wang and
Schmugge model.
[57] Figures 9 and 10 are the Taylor diagrams obtained for

ALMIP-MEM simulated brightness temperatures (horizon-
tal polarization), for each of the 8 LSMs for the 12 micro-
wave modeling configurations.For each LSM, the range of

Figure 8. Zonal distribution of observed and simulated brightness temperatures (K) at horizontal polar-
ization, for the eight ALMIP-MEMLSMs. For each LSM, brightness temperatures have been simulated for
the 12 configurations of CMEM given in Table 1. Line color indicates the vegetation model and line style
indicates the dielectric model: solid line for Wang and Schmugge, dashed line for Mironov, and dotted line
for Dobson.
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correlation values between simulated and observed TB is
very large, indicating that the spatiotemporal correlation
between simulated and observed TB is very sensitive to the
choice of the microwave emission model.
[58] In term of SDV, most LSMs gets best performances

using the Kirdyashev model (configurations 2, 6, and 10).
But the best dielectric model varies with the LSM. Figures 9
and 10 clearly show that the scatter in SDV is largely
influenced by the choice of dielectric model. For any LSM,
the Dobson dielectric model (configurations 1, 2, 3, and 4)
leads to a larger amplitude of the signal than the Mironov

(configurations 5, 6, 7, and 8) or the Wang and Schmugge
(configurations 9, 10, 11, and 12) models. For JULES and
ISBA-DF which underestimate the SDV, the use of the
Dobson model (configurations 1, 2, 3, and 4) improves the
representation of the simulated SDV (Figures 9b and 10b).
In contrast, ISBA-FR, HTESSEL, Noah and ORCHIDEE-
CWRR perform better in terms of SDV using Wang and
Schmugge or Mironov than Dobson (Figures 10c and 10d).
TESSEL and CTESSEL overestimate the simulated ampli-
tude. For these two LSMs the best SDV and E is obtained
with the Wegmüller and Wigneron models with Mironov

Figure 9. Taylor diagram illustrating the statistics of the comparison between ALMIP-MEM synthetic
brightness temperature and AMSR-E data at C-band for (a) ISBA-FR, (b) ISBA-DF, (c) HTESSEL, and
(d) TESSEL coupled to CMEM using the 12 different configurations of the microwave emission modeling
defined in Table 1. Note that the radial axis is different from that of Figure 2. Triangle denotes negative
correlation, while circles correspond to positive correlation. The number within each circle indicates the
configuration listed in Table 1.

D05108 DE ROSNAY ET AL.: ALMIP-MEM

14 of 18

D05108



(configurations 7 and 8). However, the Kirdyashev model
with Mironov and Wang and Schmugge models (configura-
tions 6 and 10) leads to best correlation values.
[59] In terms of correlation, Figures 9 and 10 show that the

choice of vegetation opacity model strongly affects the
performances in terms of correlation. For any LSM, best
correlation values are obtained by the Kirdyashev model
(configurations 2, 6, and 10). In particular, the microwave
emission modeling configuration 10 provides best agreement
with the AMSR-E data for almost all the LSMs, except for
ORCHIDEE-CWRR for which the configuration 6 of CMEM,
with the Mironov dielectric model, provides slightly better
results than the configuration 10with theWang and Schmugge
model.
[60] The best microwave modeling configuration obtained

for each LSM is indicated in Table 5 with regard to the three
statistical indexes used in this study (R, E, and SDV). Except
for TESSEL and CTESSEL, the best microwave modeling

configurations are shown to be the CMEM models 10, 6,
and 2. They all correspond to the Kirdyashev opacity model
with Wang and Schmugge, Mironov and Dobson dielectric
models, respectively.
[61] The robustness of the Kirdyashev model to simulate

brightness temperatures in best agreement with the satellite
observations is particularly noteworthy. For most LSMs
considered, with corresponding errors on soil moisture and
soil temperature patterns, it simulates the brightness temper-
atures dynamics with lowest errors and highest correlation.

4. Summary and Conclusion

[62] ALMIP-MEM consists of a set of simulations of
C-band brightness temperatures over West Africa for one
annual cycle in 2006. Simulations have been performed for
an incidence angle of 55� and results are evaluated against

Figure 10. Same as Figure 9, but for (a) CTESSEL, (b) JULES, (c) Noah, and (d) ORCHIDEE-CWRR.
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AMSR-E C-band data. The study encompasses 96 simula-
tions, for 8 LSMs coupled to the Community Microwave
Emission Model in 12 configurations. Each configuration
corresponds to a different combination of the vegetation opac-
ity and the soil dielectric models. Simulations are performed
for theALMIP experiment forwhich LSMs forcing result from
merged atmospheric variables (ECMWF-FC), precipitation
(EPSAT-SG) and radiative fluxes (SAF-land).
[63] The best CMEM configuration is generally the one

that uses the Kirdyashev opacity model and the Wang and
Schmugge dielectric model. The spatiotemporal correlation
between simulated and observed TB, averaged among the
8 LSMs is 0.67. The 8 LSMs coupled to CMEM reproduce
particularly well the annual cycle of the signal, for both the
northern and southern portions of the studied window. This
provides an indirect validation of the LSMs and the meteo-
rological forcing at this temporal scale. This also validates the
microwave emission modeling approach which allows
the representation of the correct seasonal amplitude of the
C-band signal in contrasting soil, vegetation, and atmosphere
conditions.
[64] For the Sahelian area, a case study is conducted to

compare model performances over the Agoufou super site at
short temporal scale when a typical convective rainfall event
occurs. The LSMs perform well to reproduce the fast varia-
tions of soil moisture. But the various LSMs perform differ-
ently in terms of absolute value and in terms of amplitude of
the simulated soil moisture. LSMs errors in simulated soil
moisture impact on simulated brightness temperatures. This
triangular comparison between our simulations of soil mois-
ture and TB with field and AMSR-E data provides a valida-
tion of the precipitation forcing, the LSMs and themicrowave
emission model on this pixel and at the precipitation event
timescale.
[65] At seasonal range, it is shown that the time-latitude

pattern is well reproduced by all the LSMs coupled to CMEM
(configuration 10), with a good agreement with AMSR-E
data. Awet patch characterized by lower values of brightness
temperatures at horizontal polarization is observed and simu-
lated over Sahel in August which is the period of maximum
activity of the monsoon season.
[66] ALMIP-MEM provides the first intercomparison

of microwave emission models at regional scale. Combined
with the ALMIP LSM intercomparison, the study quantifies
the relative importance of Land Surface Modeling and radia-
tive transfer modeling in the monitoring of low-frequency

passive microwave emission on land surfaces. The scatter
obtained between the various LSMs is an evidence that land
surface modeling has an impact on the simulated brightness
temperature. Although they all use the same atmospheric
forcing, the various LSMs use different parameterizations, eg
of the vertical soil moisture diffusion, vegetation seasonality,
plant water uptake in the soil layers and evapotranspiration,
surface roughness and albedo. These differences between the
various LSMs parameterizations, lead to differences in sim-
ulated fluxes and soil moisture. Resulting simulated bright-
ness temperatures differ between the LSMs. LSMs that take
into account a fine vertical discretization near the surface in
the soil do an overall better job than those which use a coarser
resolution to reproduce the AMSR-E brightness temper-
atures. Accounting for soil texture in the land surface models
also largely impacts on the simulated brightness temperature,
as shown by comparing HTESSEL and TESSEL simulations.
[67] A large sensitivity in simulated TOA brightness tem-

perature is also shown to be due to the choice of the forward
modeling approach. The dielectric model has a high impact
on the amplitude of variations (SDV) of simulated TB. For
any LSM and any vegetation opacity model, the Dobson
parameterization of the dielectric constant leads to higher
SDV than theWang and Schmugge parameterization. Results
of the Mironov model are close to those obtained with the
Wang and Schmugge model. The vegetation opacity model is
the largest factor affecting the correlation skill of the coupled
LSM-CMEM to simulate TOA TB. Statistical results show
the suitability and the robustness of the Kirdyashev opacity
model which, when used here with the ECOCLIMAP veg-
etation database, provides best results for most LSMs con-
sidered in this study. For all LSMs, the combination of the
Kirdyashev model with the Wang and Schmugge dielectric
model leads to best performances in simulated TB in terms of
correlation.
[68] In the framework of the preparation of the future

SMOS satellite, the large sensitivity of simulated TOA TB
to the choice of the microwave emission model, as well as the
consistence of the results obtained for different LSMs to
identify a best microwave modeling approach, point out the
importance of the forward modeling approach for soil mois-
ture retrieval and assimilation of passive microwave data.
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