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[1] Sea ice drift and deformation from models are evaluated on the basis of statistical
and scaling properties. These properties are derived from two observation data sets: the
RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the
International Arctic Buoy Program (IABP). Two simulations obtained with the
Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a
simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice
drift compares well with observations in terms of large-scale velocity field and
distributions of velocity fluctuations although a significant bias on the mean ice speed is
noted. On the other hand, the statistical properties of ice deformation are not well
simulated by the models: (1) The distributions of strain rates are incorrect: RGPS
distributions of strain rates are power law tailed, i.e., exhibit ‘‘wild randomness,’’ whereas
models distributions remain in the Gaussian attraction basin, i.e., exhibit ‘‘mild
randomness.’’ (2) The models are unable to reproduce the spatial and temporal correlations
of the deformation fields: In the observations, ice deformation follows spatial and temporal
scaling laws that express the heterogeneity and the intermittency of deformation. These
relations do not appear in simulated ice deformation. Mean deformation in models is
almost scale independent. The statistical properties of ice deformation are a signature of
the ice mechanical behavior. The present work therefore suggests that the mechanical
framework currently used by models is inappropriate. A different modeling framework
based on elastic interactions could improve the representation of the statistical and scaling
properties of ice deformation.

Citation: Girard, L., J. Weiss, J. M. Molines, B. Barnier, and S. Bouillon (2009), Evaluation of high-resolution sea ice models on the

basis of statistical and scaling properties of Arctic sea ice drift and deformation, J. Geophys. Res., 114, C08015,

doi:10.1029/2008JC005182.

1. Introduction

[2] The sea ice cover is a dynamic body, moving under
the action of winds and ocean currents. The deformation
rates of sea ice, determined from the spatial gradients in the
velocity field, are associated with internal stresses, which,
when large enough, generate an ubiquitous network of
fractures and leads. Fractures in the ice cover decrease the
albedo and allow more shortwave absorption by the ocean,
thereby shrinking the ice cover during summer, thus reduc-
ing its strength and possibly increasing the fracturing
[Moritz et al., 2002; Zhang et al., 2000; Rampal et al.,

2009]. On the other hand, fracturing during winter enhances
the thermodynamically driven production of new ice and
modifies the heat and salinity budget in the Arctic [Maykut,
1982]. In all seasons, an increase of sea ice fracturing and
fragmentation facilitates sea ice drift and its export toward
lower latitudes [Rampal et al., 2009]. Accurate modeling of
the ice velocities and deformation rates is therefore essential
in order to get a good representation of the open water
fraction, the thickness distribution, and the global sea ice
mass balance in climate models.
[3] Recent analysis of drifting buoy trajectories and fine

scale sea ice kinematics produced by the RADARSAT
Geophysical Processor System (RGPS) [Kwok, 1998b]
expressed the heterogeneous and intermittent character of
sea ice deformation by spatial and temporal scaling laws
[Marsan et al., 2004; Rampal et al., 2008]. Investigation of
internal sea ice stresses and RGPS-derived strain rates
revealed the elasto-brittle behavior of the ice cover [Weiss
et al., 2007]: most of sea ice deformation is accommodated
by active fractures and faults at various scales. This can
explain the intermittency and spatial heterogeneity of sea ice
deformation [Weiss et al., 2009] but raises an important
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question: To what extent can current sea ice models simu-
late such a multiscale fracturing process?
[4] Indeed, current models stem from the work of Hibler

[1979] who described the ice cover in terms of viscous-plastic
(VP) mechanics and accordingly invoked the concept of a
rate- and scale-independent failure envelope. This modeling
framework is based on a fluid mechanics approach which
seems at odd with a scenario where sea ice deformation is
accommodated by multiscale fracturing processes.
[5] Thomas [1999] performed a comparison of model

deformation fields and buoy-derived deformation estimates
at large scale (400 to 600 km). He found modest correlation
for vorticity and shear, but the correlations of divergence
were insignificant. More recently, RGPS derived strain rates
allowed a closer investigation of sea ice deformation on a
wide range of spatial scales. Lindsay et al. [2003] and Kwok
et al. [2008] used this new data set to examine model
deformation rates from regional (�300 km) to small spatial
scales (10 km). These two studies showed that even though
models are capable of reproducing the large-scale drift
patterns, the simulated deformation rates show rather poor
correlation with RGPS observations, especially at small
scales. Moreover, there is a high variability among models
on these aspects.
[6] Although a high correlation between model and

observation estimates of strain rates is desirable, it could
be searched in vain. Indeed, sea ice velocity fluctuations
have a stochastic component, implying that the spatial
gradients of the velocity field also behave in a non deter-
ministic manner. Using drifting buoy trajectories, Rampal
et al. (Arctic Sea ice velocity field: General circulation and
turbulent-like fluctuations, submitted to Journal of Geo-
physical Research, 2009, hereinafter referred to as Rampal
et al., submitted manuscript, 2009) developed a methodology
based on an analogy to fluid turbulence in order to determine
the spatial and temporal averaging scales at which the veloc-
ity field can be partitioned into a mean component (i.e. the
predictable part of velocity), and its respective fluctuations
(i.e. the stochastic component). Considering the stability
of the Lagrangian statistics, these authors established that
the appropriate averaging scales to define the mean veloc-
ity field are 400 km spatially and 160 days temporally (in
winter). The stochasticity of strain rates becomes dominant
at scales below a few hundred km. With the grid size of
models reaching �10 km nowadays, it appears crucial to
take this aspect into account when investigating the perfor-
mance of models in terms of ice drift and deformation.
[7] These points have motivated an additional investiga-

tion of model ice drift and deformation using statistical
comparisons with observations. In this paper, we examine
probability distribution functions (PDF) of model strain rates
at different scales and analyze the dependence of strain rates
upon spatial and temporal scales. For this purpose, we use the
methodologies developed by Marsan et al. [2004] and
Rampal et al. [2008] to analyze buoy as well as RGPS data.
This adds to the work of Lindsay et al. [2003] who underlined
the necessity to evaluate the distribution functions of strain
rates in models, in particular divergence, which influences
most the ice production estimates.
[8] We have analyzed two simulations performed with the

Louvain-La-Neuve Ice Model (LIM), coupled to a high-
resolution global ocean model. A third simulation obtained

with the Los Alamos sea ice model (CICE) was also
examined. As this last simulation was obtained with a very
different configuration, only a few features concerning ice
deformation are presented. The fine grid size of these
simulations (�12 km for LIM and �9 km for CICE) allows
the investigation of the scaling properties over a large-scale
range and is of the same order of magnitude as the scale of
RGPS observations (�10 km).
[9] This paper is organized as follows. The statistical

properties of sea ice deformation on which our evaluation is
based are summarized in section 2, along with the obser-
vation data sets they concern. Section 3 briefly describes the
models. In section 4 model ice drift is evaluated, while
model strain rates are considered in section 5. The results
are discussed in section 6 and the conclusions are given in
section 7.

2. Statistical and Scaling Properties of Sea Ice
Deformation: Spatial Heterogeneity
and Intermittency

[10] It is qualitatively known from the journey of Fridtjof
Nansen on the Fram along the transpolar drift, at the end of
the 19th century, that sea ice dynamics is characterized by
tortuous drifting trajectories and intermittency, with a wide
range of ice velocities and accelerations. As shown below,
spatial heterogeneity and intermittency are the two main
characteristics of sea ice deformation.
[11] The fine-scale sea ice kinematics produced by RGPS

have allowed the investigation of sea ice motion and
deformation over an unprecedented range of spatial scales,
from 10 km to the scale of the Arctic Ocean as a whole
(�1000 km). RGPS is based on a cross-correlation technique
applied to consecutive SAR images [Fily and Rothrock,
1990], which allows tracking in a Lagrangian fashion of
more than 40000 points over the Canadian side of the Arctic
during an entire season. Data from 9 winters (1997–2008)
are now available (http://www-radar.jpl.nasa.gov/rgps/), a
database that has no counterpart in geophysics.
[12] The tracked points define the corners of cells which

are initially squared (10 � 10 km2). The velocities of the
cell corners are computed over the period between two
observations (sampled at irregular time intervals within the
domain, but typically 3 days). The strain rate tensor compo-
nents @u/@x, @v/@x, @u/@y, @v/@y are computed from an
approximation of the line integral around the boundary of
each of the cells [Kwok, 1998b]. The 3 invariants of the strain
rate tensor, respectively divergence, shear and vorticity, are
defined as follows:

_�div ¼
@u

@x
þ @v

@y
ð1Þ

_�shear ¼
@u

@x
� @v

@y

� �2

þ @u

@y
þ @v

@x

� �2
" #1=2

ð2Þ

_�vor ¼
@v

@x
� @u

@y
ð3Þ

The tracking errors (�100 m) give rise to error standard
deviations of 0.5% day�1 in the divergence, shear, and
vorticity [Lindsay and Stern, 2003].
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[13] This data set revealed highly heterogeneous strain
patterns with most of the deformations localized along so-
called linear kinematics features (LKF) separating quasir-
igid plates [Kwok, 2001; Moritz and Stern, 2001]. However,
this distinction is somewhat arbitrary as it relies on a chosen
threshold, and is scale dependent. Marsan et al. [2004]
performed a multifractal analysis of sea ice deformation
from the RGPS database. For a 3-day interval centered
around November, 5th, 1997, they computed the scaling of
the moments h _�totq i, where the so-called total strain rate is

defined as: _�tot =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2div þ _�2shear

q
. Note that this scalar

quantity _�tot contains information about the intensity of
the strain rate, whereas the information about the principal
directions is lost. This procedure can be repeated over boxes
of different sizes, from the size of the initial RGPS cell
(10 km) to sizes close to the Arctic basin scale (�1000 km).
A power law decrease of the average strain rate h _�toti with
increasing scale L was observed, h _�toti � L�0.20. This is a
signature of long-range spatial correlations present in the
strain rate field, as a random spatial reshuffling of the strain
rate values suppresses power law scaling [Marsan et al.,
2004]. A strong curvature of the experimental moment
function b(q), i.e. h _�totq i � L�b(q) where b(q) is a nonlinear
function of order q, was also reported, indicating multi-
fractality of the strain rate. This multifractality expresses the
scaling properties of sea ice deformation, and particularly
the absence of characteristic scale between 10 and 1000 km,
and show how the strain rate distribution evolves with the
spatial scale considered. Consequently, determining thresh-
old strain rate values to define LKFs is a scale-dependent
procedure. In addition, the multifractality of the strain rate
fields indicates that mean values carry limited information,
due to the existence of extreme fluctuations, and actually
depend on the spatial scale considered.
[14] The proportion (or density) of open water within the

winter ice cover also exhibits a multifractal scaling behavior
[Weiss and Marsan, 2004]. This similarity of the scaling
properties of the strain rate field and the open water
concentration is not a coincidence: it expresses the intimate
link between fracturing and deformation at all scales and
suggests that brittle deformation is essential in sea ice
mechanics. Sea ice concentration is thus related to the
deformation field, and has been shown to be one of the
most important factors influencing the surface energy bud-
get [Sorteberg et al., 2007; Lüpkes et al., 2008]. It appears
therefore crucial to obtain a correct representation of the
multifractal and scaling properties of sea ice deformation in
climate models.
[15] The main limitation of RGPS is a time resolution of

about 3 days that does not allow to explore the temporal
scaling in details. For this purpose, the dispersion of buoys
trajectories is an alternative. The idea to estimate sea ice
deformation from buoys dispersion was first applied by
Thorndike [1986], then used recently by Rampal et al.
[2008] to analyze systematically the spatial and temporal
scaling of sea ice deformation, from few hours to few
months, and from few hundred meters to several hundred
kilometers. A set of about 500 trajectories of drifting buoys
were obtained from the International Arctic Buoy Program
(IABP, http://iabp.apl.washington.edu/), deployed in the
Arctic from 1979 until now. These buoys are fixed on the

ice and drift according to the ice motion. Positions are
obtained from GPS receivers or Argos transmitters with a
position uncertainty of the order of 100 m and 300 m,
respectively [Thorndike and Colony, 1982; Heil and Hibler,
2002]. Like molecules in a gas or a turbulent fluid, nearby
pieces of sea ice gradually move apart as the result of
deformation [Martin and Thorndike, 1985]. In the case of
fluid turbulence, it is customary to characterize this disper-
sion by the mean square change in separation r of pairs of
fluid particles, hDr2i. In the case of the Arctic sea ice cover,
it seems more appropriate to express this dispersion in terms
of a deformation rate, using the standard deviation:

_�disp ¼
Dr

t � L
� Dr

t � L

� �� �2
* +1=2

ð4Þ

where L is the (initial) separation of the pair and the average
is calculated over N pairs of buoys initially separated by L ±
dL and over a time interval t ± dt. A detailed explanation
for the use of the standard deviation in the dispersion rate
_�disp, instead of the mean, is given by Rampal et al. [2008].
These authors applied such a methodology to the IABP data
set in order to analyze the scaling properties of sea ice
deformation.
[16] With this definition, _�disp only depends on deforma-

tion, i.e. not on solid rotation. However, the full strain rate
tensor cannot be determined from pairs of trajectories, i.e.
shear and divergence cannot be discriminated on this basis.
Rampal et al. [2008] also demonstrated that _�disp is propor-
tional to _�tot, with a proportionality factor of about 4. Using
appropriate binning of this data set, the authors obtained the
temporal and spatial scalings of the strain rate _�disp. The
temporal scaling is characterized by:

_�disp � t�a Lð Þ ð5Þ

where the power law exponent a(L) decreases with
increasing spatial scale (initial separation), from a = 0.89
for L 
 1 km to a = 0.30 for L 
 300 km in winter
(respectively 0.87 and 0.25 for summer). Relation (5)
expresses the intermittency of the process. Indeed, a
nonintermittent viscous flow would be characterized by a =
0, whereas the boundary value a = 1 would correspond to a
deformation accommodated by an isolated event, correspond-
ing to the activation of a single fracture or fault. Although the
intermittent character, i.e. a, decreases toward large spatial
scales as the result of averaging an increasing number of these
events, sea ice deformation does not mimic viscous flow even
at scales close to the Arctic basin scale.
[17] On the other hand, the following spatial scaling is

obtained:

_�disp � L�b tð Þ ð6Þ

where the exponent b(t) decreases with increasing time-
scale, from b = 0.85 for t 
 1 hour to b = 0.35 for t 
 1
month in winter (respectively 0.85 and 0.42 for summer). In
this case, b expresses the degree of heterogeneity of sea ice
deformation, bounded by b = 2 for a deformation localized
along a single fracture, and by b = 0 for a homogeneous
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deformation field (e.g., elastic or viscous). Sea ice deforma-
tion appears more homogeneous as one increases the
timescale and therefore the number of deformation events,
but a significant heterogeneity remains even at the scale of
months, in agreement with the persistence of active structures
over a season [Coon et al., 2007]. The spatial scaling
obtained from RGPS (see above) is in agreement with these
results, although the dependence of b upon timescale was not
explored with RGPS.
[18] Relations (5) and (6) therefore express the strongly

intermittent and heterogeneous character of sea ice defor-
mation, as well as the complex space-time coupling illus-
trated by the dependence of a on L and b on t. They are
essential features of sea ice deformation and dynamics upon
which sea ice models performance can be evaluated.

3. Models Description

3.1. Common Framework for Ice Dynamics

[19] Most sea ice codes implemented in climate models
are based on a continuum mechanics modeling framework
following Hibler [1979], and share a common viscous-
plastic (VP) rheology, assuming that sea ice has strength
under convergence and shearing, but offers little or no
resistance to divergence. In the original VP rheology, the
momentum equation is solved implicitly over the whole ice
pack. This rheology implies that for stress states inside the
plastic yield curve the mechanical behavior is that of a
viscous fluid, while the ice flows as a perfect plastic when
the stress state reaches the yield curve.
[20] Hunke and Dukowicz [1997] developed a newmethod

(Elastic-Viscous-Plastic, EVP) to solve the momentum
equation explicitly, by introducing a nonphysical elastic
term in the equation. This elastic term can be seen as a
regularization of the singularity caused by small strain rates.
Beyond this solving procedure, the mechanical framework
remains very similar in VP and EVP solution techniques.
[21] The lack of physical basis of the VP/EVP framework

has been underlined in the literature [Nye, 1973;Weiss et al.,
2007] but thanks to its numerical efficiency and suitability
for coupling with ocean-atmosphere models, this framework
has been widely used and is, nowadays, implemented in
nearly all global coupled ocean-sea ice models.

3.2. LIM Simulations

[22] LIM was used as part of the global coupled ocean
model DRAKKAR [Barnier et al., 2006]. The configuration
we used was developed for studying the evolution of the
ocean variability under realistic atmospheric conditions over
the last half century (1958–2004). It is based on ERA40
(until 2002), operational ECMWF analysis (after 2002), and
satellite products, as detailed in Brodeau et al. (An ERA40
based atmospheric forcing for global ocean circulation
models, submitted to Ocean Modeling, 2008). The effective
spatial grid size of the configuration is about 12 km in the
Arctic.
[23] LIM is a dynamic-thermodynamic sea ice model

designed for climate studies [Fichefet and Morales-Maqueda,
1997]. The model dynamics are based on the two-category
(consolidated ice and leads) approach of Hibler [1979], it
employs the VP dynamics, but EVP dynamics was also
recently implemented [Bouillon et al., 2009]. The rheology

uses an elliptical yield curve and an ice strength parameter
P* = 10000 N m�2.
[24] We present results from two simulations, using VP

and EVP dynamics, with similar configurations, changing
only the solution technique for ice dynamics. The simula-
tions are referred to as LIMVP and LIMEVP. From these
two simulations, 12 hourly fields of model ice drift have
been analyzed from a three month winter period (January to
March 1997).
[25] For the VP simulation, different values of the creep

limit parameter have been tested but this did not affect
significantly the statistical and scaling properties of ice
deformation. The creep limit parameter corresponding to
the results presented below is Dmin = 2 � 10�8 s�1. The
LIMVP hindcasts compare well with observations in terms
of ice extent and concentration [Drakkar-Group, 2007].
[26] The LIMEVP simulation was obtained as follows:

(1) The model was initialized on the LIMVP simulation
result on the 1 January 1995, (2) the model ran 1995 and
1996 with EVP dynamics, as 2 years of transition, and
finally the 3-month period (January–March 1997) was
extracted for this study. Not surprisingly, the EVP simula-
tion shows very similar results in terms of ice extent,
thickness and concentration, but because of the growing
number of coupled model using this formulation, we
included this second simulation in our analysis.

3.3. CICE Simulation

[27] CICE was developed by Hunke and Lipscomb [2001]
for climate studies and differs from the original Hibler
model in several aspects. It uses EVP dynamics, has five
thickness categories and an ice thickness remapping scheme
[Lipscomb, 2001] that transfers the ice between categories
as it grows and melts. The grid size is 9 km. The ice strength
is calculated through a ridging scheme initially presented by
Rothrock [1975]. The ice was coupled to a simple ocean
mixed layer that can absorb heat and grow ice in leads. More
details about the configuration are given by Maslowski and
Lipscomb [2003].
[28] While this simulation is different from the LIM

simulations, we believe it is interesting to examine sea ice
deformation produced by CICE as it includes several
features that could improve the representation of ice
dynamics: multiple ice categories and a parameterization of
ice strength through a ridging scheme. Moreover,Maslowski
and Lipscomb [2003] indicated that this simulation shows
qualitatively more realistic ice strain fields, compared to
other models, with stronger localization of deformation.
[29] The simulation years do not match the availability of

RGPS observations. We used daily simulation data from
January–March 1987, considered as representative of typ-
ical winter ice drift. As no direct comparison is possible, we
restricted our analysis to a few salient features of sea ice
deformation.

3.4. Common Projection and Study Area

[30] All model scalar and vector fields were projected
onto a common Cartesian coordinate system centered on the
North Pole (polar stereographic projection), with the vertical
axis following the Greenwich meridian.
[31] Coastal regions are known to be of special character

in terms of sea ice dynamics: boundary conditions and
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coastal geometry play an important role, the transition zone
between fast ice and pack ice is characterized by particularly
large sea ice strain rates, making the tracking of sea ice
deformation in these regions difficult. Consequently, we
limited our analysis to the central Arctic basin, north of
Bering and Fram straits and 150 km away from the coast-
lines. In model simulations, the ice concentration over the
considered region was always greater than 80% during the
period analyzed.

4. Ice Drift

[32] This section compares ice drift from LIM simulations
to observations at different scales. We first examine how the
large-scale ice drift is represented in the simulations. We
then consider probability distribution function (PDF) of ice
velocity fluctuations.

4.1. Mean Velocity Field

[33] Before examining fluctuations and spatial gradients
of ice drift, it is useful to check how well the mean velocity
field is represented in the simulations.
[34] Observations from the Special Sensor Microwave

Imager (SSMI) passive-microwave satellite sensor can be
used to estimate two daily ice velocity from cross-correlation
between two images. SSMI ice motion data set was pro-
vided by the JPL Remote Sensing Group [Kwok, 1998a].
The SSMI data are gridded and have better spatial coverage
than the buoy data, which motivates their use to evaluate the
model mean velocity field. The error standard deviation of
velocity estimates is about 8 times larger than for the buoys:
0.058 m s�1 versus 0.007 m s�1 [Thorndike and Colony,
1980; Kwok, 1998a].
[35] Two comparisons are performed, the first one is at

the scales of SSMI observations (two daily and 83 km),
while the second one concerns the whole 3-month period at
the spatial scale of 400 km. According to the work of
Rampal et al. (submitted manuscript, 2009), the mean
velocity at the scales of this second comparison corresponds
to the predictable component of the velocity field.
[36] For the first comparison, model ice velocities are

resampled to fit SSMI data spatially and temporally (linear
interpolation to 83 km and two daily averaging), consider-
ing that SSMI estimates of ice velocity can be taken as point
values at this scale. The correlation coefficient R is calcu-
lated for each pair of 2-day velocity fields, considering
vectors as complex numbers (Figure 1). R shows a high
variability, shifting between 0.8 and 0.2. The global corre-
lation, calculated from all velocity values, is slightly higher
for LIMEVP (Rglobal = 0.57) than LIMVP (Rglobal = 70).
[37] The second comparison is performed by binning the

model and SSMI ice velocities on a 400 km grid to average
it spatially, and temporally, to 3 months. At these scales, the
correlation increases to R = 0.83 for LIMVP and R = 0.82
for LIMEVP (Figure 2).
[38] Both comparisons show a significant bias on the

speed (Table 1). This bias is of the same order of magnitude
in both simulations and does not vary significantly with
scales, it also appears on Figure 2. The ice thickness appears
well represented, with a 2.2 m mean thickness over the
arctic with largest thicknesses along the Canadian Archi-
pelago. Ice thickness is therefore not the cause of this speed
bias. The velocity direction also shows a bias, which
reduces at large scales. Tuning of parameters such as the
wind drag coefficient could perhaps help reducing these
biases, but it is not in the scope of this study.

Figure 1. Time series of correlation coefficient R for
model (LIMVP in red, LIMEVP in blue) against SSMI
velocity field (2-day average, 83-km grid). R is calculated
for vectors as complex numbers.

Figure 2. Mean ice velocity field for January–March
1997 at 400 km scale from the LIMVP simulation (red) and
SSMI observations (black).

Table 1. Model and SSMI Ice Drift Statisticsa

83 km, 2 days 400 km, 3 months

SSMI LIMVP LIMEVP SSMI LIMVP LIMEVP

Mean speed 4.3 7.8 6.9 1.3 3.3 3.0
Std (speed) 3.6 4.7 4.3 0.7 1.4 1.1
hDqi 47 32 24 23
Rglobal 0.57 0.70 0.83 0.82
Nb 650 650 28 28

aMean speed (km/day) and standard deviation of the speed, mean angle
difference between the model and SSMI drift vectors hDqi (degrees), and
global correlation coefficient between model and SSMI velocity drift
vectors considered as complex numbers Rglobal.

bN is the number of points used for correlations.
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[39] The oscillation of the correlation values at small
scale (83 km, 2 days) suggests that the model does not
capture all spatial and temporal variability of the ice
velocity field. At such scales, the motion of ice is dominated
by stochastic fluctuations and is therefore not predictable in
a deterministic sense. At 400 km and 3 months, a significant
correlation is obtained, suggesting that the model captures
well the mean ice circulation.

4.2. Velocity Fluctuations

[40] We consider the ice velocity as the sum of two
components, an average ice drift and fluctuations. We
calculate ice velocity fluctuations by subtracting the
400 km and 3 months average ice drift from ice velocity.
Fluctuations of ice velocity result from short term wind-
forcing, but also from the ice mechanical behavior, through
the internal ice stress term of the equation of motion, which
is calculated by the rheology.
[41] With a high temporal sampling of ice velocity (up to

3 h), drifting buoys provide the best observations to
examine ice velocity fluctuations. Buoy measurements are
of lagrangian type while model ice drift is eulerian.
[42] In order to make the comparison with buoy obser-

vations possible, model Eulerian ice velocity fields were
used to reconstruct Lagrangian trajectories. Synthetic tra-
jectories were initialized at each model grid point and
obtained from a linear interpolation of the 12-hourly euler-
ian velocity fields, using the four nearest neighbors. We do
not use an interpolation scheme of higher order to avoid an
artificial smoothing of these trajectories. Examples of such
reconstructed trajectories are shown on Figure 3. Model
velocity fluctuations are then calculated by subtracting the
average model ice drift interpolated along the trajectories
from the ice velocity. Buoy velocity fluctuations are calcu-
lated similarly by subtraction of the average buoy drift from
the velocities. The two standardized components (u0 and v0)
of the model fluctuating velocity vector are represented
through their PDFs (Figure 4), along with buoy measure-
ments of velocity fluctuations performed between January
and March from 1979 to 2001. All years of buoy measure-
ments are considered to obtain a sufficient amount of data
for the comparison, and the PDF obtained is assumed to be
representative of a typical January–March period. We
checked the validity of this assumption by plotting PDFs
of buoy velocity fluctuations from specific years, and did

Figure 3. Example of reconstructed Lagrangian trajec-
tories from Eulerian model outputs from January to March
1997. Circles indicate the initial grid points.

Figure 4. PDFs of the two components of velocity fluctuations of 12-hourly velocity (left, u0 and right, v0),
normalized by their standard deviation (buoys measurements: gray, model; LIMVP: red; LIMEVP: blue)
and the corresponding Gaussian distribution (mean of 0 and standard deviation of 1, dashed line). The
standard deviations are as follows: std(u0buoys) = 3.11, std(v0buoys) = 3.28, std(u0LIMVP) = 6.74, std(v0LIMVP)
= 6.05, std(u0LIMEVP) = 6.13, std(v0LIMEVP) = 5.53.
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not find any significant deviation from the data presented on
Figure 4.
[43] Distributions presented on Figure 4 are standardized

in order to focus the comparison on their shape. As for fluid
turbulence, the shape of the PDF of velocity fluctuations,
rather than its absolute standard deviation, is expected to
characterize the underlying physical processes (see, e.g.,
Frisch [1995], for turbulence and Rampal et al. (submitted
manuscript, 2009) for sea ice). The distributions of velocity
fluctuations show similar shapes, suggesting that the model
reproduces correctly the velocity fluctuations over the 3
months analyzed in this study, although the model slightly
underestimates the tails of the PDF, i.e. the largest (relative)
velocity values beyond 3 to 4 standard deviations. Both
model and buoy distributions deviate from the Gaussian
distribution in the tails.
[44] In order to investigate time correlations of velocity

fluctuations, the mean temporal autocorrelation function of
velocity fluctuations C(t) was calculated for the recon-
structed trajectories. C(t) decreases with increasing time
lag t as particles loose the memory of their previous displace-
ments and crosses zero in a finite time. Ameasure of how fast
C(t) decreases to zero is defined by the integral timescale G,
obtained by integratingC(t) up to the first zero crossing [e.g.,
Zhang et al., 2001]. The integral timescale obtained is
2.9 days in both simulations, whereas the same calculation
with drifting buoy trajectories leads to an integral timescale
of 1.3 days (Rampal et al., submitted manuscript, 2009).
In other words, the trajectory of a sea ice particle keeps
memory of its previous displacements twice as long in the
model as in the observations.
[45] If we assume that the correlation length is well

represented in the model ice drift, considering the significant
speed bias in the model (ice is drifting twice too fast), one
would expect a smaller correlation timescale in the model.
Since the correlation timescale we find is twice as long in
the model as for buoys, it suggests a strong difference
regarding the temporal evolution of model and observed ice
drift. Although the velocity distribution seems correctly
represented in the model, the temporal evolution of velocity
might not be as well simulated. This suggests that processes
leading to the decorrelation of ice velocity, such as the
fracturing and ridging activity of the ice cover, are perhaps
not correctly simulated.

5. Ice Deformation

[46] Sea ice deformation is examined in this section, first
through a qualitative analysis of strain rate fields, then by
comparing distributions of model and RGPS strain rates.
Finally, we investigate the dependence of model strain rates
upon spatial and temporal scales using the methodologies
developed by Marsan et al. [2004] and Rampal et al. [2008]
to analyze RGPS and buoy data.

5.1. Strain Rate Fields

[47] Model Lagrangian trajectories presented in the
previous subsection are used to compute the strain rates
following the same procedure as for RGPS (see section 2).
We do this in order to ensure the best comparability of model
and RGPS strain rates, the latter being calculated within a
Lagrangian framework. A coarse graining procedure is

applied to obtain model strain rates on a wide range of
spatial scales, from the model grid size (�12 km) up to
1000 km. A temporal scale of 3 days is used to fit with the
average sampling time interval of RGPS. The complete
range of RGPS sampling intervals allowed for the analysis
is 2 to 6 days.
[48] Figure 5 shows an example of LIM and RGPS strain

rate fields at fine spatial scale, respectively 12 km and 10 km
for the time period 16–18 January 1997. It makes sense to
consider the model strain rate at this scale because the
rheology introduces variability at the grid scale, although it
is smoothed by stability operators. It is certainly not
expected that LIM should be able to reproduce the details
of ice deformation at such scales. Beyond resolution prob-
lems, the importance of the stochastic component of ice
velocity at such small scales needs to be accounted for. This
implies that even if the model physics was perfect, the strain
rates could not be predicted in a deterministic sense. With
all these considerations in mind, it is still trustworthy to
analyze the general aspects of the model deformation fields
from the example of Figure 5. The LIMVP strain rate fields
appear very smooth and homogeneous, with large patches
of divergence and shear. The large regions with conver-
gence ( _�div < 0) are surprising, considering the near 100%
ice concentration over the whole area. In winter, when sea
ice is confined into the Arctic basin, a pattern with large
patches of convergence is incompatible with the mechanical
behavior of a fractured plate for which convergence is
associated with the closure of freshly opened fractures and
the formation of pressure ridges, i.e. is necessarily strongly
localized along narrow faults. The LIMEVP simulation
shows linear-like features that can span over several hun-
dred km, but they are not structured as clearly as the so-
called Linear Kinematic Features (LKFs) seen in RGPS
observations.
[49] To further illustrate this differences, we considered

the total amount of shear measured and simulated on this
3-day period. We calculated the fraction of ice surface area
over which the highest values of shear were accommodated:
At the scale of 10 km, in RGPS observations, 50% of all
shear is accommodated by only 6% of the ice surface area,
while in LIMVP and LIMEVP, it spans over respectively
23% and 18% of the surface area. The same calculation was
done for shear rates at 100 km spatial scale. In this case,
50% of all RGPS derived shear is accommodated by 13% of
the surface area, while 50% of all simulated shear spans
over 22% of the surface area for LIMVP and 18% for
LIMEVP. Similar values were obtained with other snap-
shots. These numbers express the fact that large shear rate
values are extremely localized in RGPS observations, where
a few percents of the surface hold most of the deformation at
10 km scale.
[50] An interesting point is that the localization of defor-

mation in RGPS observations is scale dependent, i.e.
decreases with increasing spatial scale. Opposingly, in the
simulations, the spatial scale does not seem to affect the
localization of deformation. Could this result be explained
by the model resolution? or is there a physical discrepancy
between the observed and simulated ice dynamics?
[51] The qualitative comparison presented in this subsec-

tion does not allow to differentiate these problems. The
characteristics of strain rate distributions, presented in the
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following subsection, provide insights toward this direction.
These results are complemented by a full analysis of the
scale dependence of deformation over a broad range of
spatial and temporal scales in section 5.3.

5.2. Strain Rate Distributions

[52] Figures 6, 7 and 8, compare the RGPS and LIM
PDFs of respectively divergence, absolute value of diver-
gence and shear. These PDFs are obtained from the whole
period (January–March 1997) with RGPS and model strain

rates at spatial scales of 10 km and 100 km and a temporal
scale of 3 days. Table 2 gives the mean and standard
deviations of these distributions and the ice speed statistics.
[53] The speed bias that appears in Table 2 is generally

consistent with the results showed in section 4, the ice speed
being faster in the model than in observations, but direct
comparisons of the biases should be avoided since the
observation data sets are very different in terms of accuracy
and spatial coverage. In both simulations, the bias in the ice
speed affects the spatial velocity gradients and thus the

Figure 5. Divergence and shear rate fields (/day) from (a) RGPS observations, (b) LIMVP, and
(c) LIMEVP for the period 16–18 January 1997.

C08015 GIRARD ET AL.: SEA ICE DRIFT AND DEFORMATION IN MODELS

8 of 15

C08015



strain rates. This can presumably explain the difference
between the mean shear rate in simulations and RGPS
observations. The RGPS PDF of divergence rates shows
an asymmetry toward positive values, which is notably
marked at 100 km, while model PDFs are almost symmet-
rical with a slightly negative mean. At 10 km the standard
deviations of model and RGPS strain rates differ by an order
of magnitude but this discrepancy vanishes at 100 km. This
does not imply that the model gets the right strain rate
distribution at this scale. Instead, the shape of the distribu-
tions should be examined.
[54] Log-log scale plots (Figures 7 and 8) show clear

differences between the model and RGPS strain rate dis-
tributions. The RGPS distributions of divergence and shear
rates are fat tailed, following power law decays over two
orders of magnitude (p( _�) � _��h), with slopes h � 2.5 at
10 km and in the range 2.6–3.3 at 100 km. This is
consistent with the analysis of Marsan et al. [2004] for
RGPS derived total deformation rates. Instead, the model
distributions show exponential decays and do not have such
a noticeable fat tail. Their slopes in a log-log scale (over the

last half order of magnitude) are at least 3.5 at 10 km and 5
at 100 km. At 100 km, model distributions are getting closer
to the Gaussian distributions of same mean and standard
deviation.
[55] The difference in the shape of the distributions is

fundamental. Indeed, since they are not fat tailed, model
PDFs are in the Gaussian attraction basin. This means that,
by addition of random variable, they would converge
toward a Gaussian distribution [e.g., Sornette, 2000]. In
other words, they are associated with a ‘‘mild randomness’’.
[56] On the other hand, RGPS distributions follow Levy’s

laws of stability parameter m = h � 1 (where h is the slope
of the power law). Such distributions are characterized by
‘‘wild randomness’’ and dominated by extreme values.
When the distribution tail is shallow enough for m � 2, as
for strain rate distributions at 10 km, the standard deviation
is, analytically, infinity, while for m � 1 the mean is also
undefined [Sornette, 2000]. In practice, it is always possible
to compute an empirical mean and standard deviation for a
given set of strain rates, but the shape of the RGPS
distributions implies that the few largest values have sub-

Figure 6. PDF of divergence rates for the period January–March 1997, from RGPS observations (green),
LIMVP experiment (red) and LIMEVP (blue) at scales of (left) �10 km and (right) �100 km.

Figure 7. PDF of absolute value of divergence rates for the period January–March 1997, from RGPS
observations (green), LIMVP experiment (red) and LIMEVP (blue), at scales of (left) �10 km and (right)
�100 km. The green and blue dashed lines indicate, respectively, the slope of the RGPS and LIMEVP
distributions. (right) The red dashed line is the Gaussian distribution of same mean and standard deviation
as the LIMVP distribution.
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stantial influence on these empirical mean and standard
deviation. This means that distributions of strain rates
should not be compared only through their standard devia-
tions and means, which are too volatile and dependent on
the number of values considered. The comparison should
instead consider the entire distributions. At 100 km, even if
the standard deviation of RGPS and model strain rates are
matching, the dissimilarity between the distributions actu-
ally increases: RGPS distributions are still power law tailed,
whereas model distributions are getting closer to the Gauss-
ian distribution.
[57] If the strain rates of the 10 km cells were independent

scalar variables, identically distributed following Levy’s law
of parameter m, the PDF of strain rates at any larger scale
would also be a Levy’s law of parameter m. This is not
exactly what is recovered here (m tends to slightly increase
with increasing scale), as strain rates are tensorial variables
and strong spatial correlations exist. To fully analyze the
evolution of the PDF with scale, a multifractal analysis is
necessary. This is performed in the next subsection.
[58] As a point of comparison, Figure 9 shows the PDF of

absolute divergence rates obtained with the CICE simula-
tion. As no RGPS observations are available for the time
period of the simulation, we restrict our analysis to a few
comments regarding the shape of the distributions. The
PDFs simulated by CICE are rather similar to the LIMEVP
distributions, without significant improvement in the shape

of the PDFs. At 100 km the CICE PDF has an exponential
decay and approaches the Gaussian distribution.
[59] This subsection has provided a first quantification of

the strong discrepancy between simulated and observed
strain rate fields qualitatively described in section 5.1 and
Figure 5, as well as of the extreme localization of deforma-
tion within Arctic sea ice, a discrepancy that persists at
scales much larger than the grid size. In the following
subsection, we show that the existence of spatial and
temporal correlations in the ice deformation field reinforces
the discrepancy between models and observations.

5.3. Scaling Properties of Sea Ice Deformation

[60] As shown in section 2, sea ice deformation patterns
are characterized by spatial as well as temporal scaling laws
which are the signature of long-range correlations and
space-time coupling.
[61] Three daily total deformation rates from January–

March 1997 were binned with respect to their spatial scale
(from 10 to �1000 km). The mean deformation value
of each bin and associated mean scale are represented on
Figure 10, expressing the spatial scale dependence of
total deformation rates, for RGPS observations and LIM
simulations. At all spatial scales and a timescale of 3 days, a
bias persists between the mean deformation of models and
RGPS observations. This bias is consistent with the bias in
the ice speed magnitude (the ice moves too fast in the

Table 2. Mean and Standard Deviations of Divergence and Shear Rate (1/day) at 10- and 100-km Scales, and Ice Speed Statistics

(km/day)

10 km, 3 days 100 km, 3 days

RGPS LIMVP LIMEVP RGPS LIMVP LIMEVP

_�div mean 1.2 � 10�5 �3.5 � 10�3 �1.9 � 10�3 1.2 � 10�3 �3.1 � 10�3 �1.7 � 10�3

std 0.17 0.019 0.22 0.016 0.017 0.017
_�shear mean 0.015 0.019 0.021 0.010 0.018 0.018

std 0.23 0.17 0.025 0.020 0.015 0.017
Ice speed mean 3.6 8.0 7.3 2.5 3.4 3.2

std 3.0 5.0 4.4 2.6 1.5 1.2
Na 106 0.8 � 106 0.8 � 106 1.3 � 104 1.3 � 104 1.3 � 104

aN is the number of observations or model values.

Figure 8. PDF of shear rates for the period January–March 1997 from RGPS observations (green),
LIMVP experiment (red), and LIMEVP (blue), at scales of (left) �10 km and (right) �100 km. The green
and blue dashed lines indicate, respectively, the slope of the RGPS and LIMEVP distributions. (right) The
red dashed line is the Gaussian distribution of same mean and standard deviation as the LIMVP
distribution.
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model). However, this bias is not an essential criterion to
test the accuracy of the simulations, as sea ice mean strain
rates strongly depend, by nature, on the spatial and temporal
scales considered, whereas modeled mean strain rates
essentially do not. Consequently, one can find temporal
and spatial scales at which simulations fit the observations,
but this neither validates nor invalidates the model.
[62] Instead, we focus our analysis on the scale depen-

dence of strain rates (i.e. the slope), which characterizes the
heterogeneity of the deformation field. The scaling h _�toti �
L�b is observed over two orders of magnitude for RGPS
observations. A least squares fit to the mean values (dashed
line), gives an exponent b = 0.18 with a squared correlation
0.99. This is consistent with the results of Marsan et al.
[2004] who obtained a similar scaling with an exponent b =
0.2 for RGPS observations of fall 1997.
[63] In the simulations, the power law scaling is not

recovered. At small scales, the mean deformation simulated
in LIMVP is nearly independent of L, then decreases for
scales larger than �200 km. This decrease could be
explained by a finite-size effect: due to the confinement
of the Arctic basin, a box of the order of the basin scale is
not free to deform significantly. We note that for the scaling
analysis of RGPS strain rate, this finite-size effect, which
necessarily exists, is masked by the power law scaling. The
scale dependence of LIMEVP mean deformation is slightly
more pronounced than for LIMVP, but clearly not a power
law.
[64] The difference between model and observations

appears even more distinctly when considering the scale
dependence of the moments h _�totq i1/q of order q = 2 and 3
(Figure 11). Moments of higher order give more weight to
the large strain rate values. RGPS moments follow power
laws with exponents depending on the moment order q,
while LIM moments do not vary significantly with the
moment order, neither with the spatial scale. For RGPS
observations, the dependence of the exponent with q
expresses the multifractal character of the strain rate field,
in agreement with previous work [Marsan et al., 2004], the
fingerprint of the multifractal heterogeneity. This heteroge-
neity is absent for simulations.

[65] The results reported on Figures 10 and 11 show that
the spatial correlations of deformation patterns are not
correctly reproduced in LIM. The scale dependence of strain
rates simulated by CICE was also examined (not shown
here) through a similar procedure and did not match the
power law decay either.
[66] As mentioned in section 2, RGPS is not suited to

explore in details the temporal scaling as well as the space-
time coupling of sea ice deformation, which was revealed
by the analysis of the dispersion of buoys trajectories
[Rampal et al., 2008]. To evaluate the model performance
on this basis, we used the reconstructed Lagrangian trajec-
tories (see section 4.2) and followed the procedure pre-
sented in section 2 to estimate the strain rate proxy _�disp
from dispersion rates. This was done for a wide spatiotem-
poral scale range, with initial separation L varying from
�10 km to �500 km and time interval t varying from 12 h

Figure 9. PDF of absolute value of divergence rates from the CICE simualtion (period January–March
1987) and from RGPS observations (period January–March 1997), at scales of (left) �10 km and (right)
�100 km. (right) The black dashed line is the Gaussian distribution of the same mean and standard
deviation as the CICE distribution.

Figure 10. Mean total deformation rate h _�toti as a function
of spatial scale L, obtained with RGPS observations (green
diamonds), LIMVP (red circles), and LIMEVP (blue
squares) simulations. The dashed line is the least squares
fit for RGPS data h _�toti � L�0.18.
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to 45 days. Model dispersion rates were then compared to
dispersion rates obtained from IABP buoys trajectories
during the January–March period, covering 23 years from
1979 to 2001.
[67] The differences between observed and modeled

dispersion rates _�disp are striking (Figure 12): in both
simulations, _�disp is nearly independent of the temporal
and spatial scales considered, whereas it shows a strong
decrease with scales when calculated from observations.
Once again, Figure 12 shows that, to evaluate the perfor-

mance of a model, a comparison of mean strain rates
performed at specific arbitrary scales is meaningless.
Although simulations can match observations at some
scales, the entire scale dependence should be checked.
[68] This discrepancy between models and observations

confirms that (1) the models are unable to reproduce the
spatial correlations of the deformation field and (2) that they
do not reproduce the temporal correlations either.
[69] To illustrate the difference between simulations and

observations, we calculated the ratio of the strain rate proxy
at two different time intervals and spatial scales:

_�disp 10 km; 1 day½ �
_�disp 300 km; 50 days½ � ð7Þ

This ratio is �2 in simulations, essentially as the result of
finite size effect (see above), whereas it is more than one
order of magnitude higher (�60) for buoy data.
[70] Moreover, the deformation rates estimated by both

models agree with the observations at large spatial scales
(100–300 km), suggesting that all the variability regarding
sea ice deformation below such scales is missing in both
models, regardless of their high resolution (�10 km grid
size). This is consistent with the conclusions of Taylor et al.
[2006] who suggested that the adoption of isotropic, con-
tinuum rheology at sub-100 km resolutions is not useful for
a more detailed prediction of ice dynamics.
[71] Dispersion rates calculated with the CICE simulation

were also examined and exhibit almost no temporal and
spatial scale dependence compared to buoy dispersion rates.
[72] The dependence of _�disp upon time and spatial scales

is an expression of the intermittency and heterogeneity of
sea ice deformation, fully characterized by the scaling laws
(5) and (6) (see section 2). These scaling laws are not

Figure 12. Spatial and temporal scale dependence of the dispersion rate _�disp for buoys data: (a) LIMVP
and (b) LIMEVP. The dash lines are power law fits to buoys dispersion rates.

Figure 11. Moments of the total deformation rate h _�totq i1/q
as a function of spatial scale L, for q = 2 and 3, for RGPS
(green diamonds), LIMVP (red circles) and LIMEVP (blue
squares). The dashed lines are least square fits for RGPS
moments.
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recovered in the models: The strain rate proxy _�disp is
essentially independent of timescale as well as spatial scale,
i.e. a ’ b ’ 0. In other words, modeled sea ice behaves as a
viscous fluid [Rampal et al., 2008], with little spatial
heterogeneity and no intermittency of the deformation.

6. Discussion

[73] This section discusses the causes of the discrepancy
between model and observations. The influence of forcing
and resolution problems against a real issue with the model
physics is examined.

6.1. Insights From the Statistical Analysis of Ice
Deformation

[74] The simulated mean ice drift field shows significant
correlations with observations at large scales (400 km,
3 months) even though a large bias on the mean speed is
noted and taken into account throughout the paper. At
smaller scales, the distributions of simulated ice velocity
fluctuations compare relatively well with buoys observa-
tions. The correlation timescale of velocity fluctuations is
abnormally large in the model, suggesting incorrect spatial
and/or temporal correlations of the velocity fluctuating field.
Major differences between model and observations appear
when analyzing the strain rates. The distributions of RGPS
derived strain rates differ from the simulated distributions
on a wide range of scales. The speed bias in the simulations
affects the strain rates but only in terms of absolute values.
This could explain the bias in the mean strain rate seen in
simulations but it does not have any effect on the shape of
strain rates distributions, nor on the scale dependence of
strain rates.
[75] To exclude the influence of the model resolution on

the discrepancy with the observations, the comparisons of
strain rate distributions were done at different scales. The
difference in the nature of the PDFs remains at large scale
(100 km), with a clear power law decay in the observations,
which does not appear in the simulated distributions.
Therefore the model resolution cannot be the main cause
of this problem. The fact that the shape of distributions
differs suggests that the model does not represent correctly
the physical processes of ice deformation.
[76] Sea ice dynamics is mainly driven by wind-forcing,

which is derived from reanalysis in the simulations. Thus
boundary layer turbulence and small scale variability of the
wind stress on sea ice is not represented. This could partly
account for the lack of large deformation rates and the
smoothness of deformation fields. In other words, the part
of the stochastic component of sea ice velocity which is
directly linked to the short-term wind fluctuations is not
represented.
[77] However, ice velocity fluctuations do not only result

from short term wind-forcing. They also emanate from the
ice mechanical behavior, through the internal ice stress term
of the equation of motion, which is calculated by the
rheology. Rampal et al. (submitted manuscript, 2009) re-
cently detailed the importance of the ice rheology on the
velocity statistics. Weiss [2008] showed that the intermit-
tency of ice stresses is not inherited from wind-forcing but
emerges from sea ice mechanics. This suggests that if the
ice mechanics is well represented in the model, its finger-

print should appear in the ice velocity and strain rate
statistics, even if the forcing is not perfect.
[78] Another consequence of the ice mechanical proper-

ties is the spatial and temporal scaling laws of sea ice
deformation (relations (5) and (6)). These relations express
the strong intermittency and high heterogeneity of the
deformation fields [Marsan et al., 2004; Rampal et al.,
2008] and associated space and time correlations.
[79] Since we have shown that the scaling laws are not

reproduced in any of the models, and that strain rate
distributions differ in shape from the observations, we argue
that a possible reason for the incorrect representation of the
statistical properties of sea ice deformation could be mainly
due to the model physics, and more specifically the me-
chanical framework used in the models.

6.2. A Different Mechanical Framework for Sea Ice
Mechanics?

[80] In the classical VP framework [Hibler, 1979], the
parameterization of the ice strength P depends on the ice
concentration A, inducing a weakening mechanism: a de-
crease in A leads to a reduced ice strength and increased
deformation. The goal of this parameterization is to localize
the deformation, through a positive feedback loop. However,
the effects of this parameterization are limited to single grid
cells, as stresses are not redistributed on the other nodes of
the mesh, since the VP rheology does not consider elastic
interactions. The parameterization of P appears inadequate
to simulate correctly the properties of the deformation
fields. The tuning of different rheology parameters, such
as the creep limit in our case, proved to have insignificant
effects on the results. Moreover, in such a scheme, there is
no direct link between deformation (and particularly diver-
gence), and ice concentration. This analysis commensurates
with the conclusions of Coon et al. [2007] who suggested a
different view of the dynamics of pack ice and underlined
the need to directly account for velocity discontinuities in
order to get a good representation of deformation.
[81] Weiss et al. [2007] argued that the deformation of the

sea ice cover is essentially elasto-brittle, the inelastic
deformation being accommodated by differential displace-
ments along fracture and fault planes, from the scale of the
ice thickness (�m) to geophysical scales (103 km for the
Arctic basin). Considering the sea ice cover as an elastic
plate, long range elastic interactions take place between
fractures. Consequently, a small perturbation can trigger
much larger events, and scaling laws as well as intermit-
tency emerge naturally.
[82] It is worth noting that, using a discontinuous

Lagrangian approach to explicitly model ice floes and the
interactions between them such as fracturing and the prop-
agation of stress relaxation, Hopkins and Thorndike [2006]
reproduced the power law distribution of floe sizes in a
regional model, as observed from satellite images [Weiss
and Marsan, 2004].
[83] Following these arguments, we believe that a differ-

ent mechanical framework should be developed for sea-ice
in global models, introducing the long-range elastic inter-
actions that are at the root of the scaling properties de-
scribed above. Elasto-brittle models introducing a
progressive damage law with an associated failure criterion
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already proved to successfully reproduce the complexity
and scaling properties of strain fields in the Earth’s crust
[Cowie et al., 1995], or of rocks damage [Amitrano et al.,
1999].
[84] The inadequate representation of the fluctuating part

of sea ice kinematics may have strong consequences in
terms of ocean-atmosphere thermodynamic fluxes. These
fluxes are extremely sensible to fluctuations of the open
water concentration, i.e. on lead/fracture opening and clos-
ing which are themselves linked to kinematical variables
(e.g., divergence). As an example, a change in the ice
concentration of 1% within 48 hours induces a difference
in the temperature of the atmospheric boundary layer up to
3.5 K [Lüpkes et al., 2008]. Erroneous sea ice concentra-
tions in models have a strong impact on simulations as ice
concentration is one of the most important factor of the
surface energy budget [Maykut and Untersteiner, 1971;
Sorteberg et al., 2007]. Furthermore, the spatial repartition
of leads and polynyas also control the heat budget, since
narrow leads transfer heat more efficiently than larger ones
[Andreas and Cash, 1999]: the relationship between lead
opening and heat transfer is strongly nonlinear. Consequently,
average values such as average ice concentration or average
strain rates contain little information to correctly simulate
thermodynamic transfers.
[85] All these results demonstrate the need of a precise

representation of the spatial distribution of open water and
leads in numerical models. We believe that this can only be
achieved if the strain rate fields are well captured. By this,
we mean that statistical and scaling properties should be
well represented, as the small scale stochastic component of
kinematics is by nature impossible to predict in a determin-
istic sense.

7. Conclusions

[86] In this paper, ice motion from three different simu-
lations is evaluated on the basis of statistical and scaling
properties of sea ice drift and deformation. Two simulations
were obtained with the Louvain-la-Neuve Ice Model (LIM)
coupled to a high-resolution ocean model (12 km grid
scale), one with VP ice dynamics and the other one with
EVP dynamics. The third simulation was obtained with the
Los Alamos Sea Ice Model (CICE), coupled to a simple
ocean mixed layer (9 km grid scale).
[87] The results presented in this paper focus mainly on the

two LIM simulations, which are examined in terms of mean
velocity field, distributions of ice velocity fluctuations, strain
rate distributions and scale dependence of strain rates. Only a
few important results regarding the statistical properties of ice
deformation are presented for the CICE simulation.
[88] The main conclusions of this work are:
[89] 1. At large scales (400 km, 3 months), the mean

velocity field simulated by LIM is fairly well represented,
although a significant bias on the simulated ice speed is
noted. At finer scales, below a few hundred km and few
months, the velocity field is dominated by the stochastic
component of ice velocity and direct comparisons through
correlation coefficients are inappropriate. Instead, simulated
velocities are evaluated at small scales through the distri-
butions of velocity fluctuations. Model and buoy distribu-
tions of velocity fluctuations compare favorably.

[90] 2. There is a strong discrepancy between model and
RGPS distributions of strain rates: strain rates derived from
RGPS observations exhibit ‘‘wild randomness’’, with power
law tailed distributions, whereas simulated distributions
show ‘‘mild randomness’’ and remain in the Gaussian attrac-
tion basin. This discrepancy persists at scales much larger
than the model grid size (100 km).
[91] 3. The analysis of strain rate distributions also

provided valuable information for further evaluations: the
properties of RGPS distributions imply that means and
standard deviations of strain rates are volatile, their value
is controlled by a few extreme strain rate values. Evalu-
ation of model strain rates should therefore consider the
entire distributions and not only the means and standard
deviations.
[92] 4. The models are unable to reproduce the spatial and

temporal correlations of the deformation fields: In the
observations, ice deformation depends of scales following
specific spatial and temporal scaling laws that express the
heterogeneity and the intermittency of deformation. These
relations do not appear in simulated ice deformation. Mean
deformation in models is almost scale independent.
[93] 5. The incorrect representation of the statistical

properties of ice deformation could be mainly explained
by the mechanical framework used in models: the scaling
laws of deformation and the shape of strain rate distribu-
tions are properties that emanate from the ice mechanical
behavior. The fact that these properties are not represented
in models suggests that the modeling framework is
inappropriate. A different modeling framework, including
elastic interactions, could improve the representation of ice
deformation in models.
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