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Abstract 

 The intraplate volcanic suite of the Chaîne des Puys (French Massif Central) shows a complete 

petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and 

radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated 

with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-

type reservoir (206Pb/204Pb > 19.6; 87Sr/86Sr < 0.7037; εNd > +4). The behavior of radiogenic isotopes 

suggests that the most likely crustal contaminants are meta-sediments located in the lower crust. 

 The Li isotopic compositions of the lavas range from high δ7Li (> +7‰) in basalts to lighter values 

in more evolved lavas (down to δ7Li ≈ 0‰). The mantle component, expressed in the least evolved 

lavas, has a heavy Li isotopic signature, in good agreement with previous δ7Li measurements of OIB 

lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series 

is in agreement with the AFC model suggested by the Sr-Nd-Pb isotopic systems. Although the 

behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations 

suggest that at least a portion of the lower crust beneath the Chaîne des Puys is characterized by a light 

Li isotopic composition (δ7Li < -5‰).  

 

Keywords: Li , Sr, Nd and Pb isotopes, lower crust, assimilation and fractional crystallization (AFC), 

HIMU, basalts, trachytes. 
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 The geochemistry of lithium isotopes has proven useful for a new look at a variety of Earth 

sciences problems in recent years. This alkali element has two stable isotopes, 6Li and 7Li, with a large 

relative mass difference (�17%). Therefore, temperature-dependent isotopic fractionations, either 

equilibrium or kinetic, are anticipated for Li during natural processes. This property makes Li and its 

isotopes interesting for Earth science applications including the study of hydrothermal processes 

(Chan et al., 1992; Foustoukos et al., 2004), continental weathering rates (Huh et al., 1998; Huh et al., 

2001; Rudnick et al., 2004), degassing events (Lentz et al., 2001; Beck et al., 2004), diffusion (Barrat 

et al., 2005; Lundstrom et al., 2005; Beck et al., 2006; Teng et al., 2006; Hamelin et al., 2007), 

metasomatic processes in peridotites (Wagner and Deloule, 2007; Rudnick and Ionov, 2007) and as a 

tracer of subducted oceanic crust in the mantle (Nishio et al., 2005; Elliot et al., 2006; Chan et al., 

2009). 

 

 Although our understanding of Li isotope behavior has improved, our knowledge of the Li isotopic 

system within deep Earth reservoirs still remains quite rudimentary. In the case of the mantle reservoir, 

the end-members that have been identified using radiogenic isotopes are poorly constrained for the Li 

isotopic system. Most of the Ocean Island Basalts (OIB) show a range of δ7Li that overlap the Mid 

Oceanic Ridge Basalts (MORB) range (δ7Li ≈ +3.4 ±1.4‰, Tomascak et al., 2008). However, recent 

studies have reported significantly heavier Li isotopic composition for HIMU end-members ≈ +7‰ 

(Ryan and Kyle, 2004; Nishio et al., 2005; Aulbach et al., 2008; Chan et al., 2009). The Li isotopic 

signature of continental crust is also a matter of debate. This reservoir is vertically stratified in terms 

of its chemical composition and lithology. The upper part of the continental crust is well-known and 

exhibits a lighter Li isotopic composition (≈ 0‰) (Teng et al., 2004) than the upper mantle (e.g., Seitz 

et al., 2004). This isotopic signature is explained by 7Li enrichment of river water relative to the 

original bed-rock and suspended load (Huh et al., 2001; Kisakurek et al., 2004). In contrast to the 

uppermost continental crust, the Li signature of the deeper crust (below 15 km depth) remains less-

constrained. This reservoir has recently been investigated using samples from high-grade metamorphic 
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terranes and granulites-facies xenoliths carried in lavas (Teng et al., 2008). According to this study, the 

middle crust is estimated to be relatively homogeneous with δ
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7Li average of +4.0‰ ±1.4 (1σ). Li 

isotopic composition of lower crustal xenoliths samples range from −17.9 to +15.7. However, direct 

comparisons of separate minerals and whole rock measurements for these samples provided strong 

evidence for diffusion-driven kinetic isotopic fractionation during the interactions of xenoliths with the 

host magma. Only the isotopically equilibrated xenoliths are likely to preserve the initial Li isotopic 

signature of the lower crust and were selected by Teng et al. (2008) as useful for this purpose. Based 

on these eight samples, the lower crust appears extremely heterogeneous, with δ7Li ranging from -

14‰ to +14.3‰ and a δ7Li average of +1.6‰ ±8.9 (1σ) (Teng et al., 2008).  

 

 In order to constrain the Li isotopic characteristics of the lower continental crust as well as the 

HIMU mantle end-member, we studied a suite of volcanic rocks from Chaîne des Puys. This alkaline 

series was chosen because it is an archetype of a continental volcanic suite. It shows a complete 

petrologic range from basalts to trachytes (e.g., Maury et al., 1980), and geochemical variations within 

the series are remarkably coherent. Our goal is to model the geochemical evolution of the Chaîne des 

Puys series in order to constrain the mantle and crustal Li isotopic compositions of the involved 

reservoirs. 

 

2. Geological setting and previous work. 

  The Chaîne des Puys is the youngest volcanic province of the French Massif Central (FMC), and 

the study of its well preserved volcanoes and lava flows has contributed to the development of 

volcanology in western Europe since the 18th century, following the pioneering work of Guettard 

(1752). It was emplaced between 100 ka and 8 ka over a deep N-S trending crustal fracture parallel to 

the nearby aborted Oligocene rift of the Limagne (Fig. 1). Most of its eruptive vents are clustered 

within a ca. 30 km long and 3 to 4 km wide volcanic axis, west of the town of Clermont-Ferrand. 
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 The Chaîne des Puys lavas represent a typical mildly alkalic intraplate volcanic suite ranging from 

alkali basalts and basanites to hawaiites, mugearites, and silica-oversaturated benmoreites and 

trachytes. Alkali basalts, basanites and hawaiites form over a hundred strombolian cones up to 350 m 

high with associated lava flows, as well as a dozen maars. Mugearites and benmoreites occur as ash 

and scoria cones emitted as short and thick lava flows. The trachytes and a few benmoreites form four 

domes (among which the eponymous Puy de Dôme), three protrusions, and several associated 

pyroclastic flow deposits. The relative abundances of these petrological types roughly decrease from 

basalts to mugearites and trachytes. Geochronological data (summarized in Boivin et al., 2004) 

suggest that the emplacement of mafic magmas (basalts and hawaiites), which started around 100 ka, 

was successively followed by that of mugearites and benmoreites (after 40 ka), and finally of trachytes 

(mostly between 14 and 9 ka). Primitive mafic lavas are uncommon within the Massif, and most Mg-

rich compositions are those of basanitic melt inclusions trapped within olivine phenocrysts, which 

might represent the parental magma of the suite (Jannot et al., 2005). 

 

 Petrographic and mineralogical data (summarized in Boivin et al., 2004) as well as major and trace 

element data are consistent with a magmatic evolution mainly controlled by the fractional 

crystallization of mafic melts, and involves separation of kaersutitic amphibole in intermediate 

magmas (Maury et al., 1980; Villemant et al., 1980, 1981). In addition, the common occurrence of 

partially melted continental crust xenoliths, together with the progressive increase of Sr and decrease 

of Nd isotopic ratios from basalts to trachytes (Condomines et al., 1982; Chauvel and Jahn, 1984) 

suggest the occurrence of crustal assimilation. The occurrence of deep-seated amphibole, 

clinopyroxene, potassic oligoclase and scapolite megacrysts in mafic lavas (Boivin and Camus, 1981) 

and of mixed trachybasaltic and trachytic pumices (Gourgaud and Camus, 1984) suggests that magmas 

started their differentiation within deep reservoirs, probably located near the base of the French Massif 

Central continental crust. Based on petrographical arguments, Boivin et al. (2004) proposed that 

intermediate and residual liquids were generated within the continental crust. 
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 Geophysical studies have shown that the Neogene and Quaternary volcanic activity in the FMC is 

associated with the upwelling of hot asthenospheric material (Lucazeau et al., 1984; Zeyen et al., 

1997). This anomaly has been linked to a possible mantle plume located beneath the Massif Central 

(Granet et al., 1995, 2000; Sobolev et al., 1997). However, the lack of evidence for such a plume 

within the lower mantle has been interpreted as an indication of asthenospheric flow induced either by 

the delamination of the Alpine lithospheric root (Merle and Michon, 2001), or the retreat and sinking 

of the Apenninic slab (Barruol and Granet, 2002; Barruol et al., 2004).  

 

 Based on Sr, Nd, and Pb isotopic data on lavas, it has been proposed that the geochemical signature 

of the Neogene and Quaternary FMC volcanic provinces, including the Chaîne des Puys, is closely 

related to the HIMU reservoir. Indeed, it is characterized by low 87Sr/86Sr (< 0.7038) and high 

206Pb/204Pb (> 19.5) ratios (Chauvel and Jahn, 1984; Downes, 1984; Wilson and Downes, 1991, 1992; 

Wilson et al., 1995). The origin of this geochemical signature is still a matter of debate (Downes, 

2001; Wilson and Downes, 2006). Hoernle et al. (1995) have shown that it is shared by most Cenozoic 

volcanic provinces of Western and Central Europe, the Western Mediterranean domain, Northwestern 

Africa and the Canary islands. They have attributed its origin to the interactions between the European 

and Mediterranean lithospheric mantle and a large-scale asthenospheric plume linked to the opening of 

the Central Atlantic during the early Tertiary. 

 

3. Samples and Analytical techniques  

3.1. Samples. 

 Based on the detailed geochemical investigations undertaken by Villemant (1979) and Maury et al. 

(1980), 15 samples were selected (located in Fig. 1), which are representative of the entire Chaîne des 

Puys series. All samples were collected from fresh exposures of the Quaternary volcanics. 

Petrographic examinations reveal no evidences of secondary alteration, a conclusion that is supported 

by the low loss on ignition (LOI). 
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3.2 Major and trace element analyses. 158 
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 Major element analyses were performed by ICP-AES at Centre de Recherches Pétrographiques et 

Géochimiques, Nancy following the method described in Carignan et al. (2001). The precision of the 

data, based on relative standard deviations, is better than 2%. Trace element analyses were performed 

by ICP-MS at Grenoble following the procedure described in Barrat et al. (1996). The results obtained 

for internationals standards (JB2, BHVO1, WSE and IFG) are reported in Barrat et al. (2000). Based 

on standard measurements and sample duplicates, trace element concentration reproducibility is 

generally better than 5%. 

 

3.3. Sr, Nd and Pb analyses. 

 3.3.1. Sr measurements. 

 Isotopic compositions of Sr were determined at Géosciences Rennes. For Sr, rock powders were 

leached for 3 hours in hot (150°C) 6N HCl, and rinsed in deionized water prior to dissolution. 

Conventional ion exchange techniques were used for the separation of Sr and isotope ratio 

measurements were carried out by thermal ionization mass spectrometry using a Finnigan Mat 262 

equipped with seven collectors in static mode. Compositions are normalized for instrumental mass 

fractionation relative to 86Sr/88Sr = 0.1194. 87Sr/86Sr of the NBS 987 Sr standard yielded 0.710213±22 

(2σ, n=14) and the sample Sr isotopic compositions are reported relative to 87Sr/86Sr = 0.71024. 

 

 3.3.2. Nd measurements. 

 Isotopic compositions of Nd were measured at Institut Universitaire Européen de la Mer, Brest, 

using a Thermo Finnigan, Triton. The measurements were carried out in static mode. The Nd 

purification was done according to the procedure described in Dosso et al. (1993). TRU.Spec 

chromatographic resins from Eichrom were used to separate the REE fraction from the sample matrix. 

The separation and elution of Nd and other REE were realized on Ln.Spec. resin. During the course of 

the study, analyses of the La Jolla standard were performed and give an average of 143Nd/144Nd = 

0.511845±6 (n = 15). All Nd data are fractionation corrected to 146Nd/144Nd = 0.7219 and normalized 
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to a value of 143Nd/144Nd = 0.511860 for the La Jolla standard. Nd blanks measured using this 

procedure were < 0.5ng. 
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 3.3.3. High-resolution Pb analyses. 

 Powdered samples were leached with 6 M HCl at 140°C for an hour and then rinsed up to six times 

with ultrapure water prior to dissolution. Lead separation was then performed on an anionic exchange 

resin. Pb analyses were carried out in static mode at Ifremer (Centre de Brest) on a Finnigan MAT 261 

multi collector instrument upgraded by Spectromat, using the double spike technique with the 

calibrated Southampton-Brest 207/204 spike (Ishizuka et al., 2003). Replicate analyses of the Pb 

isotope standard NBS981 gave an average of 16.9432 ±0.0027 and 15.5004 ±0.0029 and 36.7326 

±0.0086 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb, respectively (2σ, n=7). Pb blanks measured using 

this procedure were < 100pg, and thus negligible relative to the amount of sample analyzed. 

 

3.4. Li analyses. 

 3.4.1. Whole rock Li isotopic measurements. 

 Li isotope chemistry and measurements were carried out at the Institut für Geowissenschaften, FE: 

Mineralogie, J.W. Goethe Universität Frankfurt. Rock digestion and column chemistry were 

completed following the procedure of Seitz et al. (2004). Powdered rock samples (15–25mg) were 

digested in a mixture of 1 ml 6 M HNO3 and 1 ml concentrated HF. Subsequently, samples were 

dissolved in 6 M HCl and reconstituted in 6 M HNO3 followed by chromatographic Li purification 

(see Seitz et al., 2004 for more detail). For Li-chromatography clear sample solutions of 0.18ml 5 M 

HNO3 and 0.72ml 100% methanol (analytical grade) were passed through single, small 1.4ml 

exchange columns filled to height of 6 cm with BioRad AG50W-X8 (200–400 mesh) resin. With the 

collection of 10 ml of the eluate, all Li is recovered. To ensure 100% recovery we randomly checked 

pre and after cuts; Li was never detected in these. Measurements were performed using a Multi 

Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS, Neptune ThermoFinnigan) at 

dry plasma conditions using a Cetac Aridus® nebuliser fitted with a PFA-spray chamber and an ESI 

microconcentric-nebuliser. The analytical blank (chemistry blank and background signal on double 
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distilled 2% HNO3) was usually 30-20 pg, ~12-20 mV on 7Li. Sample analysis is carried out 

sequentially by ‘bracketing’ the sample with the L-SVEC standard (Flesch et al., 1973). Isotope 

compositions are expressed as per mil deviations from the NIST L-SVEC standard: (δ
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7Li = 

1000×((7Li/6Li)sample / (7Li/6Li)LSVEC -1)). Internal precision is typically between 0.2–0.6‰ (2σ). The 

best measure for the external precision is the long term reproducibility, determined by replicate 

dissolutions of the geological basalt standard JB-2 (δ7Li of +5.1‰), which is about 1.2‰ (2σ). 

 

 3.4.2. In situ Li isotopic measurements. 

 In situ Li isotopic compositions were measured in olivine from sample Puy21 by the small radius 

(Cameca ims 3f) ion microprobe at Centre de Recherches Pétrographiques et Géochimiques (CRPG-

CNRS, Nancy), using the analytical procedure previously described (Chaussidon and Robert, 1998; 

Beck et al., 2004, 2006; Barrat et al., 2005). Gold-coated polished samples were sputtered with an O- 

beam of approximately 25 µm size. The secondary 6Li+ and 7Li+ ions were accelerated at 4.5 kV and 

were counted in mono-collection mode with an electron multiplier using magnetic peak switching. The 

background on the two multipliers was monitored during the different sessions: it was below 0.05 cps 

(count per second). Recently, Bell et al. (2009) have shown a significant effect of the olivine 

composition on the Li isotope ratio measured by SIMS. This matrix effect is related to the Mg# of the 

olivine. In order to calibrate the instrumental mass fractionation for Li, it is important to select a 

standard with a forsterite component comparable to our sample. In our case, our sample presents a 

%Fo = 86.8 and the olivine standard (Olivine BZ29), presents a %Fo = 88.8. The instrumental mass 

fractionation (αinstLi = (7Li/6Li) measured / (7Li/6Li)true) ranged from ~1.020 to ~1.035 for our standard. 

Duplicate measurements made at different times in the same spot gave an estimate of reproducibility 

better than 2.5‰ (2σ).  

 

4. Results  

4.1. Major and trace elements variations 

 All samples have a very low loss of ignition (L.O.I. < 1.5%) reflecting the lack of alteration and the 
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pristine nature of the samples. Among the most primitive samples (with high Fe content), several show 

negative L.O.I. results. This indicates that the weight increases arising from oxidation of Fe
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2+ to Fe3+ 

(FeO to Fe2O3) is greater than the weight loss caused by removing volatiles from the mineral 

structures. New data from this study are shown along with published analyses in the total alkali-SiO2 

diagram (Fig. 2). Our samples define a continuous suite, ranging from basalts (Na2O+K2O= 5.6wt%; 

SiO2 = 46.0wt%) with a MgO of 6.9wt% to trachytes (Na2O+K2O= 11.1wt%; SiO2= 64.9wt%) with a 

MgO of 0.5 wt%. This suite shows major element characteristics that are typical of mildly alkaline 

rocks: high contents of Na2O (from 3.3 to 6.6wt%) and K2O (from 1.7 to 4.9wt%) increasing with 

SiO2 while total iron (as Fe2O3), MgO and CaO decrease (Maury et al., 1980; Boivin et al., 2004). 

 

 Corresponding trace element characteristics are also typical of mildly alkaline basaltic suites, with 

high concentrations of incompatible elements such as Rb, Ba and Th (more than 150 times 

concentration in the primitive mantle – Table 1). Chondrite-normalized Rare Earth Elements (REE) 

show highly fractionated REE patterns (La/Yb)N > 13, along with significant changes in the trace 

element patterns as a consequence of differentiation. The light REE enrichment increases from basalts 

to trachytes, as evidenced by the variation of (La/Sm)N = 3.8 to 7.2. In contrast, over the same suite the 

slopes of the heavy REE decrease from (Gd/Yb)N = 2.8 to 1.4. Therefore, intermediate and evolved 

lavas display a progressively more concave REE pattern, which is linked to a medium REE depletion 

attributed to amphibole fractionation (Villemant et al., 1980, 1981). Binary plots of trace elements vs 

Th (see supplementary materials and Fig. 5) reveal three distinct stages, which correspond to 

successive fractional crystallization during the magmatic evolution of the Chaîne des Puys melts. 

These differentiation steps have been previously discussed in detail (e.g., Maury et al., 1980; 

Villemant et al., 1980, 1981) and for our purpose only their major characteristics are recalled here. The 

first two stages are linked to abundant crystallization of plagioclase and clinopyroxene. They differ 

from each other by the disappearance of olivine and appearance of hornblende, apatite and Fe-Ti 

oxides in the second stage. During the last differentiation step, the mineral assemblage changed 

significantly with the crystallization of a great abundance of biotite, alkali feldspar, apatite and Fe-Ti 

oxide. 
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4.2. Sr, Nd, Pb and Li isotopes 

 The Sr, Nd, Pb and Li isotopic compositions of the Chaîne des Puys samples show significant 

variations (Table 2). These variations are strongly linked to progressive differentiation. Basaltic lavas 

have low 87Sr/86Sr (≈ 0.7037), high 206Pb/204Pb (≈ 19.6), high εNd (≈ 3.9) and heavy δ7Li (≈ +7 ‰) 

signatures, whereas the evolved volcanic rocks display higher 87Sr/86Sr (≈ 0.7043), lower 206Pb/204Pb (≈ 

19.3), lower εNd (≈ 2.5) and lighter δ7Li (≈ 0‰).  

 

5. Discussion  

 5.1. AFC modeling based on Sr-Nd-Pb isotopes  

 Based on major and trace element data, it was suggested that the Chaîne des Puys alkalic basaltic 

suite is the result of fractional crystallization processes (Maury et al., 1980; Villemant et al. 1980, 

1981). However, strong variations in radiogenic isotope compositions within the cogenetic alkalic 

series rule out a model of closed magmatic system evolution (Fig. 3) (Condomines et al., 1982; 

Downes, 1984; Wilson et al., 1995). When taking together the incompatible trace element ratios and 

the Sr, Nd, Pb, Li isotopic data, the chemical variations shown in Fig. 5 can be explained by the 

involvement of two distinct reservoirs: 

 

(i) The first component is expressed in the least evolved volcanic rocks and is characterized by an 

HIMU-like isotopic signature (Wilson and Downes, 1991, 1992) with high Pb isotopic 

ratio (206Pb/204Pb ≈ 19.6) and low 87Sr/86Sr ratio (< 0.7037).  

 

(ii) The second component displays a slightly more radiogenic Sr isotopic compositions (87Sr/86Sr 

> 0.7043), lower εNd and lower Pb isotopic ratios (206Pb/204Pb < 19.3), features that indicate 

unambiguously a continental crust component. 
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 Clearly, the coherent variations of Sr, Nd and Pb isotopic compositions with the concentration of 

an incompatible trace element, such as Th (or any differentiation index, e.g FeO/MgO) indicate the 

assimilation of crustal rocks coupled with fractional crystallization (AFC: DePaolo, 1981). This 

interpretation is strongly supported by field and petrographic observations (e.g., Maury and Bizouard, 

1974) as well as radioactive disequilibrium data (Condomines et al., 1982). Our goal is to 

quantitatively model the range in concentrations and variations in isotope compositions for Sr, Nd, Pb 

and Li, using an AFC process (equations 6a and 15b from DePaolo, 1981). All parameters of the 

model are presented in Table 3.  

 

 The first step in the AFC modeling is to identify the components involved in the process. In our 

data set, none of the basalts is sufficiently primitive to be the direct result of mantle melting. 

Therefore, we have selected the average of samples Puy21 and Puy16 to represent the initial liquid (lo) 

in our modeling. These samples are the most primitive samples studied here given their MgO and 

compatible trace element contents (Mg# > 50 and Ni > 75 µg/g, Table 1). Constraining the 

composition of the crustal contaminant involved in the AFC process is generally quite difficult. The 

continental crust beneath the Chaîne des Puys volcanoes is very heterogeneous due to its complex 

evolution during the Variscan orogeny. In this particular context, a possible contaminant is the upper 

continental crust, which is mainly composed of Variscan granitoïds. However, their Pb isotopic ratios 

are too low to represent the crustal component involved in the AFC process, as illustrated in Fig. 4. 

Another possible contaminant is the lower crust. The nature of the FMC lower crust and lithospheric 

mantle is mostly known from the study of xenoliths brought to the surface by Cenozoic alkaline 

volcanic activity (Leyreloup et al., 1977; Downes and Dupuy, 1987; Downes, 1993). Three main types 

of xenoliths have been identified: (i) mantle-derived ultramafic xenoliths (ii) meta-igneous granulites 

and (iii) meta-sedimentary granulites. In order to find the most likely crustal contaminant, the 

available analyses of all these types of lithologies are shown together with those of volcanic samples 

of the Chaîne des Puys (Fig. 4). Based on Pb isotopes, which provide the best constraints on crustal 

contamination, it appears that the meta-sedimentary granulites represent the main contaminant. In the 

following section, the average composition of the meta-sedimentary granulites has been used in the 
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calculations (Downes et al., 1990; 1991). In contrast to the two-stage fractionation/assimilation 

process suggested by Boivin et al. (2004), all geochemical variations of the Chaîne des Puys samples 

presented here (Table 2 and supplementary materials) are satisfactorily explained by a single lower 

crustal contaminant. 

 

 Several parameters must be assumed in order to model the evolution of the volcanic series by the 

AFC process (DePaolo, 1981). Bulk distribution coefficients for each element (DSr, DNd, DPb, DLi) have 

been evaluated using log Ca vs log Cb diagrams (a and b are two different trace elements). In these 

diagrams, if one element is highly incompatible (for example Db ≈ 0), the bulk distribution coefficient 

of the other element is directly estimated by the slope of the linear trend formed by the data (slope = 1- 

Da). This method is adapted for fractionation in a closed magmatic system but is at first glance not 

suitable for AFC process because concentrations of trace elements do not directly depend on the 

fraction of residual liquid in the reservoir (F). Nevertheless, there is not much difference if D is 

calculated from a perfect Rayleigh fractionation process, except when AFC curves show marked 

inflection (Defant and Nielsen, 1990). In two element plots (Fig. 5 and supplementary materials), three 

distinct stages of the bulk distribution coefficients are noticeable, each one is associated with changes 

in the modal composition of cumulates. Calculated values of DSr, DNd, and DPb, for these steps are 

presented in Table 3. We assumed an initial  DTh ≈ 0, changing to DTh = 0.2 in order to account late 

stage crystallization of zircon.  

 

 Another important parameter in the AFC modeling is the ratio between the assimilation and the 

crystallization mass (r). There is no simple way to evaluate the absolute value of this ratio. For 

calculation purpose, however, we have initially considered a range for r from 0 (perfect fractional 

crystallization) to 0.3. The best fit is obtained for all three isotope systems for r ≈ 0.10. As a first 

approximation in our model, this parameter is taken to be constant during the crystallization. The fact 

that the results are coherent for all three isotope systems indicates that the evolution of the Chaîne des 

Puys volcanics is the result of AFC processes that most likely occurred in lower crustal magma 

chambers. From basalts and hawaiites to trachytes, nearly 70% of the initial volume of liquid has 
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crystallized (Fig. 5). Similar results have been reported for other Quaternary alkaline series in the 

FMC (Wilson et al., 1995). 

 

 5.2 High δ7Li in basaltic samples: a characteristic of the HIMU mantle end-member.  

 Because the least evolved lavas of the Chaîne des Puys are expected to have been least affected by 

crustal contamination effects, basaltic samples (Puy16, Puy21) are likely to resemble the isotopic 

composition of their mantle reservoirs. Based on Sr, Nd, and Pb radiogenic isotopic data, Wilson and 

Downes (1991) proposed that the FMC Cenozoic basaltic lavas have HIMU affinities (low 87Sr/86Sr (< 

0.7038) and high 206Pb/204Pb (> 19.5)). However, the origin of this geochemical signature is still a 

matter of debate. The Li isotopic compositions (up to δ7Li = +7‰) in FMC basalts are relatively 

heavy, compared to average fresh N-MORB (δ7Li ≈ +3.4‰ ±1.4, Tomascak et al., 2008) and also 

differ from those of enriched mantle reservoirs (EM1 and EM2, Nishio et al., 2005) (Fig.6). Such 

heavy δ7Li compositions have previously been reported in basaltic samples derived from HIMU 

mantle environment: lavas from the Austral Islands (Nishio et al., 2005; Chan et al., 2009) as well as 

from St Helena (Ryan and Kyle, 2004) and from peridotite xenoliths from the East African Rift 

(Aulbach et al., 2008). All these studies suggest that the heavy Li isotopes signature might reflect a 

typical feature of HIMU lavas.  

 

 Recently, Chan et al. (2009) reported a discrepancy between Li isotope data for whole rocks and 

mineral separates from Cook-Austral HIMU samples. These authors argued that the narrower range of 

δ7Li values in olivine phenocrysts compared to the lavas is due to their lower susceptibility to post-

magmatic alteration. Their work suggests that the heavy Li isotopes composition in HIMU basalts 

could be partially an artifact of sample alteration. Although our samples are much younger (< 100ka) 

than the samples used by Chan et al. (2009) (~ 20Ma), it is important to consider the potential effect of 

weathering. In order to compare whole rock and in situ Li measurements, an isotopic profile was 

measured on a single chemically homogeneous olivine phenocryst from the alkali basalt Puy21 (Fig. 

7). Excluding extreme light δ7Li values found near the crystal boundary and likely related to diffusion-

induced Li isotopic fractionation (e.g., Barrat et al., 2005; Beck et al., 2006; Halama et al., 2007, 
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Hamelin et al., 2007), this phenocryst displays a homogeneous Li isotopic composition of +7.2‰. 

Assuming an analytical error (2σ) of ±2.5‰ for in situ data and ±1.2‰ for whole rock data, this value 

is indistinguishable from the whole rock analysis of this sample (δ
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7Li = +6.7‰). Therefore, the Li 

isotopic composition of this crystal is in equilibrium with the melt. Our in situ data support the 

assumption that the heavy δ7Li in the most primitive lavas from the Chaîne des Puys are genuine. In 

agreement with the final statement of Chan et al. (2009), our results suggest that the HIMU mantle is 

characterized by a significant enrichment in 7Li. 

 

 Because the origin of the HIMU mantle is commonly assumed to be derived from recycled oceanic 

crust (Hofman and White, 1982), the hypothesis for the generation of the heavy Li-isotope signature 

has been influenced by the observation of a dramatically low δ7Li value in eclogites (Zack et al., 

2003). Jeffcoate and Elliott (2003) proposed that the source of HIMU magmas is initiated not from the 

dehydrated slab, but in the overlying mantle wedge. In their model, the heavy signature is produced by 

high δ7Li fluids, which are released from the slab to the mantle wedge during dehydration. However, 

because fluids are enriched in Pb comparatively to U, this model fails to explain the high U/Pb ratio 

required to produce the high 206Pb/204Pb ratio in HIMU basalts. Nishio et al. (2005) proposed that, in 

contrast to the upper part of the oceanic crust, the moderately altered portion of the crust is preserved 

from the dehydration-induced Li isotopic fractionation during the subduction process and is therefore a 

potential source of the high δ7Li HIMU signature. Based on experimental determination of 

mineral/fluid Li isotopic fractionation factors (Wunder et al., 2006; 2007), Marschall et al. (2007) 

called into question the assumption that  altered oceanic crust will produce a light eclogitic residue 

during dehydratation and deep subduction. These authors argued that a great portion of Li could be 

retained in a deeply subducted slab. According to their model, the high δ7Li produced by low-

temperature alteration is not totally erased by subduction zone dehydration and therefore can be a 

source of HIMU geochemical signature. This hypothesis has been reexamined by Halama et al. (2008) 

by modeling Li diffusion at mantle temperatures. Their calculations predict that Li homogenization in 

the mantle is sufficiently effective to attenuate and erase heterogeneities over the time that is required 

to create the HIMU Pb isotopic signature. However, our results, which are in agreement with Chan et 
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al. (2009), suggest that the heavy Li isotopic signature of the altered oceanic crust is partially 

preserved during subduction and is not completely erased by diffusion processes in the mantle. 

 

 5.3. Application of the AFC model to the Li isotopes of the lower continental crust. 

 Samples from the Chaîne des Puys volcanic suite show a very good correlation between Li 

concentration and Li isotope composition (Fig. 8), ranging from low Li concentration (5.5 µg/g) and 

relatively heavy isotopic compositions (δ7Li ≈ +7 ‰) in basalts, to high concentrations (20 µg/g) and 

lighter δ7Li values (δ7Li ≈ +0.5 ‰) in highly evolved melts. This trend is consistent with the 

contamination of mantle-derived high δ7Li melts with a low δ7Li component. The Li content and 

isotopic composition of the lower continental crust underlying the Quaternary volcanoes of the Chaîne 

des Puys remains unknown. Because meta-sedimentary granulitic xenoliths are of a small size 

(commonly less than 5 cm), their Li characteristics have potentially been corrupted by magma-

xenolith interdiffusion processes (e.g., Rudnick and Ionov, 2007; Ionov and Seitz, 2008). Recently, 

direct comparison of δ7Li in mineral separates and whole rock in granulite-facies xenoliths from China 

and Australia have shown diffusion-driven kinetic isotopic fractionation during the interactions of 

xenoliths with the host magma (Teng et al., 2008). The xenolith samples showing Li isotopic 

equilibrium between mineral phases are likely to preserve the initial Li isotopic signatures of the lower 

crust. Eight such granulite xenoliths measured by Teng et al. (2008) have δ7Li value extending from -

14 ‰ to +14.3 ‰, with a concentration weighted average of +2.5 ‰ and a simple average of +1.6 ‰ 

±8.9 (1σ). The lavas from the Chaîne des Puys provide a different approach to estimating the δ7Li of 

the lower crust. Our purpose is to use the AFC parameters determined with radiogenic isotopes in 

order to constrain the Li characteristics of the contaminant component.  

 

 Solving the AFC equation for Li concentration and isotopic composition requires knowing (i) the 

bulk solid/liquid distribution coefficient of Li during the fractional crystallization process (DLi), (ii) the 

Li content of the crustal component ([Li]c), and finally (iii) the isotopic composition of the crustal 

component (δ7Lic). It is important to note that any assumption made for one of these parameters allows 

the calculation of the other two parameters by fitting the evolution in the liquid of the Li 
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concentrations and isotopic compositions. In order to fit the data, we use an iterative least squares 

method. It consists of adjusting the parameters of the AFC model function (equations 6a and 15b from 

DePaolo, 1981) so as to minimize the error with the data. This error (traditionally named χ) is defined 

as the sum of squared residuals, which are the difference between the observed values and values 

given by the model. This calculation has been performed for D
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Li ranging from the unrealistic case 

where Li is seen as a perfectly incompatible element (DLi = 0) to a moderately incompatible behavior 

(DLi = 0.4). This range covers the value commonly accepted for DLi during low pressure 

crystallization, which is found to be closed to 0.2–0.3 (Ryan and Langmuir, 1987). We assume that the 

ratio between the assimilation and the crystallization mass (r) for Li is coherent with the results found 

for the 3 radiogenic isotopes systems (r = 0.10). Nevertheless, to illustrate the influence of this 

parameter on the calculated Li characteristics in the contaminant, we repeated our calculation for r = 

0.06 and r = 0.14 (Fig. 9).  

 

 The Li isotopic composition and abundance of the calculated crustal contaminant are illustrated in 

Fig. 9. Each solution represents a best-fitting curve of the evolution of the Li abundance and isotopic 

composition in the Chaîne des Puys volcanic suite. All together, the candidate solutions define the 

solution space of our model. If Li is seen as a perfectly incompatible element, the calculated [Li]c is in 

accordance with the previously estimated value in the lower continental crust (5-14 µg/g see Teng et 

al., 2008 and references therein). In this particular instance, a dramatically low δ7Lic value (< -20 ‰) 

is needed to reproduce the Li isotopic variation observed within the magmatic suite (Fig. 8). A more 

realistic (i.e. less incompatible) behavior of Li during the fractional crystallization process requires a 

higher Li content in the contaminant and therefore a less drastically low δ7Lic value. Ryan and 

Langmuir (1987) have shown that during low pressure crystallization, DLi is closed to 0.2–0.3 and is 

broadly independent of the proportions of mineral phases involved. Therefore, using DLi = 0.3 as a 

reasonable value, it is necessary to assume that [Li]c = 40 µg/g in order to account for the evolution of 

Li concentration and a δ7Lic value of -5‰ is needed to reproduce the Li isotopic variation observed 

within the magmatic suite (Fig. 8). Because of the significant change in the mineral assemblage, 

limited variations of the Li bulk distribution coefficient during the differentiation sequence are 
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possible. This hypothesis implies a combined evolution of DLi with another AFC parameter (r or [Li]c) 

in order to explain the constant slope on the plot of Li vs Th (Fig. 8). Therefore, a realistic model in 

our solution space is defined by a trajectory along the differentiation sequence rather than a single 

point. 
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 5.4 Low δ7Li component: a lower continental crust characteristic or a consequence of kinetic 

fractionation processes? 

 The Li abundance required in our modeling is much higher than the average content in the lower 

continental crust, ranging between 5 and 14 µg/g (Taylor and McLennan, 1985; Rudnick and Presper, 

1990; Shaw et al., 1994; Rudnick and Fountain, 1995; Wedepohl, 1995; Gao et al. 1998). The high Li 

concentration could be related to the sedimentary origin of the lower crustal parts beneath the Chaîne 

des Puys, since shales have relatively high Li (25-110 ppm, Teng et al., 2004, Chan et al., 2006) and 

metamorphic dehydration accounts for less than 50% loss (Teng et al., 2007). Concerning Li isotopes, 

the low δ7Li values calculated in the crustal component are within the range of δ7Li measured in 

equilibrated xenoliths (Teng et al., 2008). In the following sections, we discuss potential 

interpretations to explain the Li composition of our calculated contaminant.  

 

 5.4.1. Li isotopic composition of lower continental crust. 

 Taking the assumption that the calculated contaminant is a direct estimation of the Li composition 

of the meta-sedimentary part of the lower crust, it is interesting to address the question of the Li 

isotopic composition of the protolith. Analysis of various types of sedimentary rocks from different 

continents leads to a range of δ7Li from -3.4 to +4.8‰ (Teng et al., 2004; Chan et al., 2006). The low 

δ7Li values calculated for the crustal component inferred from our AFC modeling are significantly 

lower than any data from sedimentary rocks published so far (Teng et al., 2004). It seems therefore 

unlikely that the low δ7Li values are simply inherited from their protolith. 

 

 High-grade metamorphic rocks from the lower continental crust have undergone a complex thermal 

and fluid history. Among the multitude of processes that may have affected their Li concentrations and 
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isotopic compositions, the first to be considered is progressive metamorphism during burial. Although 

a majority of major and trace element contents in meta-sedimentary xenoliths are consistent with those 

in greywacke-pelitic rocks, high grade metamorphism has significantly modified their large ion 

lithophile element concentrations (e.g., Rb, Sr, Li) (Leyreloup et al., 1977). These xenoliths display 

mineralogical characteristics that are typical for almost anhydrous granulite facies rocks (Downes and 

Leyreloup, 1986). Therefore, it is likely that meta-sediments have released significant amounts of 

water during their metamorphic evolution towards the granulite facies. Numerous studies have 

demonstrated the high mobility of Li during fluid/rock interactions (e.g., Seyfried et al., 1998; Brenan 

et al., 1998; Huh et al., 2001), and the elemental partitioning of Li between mineral and hydrous-fluids 

(D
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Min/Fluid) has been investigated experimentally under a variety of physical conditions (Berger et al., 

1988; Chan et al., 1994; Brenan al., 1998). During metamorphism, the Li partition coefficients 

between crystals and aqueous fluid (DMin/Fluid) drop from relatively high values for clays at low 

temperature (0.35 for chlorites and 1.9 for smectites at 260°C, Berger et al., 1988), to very low values 

for mineralogical assemblages under high grade metamorphic condition (0.16 for pyroxene and 0.008 

for garnet at 900°C and 2 GPa, Brenan al., 1998). Because DMin/Fluid changes as a function of increasing 

pressure and temperature, Li is released into the hydrous fluids during prograde metamorphic 

evolution. Fractionation of Li isotopes during this dehydration process is explained by the preferential 

affinity of the lighter isotope for the most highly coordinated site (Oi et al., 1989). Because Li often 

substitutes for Mg, most silicate minerals contain eight-coordinated Li while in aqueous fluids, Li is 

found in four-coordinate position (Wenger and Armbruster, 1991). Consequently, throughout the 

dehydration process, equilibrium exchange between aqueous-fluids and Mg-silicates should lead to a 

lower δ7Li in the granulitic rocks. The amount of Li depletion and isotopic alteration depends of the 

fractionation factor α ([7Li/6Li]fluids/[7Li/6Li]mineral) and the elemental partition coefficient DMin/Fluid. 

Recent experimental studies have shown that α is closely related to temperature, with greater isotope 

fractionation during low temperature dehydration (Wunder et al., 2006, 2007). Therefore, the effects 

of dehydration on Li isotopic fractionation are directly related to the evolution of temperature and 

pressure conditions during prograde metamorphism. In agreement with this conclusion, negligible 

effects of thermal metamorphism on δ7Li were found for metapelites surrounding the Onawa granite 
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(Teng et al., 2007). The extent of δ7Li modification during regional prograde metamorphism is less 

clear, but is likely related to the amount of dehydration that takes place at low temperatures (Wunder 

et al., 2006, 2007; Marschall et al., 2007). The role of this process to produce the light Li isotopic 

signature in the lower crust is restricted by the limited isotopic fractionation occurring at temperatures 

higher than 300°C (Wunder et al., 2006, 2007; Marschall et al., 2007). 
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 5.4.2. Isotopic fractionation during magmatic processes. 

 Given the atypical Li characteristics of the contaminant involved in our modeling, we will examine 

here whether this signature could be the result of isotopic fractionation either during fractional 

crystallization or during anatexis of the assimilated crust.  

 

 The first potential process to be considered to explain the significant δ7Li variations concomitant 

with the progressive differentiation is that Li isotopes could be affected by mineral-melt fractionation. 

Tomascak et al. (1999) were the first to address the question of mass-dependant equilibrium isotopic 

fractionation process by studying samples from the Kilauea lava lake. The absence of per mil-level 

variations of δ7Li in their samples during olivine fractionation has shown the inefficiency of this 

process at temperatures greater than 1050°C. More recently, direct comparison of olivine phenocrysts 

and whole rock Li isotopes compositions in Hawaiian, Icelandic and Polynesian basalts have 

confirmed the absence of isotopic fractionation (Chan and Frey, 2003; Jeffcoate et al., 2007; Chan et 

al., 2009). The isotopic equilibrium seen between the olivine phenocryst and the whole rock in Puy 21 

clearly supports this conclusion (Fig. 7). Because equilibrium isotope fractionation is temperature 

dependant, this process could be more efficient during the last steps of the fractional crystallization. 

However, in a recent study, Teng et al. (2009) have shown that δ7Li does not correlate with any index 

of granite differentiation, suggesting that Li isotope fractionation during crystallization is insignificant. 

Given that Li is moderately incompatible in most mineral phases along a magmatic suite, it seems 

unlikely that the large variations observed in our samples could be the result of equilibrium isotopic 

fractionation between melt and minerals. 
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 Another process capable of modifying Li isotopes is kinetic fractionation due to mass transport 

processes during melting of the lower crust. At high temperatures, equilibrium isotopic fractionations 

become negligible. Physical kinetic fractionations, on the other hand, are independent of temperature 

and thus can occur during these particular conditions and be preserved as long as the samples cool 

relatively quickly. During the differentiation of basaltic magma within deep reservoirs, Li diffusion 

from host granulites rocks into the magma could fractionate 
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6Li and 7Li by several per mil. Due to the 

higher diffusivity of the lighter isotope, melting of lower crustal granulites concomitant with the 

differentiation could therefore lead to an enrichment of 6Li in the more evolved lavas, precluding the 

need for an exceptionally light Li isotope composition in the calculated contaminant. Whether or not 

these kinetic fractionations are significant will depend upon the time and length scale of the anatexis, 

the diffusion mechanisms, and the initial Li abundance ratio between meta-sedimentary granulites and 

the magma. During the initial steps of the magmatic evolution, Li abundances in the liquids are 

relatively low and the ratio with the estimated concentration in the surrounding lower crust is 

favorable for diffusion of Li from the lower crust into the melt. Because of the incompatible behavior 

of Li, the abundance ratio decreases with continuous differentiation and the amount of the kinetic 

fractionation should largely decrease for the more evolved liquids. Since many parameters are yet 

unknown, it is impossible to estimate unambiguously the extent of Li isotope fractionation that occurs 

during this process. Nevertheless, physical kinetic fractionation during the assimilation of lower crust 

is clearly an alternative process to explain the range of δ7Li values determined for the Chaîne des Puys 

volcanic suite. 

 

6. Conclusion 

 The intraplate volcanic series of the Chaîne des Puys shows large variations of Sr, Nd, Pb and Li 

isotopic ratios associated with progressive differentiation. These data suggest a magmatic evolution 

related to assimilation processes that occurred within magma chambers located in the lower crust. 

Using Sr, Nd and Pb isotopic composition of granulitic xenoliths, we have calculated input parameters 
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for the AFC modeling. We applied these parameters to characterize Li compositions of various 

reservoirs involved in the AFC process:  

 

(i) The mantle end-member: Expressed in the least evolved lavas, the isotopic composition of the 

mantle component has clearly an HIMU affinity. The Li isotope composition of this reservoir has a 

relatively heavy signature (δ7Li ≥ +7‰). This result is in good agreement with previous δ7Li 

measurements of OIB lavas with HIMU affinities (Ryan and Kyle, 2004; Nishio et al., 2005; Chan et 

al., 2009) (Fig. 7). Along with our observations, these results suggest that heavy Li isotope 

compositions of  altered oceanic crust can be reintroduced and partially preserved  in deeper mantle 

regimes. 

 

(ii) The lower crust end-member: Mixing relationships throughout the AFC process along the 

Chaîne des Puys volcanic suite allow us to place constraints on the Li signature of the lower crustal 

end-member. Hence, this calculation gives an indirect method to assess the in situ value of δ7Li in a 

portion of the lower crust beneath the FMC. Using DLi = 0.3 as a reasonable value, it is necessary to 

assume that [Li]c = 40µg/g in order to account for the evolution of Li concentration within the 

magmatic suite. In this particular case a δ7Lic value of -5‰ is needed to reproduce the Li isotopic 

variation observed within the magmatic suite (Fig. 9). The Li abundance of the calculated contaminant 

is higher than previous estimations of the lower continental crust (5 to 14µg/g, Teng et al., 2008 and 

references therein), but consistent with a metapelitic contaminant. The low δ7Li signature in the 

calculated contaminant falls in the range defined by equilibrated lower crustal xenoliths (Teng et al., 

2008). However, it is important to note that the behavior of Li isotopes during assimilation process is 

not yet known and that alternative interpretations cannot entirely be ruled out.  

 

 

 

 

 

22 
 



600 

601 

602 

603 

604 

605 

606 

607 

608 

609 

610 

611 

 

 

 

Acknowledgments 

 We gratefully acknowledge the Programme Dyeti (CNRS-INSU) for financial support. We thank 

R. Rudnick for the editorial handling and two anonymous reviewers for constructive comments. Li 

isotopes in situ data would not have been obtained without the assistance of Denis Mangin, Michel 

Champenois and Claire Rollion-Bard during the SIMS analyses. We acknowledge Marion Thomas, 

Claire Waller and Kristin Bergmann for their valuable comments and Marcel Bohn for his help with 

the electron microprobe. The hospitality of Francis Barrat and his family during the sampling 

expedition has been highly appreciated. 

23 
 



611 
612 

613 

614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 

 
References 

 

Aulbach, S., Rudnick, R. L., and McDonough, W. F., 2008. Li-Sr-Nd isotope signatures of the plume 
and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). 
Contrib. Mineral. Petrol. 155, 79–92. 

Barrat, J.-A., Keller, F., Amosse, J., Taylor, R. N., Nesbitt, R. W., and Hirata, T., 1996. Determination 
of rare earth elements in sixteen silicate reference samples by ICP-MS using a Tm addition and 
an ion exchange chromatography procedure. Geostandards Newsletter 20, 133–139. 

Barrat, J.-A., Blichert-Toft, J., Gillet, Ph., and Keller, F., 2000. The differentiation of eucrites: The 
role of in-situ crystallization. Meteorit. Planet. Sci. 35, 1087–1100. 

Barrat, J.-A., Chaussidon, M., Bohn, M., Gillet, P., Gopel, C., and Lesourd, M., 2005. Lithium 
behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite 
Northwest Africa 479 (NWA 479). Geochim. Cosmochim. Acta 69, 5597–5609. 

Beck, P., Barrat, J.-A., Chaussidon, M., Gillet, P., and Bohn, M., 2004. Li isotopic variations in single 
pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of 
Martian magmas? Geochim. Cosmochim. Acta 68, 2925–2933. 

Beck, P. Chaussidon, M., Barrat, J.-A., Gillet, P., and Bohn, M., 2006. Diffusion induced Li isotopic 
fractionation during the cooling of magmatic rocks: The case of pyroxene phenocrysts from 
nakhlite meteorites. Geochim. Cosmochim. Acta 70, 4813–4825. 

Bell, D.R., Hervig, R.L., Buseck, P.R. and Aulbach, S., 2009. Lithium isotope analysis of olivine by 
SIMS: Calibration of a matrix effect and application to magmatic phenocrysts. Chem. Geol., 
258, 5-16. 

Barruol, G., Deschamps, A. and Coutant, O., 2004. Mapping upper mantle anisotropy beneath SE 
France by SKS splitting indicates Neogene asthenospheric flow induced by Apenninic slab roll-
back and deflected by the deep Alpine roots. Tectonophysics 394, 125–138. 

Barruol, G. and Granet, M., 2002. A Tertiary asthenospheric flow beneath the southern French Massif 
Central indicated by upper mantle seismic anisotropy and related to the west Mediterranean 
extension. Earth Planet. Sci. Lett. 202, 31–47. 

Berger, G., Schott, J., and Guy, C., 1988. Behavior of Li, Rb and Cs during basalt glass and olivine 
dissolution and chlorite, smectite and zeolite precipitation from seawater – Experimental 
investigations and modelization between 50°C and 300°C, Chem. Geol. 71, 297–312. 

Boivin, P., Besson, J.-L., Briot, D., Gourgaud, A., Labazuy, P., de Larouzière, F.D., Livet, M., 
Mergoil, J., Miallier, D., Morel, J.-M., Vernet, G. and Vincent, P., 2004. Volcanologie de la 
Chaîne des Puys, 4ème édition. Parc Naturel Régional des Volcans d’Auvergne, Aydat, 179 p. 

Boivin, P. and Camus, G., 1981. Igneous scapolite-bearing associations in the Chaîne des Puys, Massif 
Central (France) and Atakor, Hoggar (Algeria). Contrib. Mineral. Petrol. 77, 365–375. 

Brenan, J. M., Ryerson, F. J., and Shaw, H. F., 1998. The role of aqueous fluids in the slab-to-mantle 
transfer of boron, beryllium and lithium during subduction: Experiments and models, Geochim. 
Cosmochim. Acta 62, 3337–3347. 

Carignan, J., Hild, P., Mevelle, G., Morel, J., and Yeghicheyan, D., 2001. Routine Analyses of Trace 
Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid 
Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, 
UB-N, AN-G and GH. Geostandards Newsletter 25, 187–198. 

24 
 



655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 

Chan, L.-H., Edmond, J.-M., Thompson, G., and Gillis, K., 1992. Lithium isotopic composition of 
submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 
151–160. 

Chan, L.-H., Gieskes, J.-M. Chen-Feng, Y. and Edmond, J.-M., 1994. Lithium isotope geochemistry 
of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim. 
Cosmochim. Acta 58, 4443–4454. 

Chan, L.-H. and Frey, F. A., 2003. Lithium isotope geochemistru of the Hawaiian plume: Results from 
the Hawaii Scientific Drilling Project and Koolau Volcano. Geochem. Geophys. Geosyst. 4. 

Chan, L.-H., Leeman, W. P., Plank, T., 2006. Lithium isotopic composition of marine sediments, 
Geochem. Geophys. Geosyst. 7, Q06005, doi:10.1029/2005GC001202. 

Chan, L.-H., Lassiter, J. C., Hauri, E. H., Hart, S. R. and Blusztajn, J., 2009. Lithium isotope 
systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle. 
Earth Planet. Sci. Lett.277, 433-442. 

Chaussidon, M. and Robert, F., 1998. 7Li/6Li and 11B/10B variations in chondrules from the Semarkona 
unequilibrated chondrite. Earth Planet. Sci. Lett. 164, 577-589. 

Chauvel, C. and Jahn, B. M., 1984. Nd-Sr isotope and REE geochemistry of alkali basalts from the 
Massif Central, France. Geochim. Cosmochim. Acta 48, 93-110. 

Condomines, M., Morand, P., Camus, G., and Duthou, L., 1982. Chronological and geochemical study 
of lavas from the Chaîne des Puys, Massif Central, France: evidence for crustal contamination. 
Contrib. Mineral. Petrol. 81, 296–303.  

Defant, M. J. and Nielsen, R. L., 1990. Interpretation of open system petrogenetic processes: Phase 
equilibria constraints on magma evolution. Geochim. Cosmochim. Acta 54, 87–102. 

DePaolo, D. J., 1981. Trace-element and isotopic effects of combined wallrock assimilation and 
fractional crystallisation. Earth Planet. Sci. Lett. 53, 189–202. 

Dosso, L., Bougault, H., Joron, J.L., 1993 Geochemical morphology of the North Mid-Atlantic Ridge, 
10°–24°N: trace element–isotopes complementarity, Earth Planet. Sci. Lett. 120, 443–462. 

Downes, H., 1984. Sr and Nd isotope geochemistry of coexisting alkaline series, Cantal, Massif 
Central, France. Earth Planet. Sci. Lett. 69, 321–334. 

Downes, H., 1993. The nature of the lower continental crust of Europe: petrological and geochemical 
evidence from xenoliths. Phys. Earth Planet. Int. 79, 195–218. 

Downes, H., 2001. Formation and modification of the shallow sub-continental lithospheric mantle: a 
review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced 
ultramafic massifs of Western and Central Europe. J. Petrol. 42, 233–250. 

Downes, H. and Dupuy, C., 1987. Textural, isotopic and REE variations in spinel peridotite xenoliths, 
Massif Central, France. Earth Planet. Sci. Lett. 82, 121–135. 

Downes, H. and Leyreloup, A., 1986. Granulitic xenoliths from the French Massif Central: petrology, 
Sr and Nd isotope systematics and model age estimates. Geol. Soc. London, Special Publ. 24, 
319–330.  

Downes, H., Dupuy, C., and Leyreloup, A. F., 1990. Crustal evolution of the Hercynian belt of 
Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central). 
Chem. Geol. 83, 209–231. 

Downes, H., Kempton, P. D., Briot, D., Harmon, R. S., and Leyreloup, A. F., 1991. Pb and O isotope 
systematics in granulite facies xenoliths, French Massif Central: implications for crustal 
processes. Earth Planet. Sci. Lett. 102, 342–357. 

Downes, H., Shaw, A., Williamson, B.J., and Thirlwall, M.F., 1997. Hercynian granodiorites and 
monzogranites, Massif Central, France. Chem. Geol. 136, 99–122. 

Elliott, T., Thomas, A., Jeffcoate, A., and Niu, Y., 2006. Lithium isotope evidence for subduction-
enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568. 

25 
 



703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 
716 
717 
718 
719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 
750 

Flesh, G. D., Anderson, A. R., and Svec, H. J., 1973. A secondary isotopic standard for 7Li/6Li 
determination. Int. J. Mass Spectrom. 12, 265–272. 

Foustoukos, D.I., James, R.H., Berndt, M.E., and Seyfried, J.W.E., 2004. Lithium isotopic systematics 
of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chem. 
Geol. 212, 17–26. 

Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Hu, Y.-K., and Zhao, Z.-D., 1998. 
Chemical composition of the continental crust as revealed by studies in east China. Geochim. 
Cosmochim. Acta 62, 1959–1975. 

Granet, M., Wilson, M., and Achauer, U., 1995. Imaging a plume beneath the French Massif Central. 
Earth Planet. Sci. Lett. 136, 281–296. 

Granet, M., Judenherc, S. and Souriau, A., 2000. Des images du système lithosphère-asthénosphère 
sous la France et leurs implications géodynamiques : l’apport de la tomographie télésismique et 
de l’anisotropie sismique. Bull. Soc. Geol. France 171, 149–167. 

Gourgaud, A. and Camus, G., 1984. Magma mixing at La Nugère (Chaîne des Puys, Massif Central, 
France). Role in trachyandesite genesis. Bull. Volcanol. 47(4), 781–805. 

Guettard, J.-E., 1752. Mémoire sur quelques montagnes de la France qui ont été des volcans. Mém. 
Acad. Roy. Sci., Paris, 27-59. 

Halama, R., McDonough, W. F., Rudnick, R. L., Keller, J. and Klaudius, J., 2007. The Li isotopic 
composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation 
during carbonatite petrogenesis. Earth Planet. Sci. Lett. 254, 77-89. 

Halama, R., McDonough, W. F., Rudnick, R. L., and Bell, K., 2008. Tracking the lithium isotopic 
evolution of the mantle using carbonatites. Earth Planet. Sci. Lett. 265, 726–742. 

Hamelin, C., Chaussidon, M., Barrat, J.-A., Beck, P. and Bohn, M., 2007. Li diffusion and isotopic 
fractionation in olivines crystals. Geochim. Cosmochim. Acta 71, A373–A373.

Hoernle, K., Zhang, Y.-S., and Graham, D., 1995. Seismic and geochemical evidence for large-scale 
mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374, 34–
39. 

Hofmann, A. W., and White, W. M., 1982. Mantle plumes from ancient oceanic crust. Earth Planet. 
Sci. Lett. 57, 421–436. 

Huh, Y., Chan, L.-H., Zhang, L., and Edmond, J. M., 1998. Lithium and its isotopes in major world 
rivers: implications for weathering and the oceanic budget. Geochim. Cosmochim. Acta 62, 
2039–2051. 

Huh, Y., Chan, L.-H., and Edmond, J. M., 2001. Lithium isotopes as a probe of weathering processes: 
Orinoco River. Earth Planet. Sci. Lett. 194, 189–199. 

Ionov, D.A. and Seitz, H.-M., 2008. Lithium abundances and isotopic compositions in mantle 
xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories. Earth 
Planet. Sci. Lett. 266, 77–89. 

Ishizuka, O., Taylor, R. N., Milton, J. A., and Nesbitt, R. W., 2003. Fluid-mantle interaction in an 
intra-oceanic arc: constraints from high-precision Pb isotopes. Earth Planet. Sci. Lett. 211, 221–
236. 

Jannot, S., Schiano, P. and Boivin, P., 2005. Melt inclusions in scoria and associated mantle xenoliths 
of Puy Beaunit Volcano, Chaîne des Puys, Massif Central, France. Contrib. Mineral. Petrol. 
149, 600–612. 

Jeffcoate, A., and Elliott, T., 2003. Tracing recycled Li in the mantle: insights into mantle 
heterogeneities. EOS Trans. AGU 84, V52A-0416. 

Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K. and Brooker, R., 2007. Li isotope 
fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta 71, 202-218. 

Kisakurek, B., Widdowson, M., and James, R. H., 2004. Behaviour of Li isotopes during continental 

26 
 



weathering: the Bidar laterite profile, India. Chem. Geol. 212, 27–44. 751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 
797 

Lentz, R.C.F., McSween, H.Y., Jr., Ryan, J., and Riciputi, L.R., 2001. Water in Martian magmas: 
clues from light lithophile elements in shergottite and nakhlite pyroxenes. Geochim. 
Cosmochim. Acta 65, 4551–4565. 

Leyreloup, A., Dupuy, C. and Andriambololona, R., 1977. Catazonal xenoliths in French Neogene 
volcanic rocks: constitution of the lower crust. Contrib. Mineral. Petrol. 62, 283–300. 

Lucazeau, F., Vasseur, G. and Bayer, R., 1984. Interpretation of heat flow data in the french Massif 
Central. Tectonophysics 103, 99–119. 

Lundstrom, C. C., Chaussidon, M., Hsui, A. T., Kelemen, P., and Zimmerman, M., 2005. Observations 
of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by 
diffusion during mantle melting. Geochim. Cosmochim. Acta 69, 735–751. 

Marschall, H. R., Pogge von Strandmann, P. A. E., Seitz, H.-M., Elliott, T., and Niu, Y., 2007. The 
lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet. Sci. 
Lett. 262, 563–580. 

Maury, R.C. and Bizouard, H., 1974. Melting of acid xenoliths into a basanite: an approach to the 
possible mechanisms of crustal contamination. Contrib. Mineral. Petrol. 48, 275–286. 

Maury, R.C., Brousse, R., Villemant, B., Joron, J.-L., Jaffrezic, H. and Treuil, M., 1980. Cristallisation 
fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, 
France). I. Pétrologie. Bulletin de Minéralogie 103, 250–266. 

Merle, O. and Michon, R., 2001. The formation of the West European Rift: a new model as 
exemplified by the Massif Central area. Bull. Soc. géol. France, 172, 213–221. 

Millot, R., Negrel, P., and Petelet-Giraud, E., 2007. Multi-isotopic (Li, B, Sr, Nd) approach for 
geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Appl. 
Geochem. 22, 2307–2325. 

Moriguti, T. and Nakamura, E., 1998. Across-arc variation of Li isotopes in lavas and implications for 
crust/mantle recycling at subduction zones. Earth Planet. Sci. Lett. 163, 167-174. 

Nishio, Y., Nakai, S. I., Kogiso, T., and Barsczus, H. G., 2005. Lithium, strontium, and neodymium 
isotopic compositions of oceanic island basalts in the Polynesian region: constraints on a 
Polynesian HIMU origin. Geochem. J. 39, 91–103. 

Nishio, Y., Nakai, S. i., Ishii, T. and Sano, Y., (2007). Isotope systematics of Li, Sr, Nd, and volatiles 
in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the 
DUPAL anomaly. Geochim. Cosmochim. Acta 71, 745–759. 

Oi, T., Nomura, M., Musashi, M., Ossaka, T., Okamoto, M., Kakihana, H., 1989. Boron isotopic 
composition of some boron minerals, Geochim. Cosmochim. Acta 53, 3189–3195. 

Ryan, J.G. and Langmuir, C.H., 1987. The systematics of lithium abundances in young volcanic rocks. 
Geochim. Cosmochim. Acta 51, 1727–1741. 

Ryan, J.G. and Kyle, P. R., 2004. Lithium abundance and lithium isotope variations in mantle sources: 
insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and 
other oceanic islands. Chem. Geol. 212, 125–142. 

Rudnick, R. L. and Presper, T., 1990. Geochemistry of intermediate to high-pressure granulites. In 
Granulites and Crustal Evolution (eds. D. Vielzeuf and P. Vidal). Kluwer, Amsterdam, pp. 523–
550. 

Rudnick, R. L. and Fountain, D. M. 1995. Nature and composition of the continental crust: a lower 
crustal perspective. Rev. Geophys. 33(3), 267–309. 

Rudnick, R. L., Tomascak, P. B., Njo H. B., and Gardner, L. R., 2004. Extreme lithium isotopic 
fractionation during continental weathering revealed in saprolites from South Carolina. Chem. 
Geol. 212, 45–57. 

27 
 



798 
799 
800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 

Rudnick, R. L., and Ionov, D. A., 2007. Lithium elemental and isotopic disequilibrium in minerals 
from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction. Earth 
Planet. Sci. Lett. 256, 278-293. 

Seitz, H.-M., Brey, G. P., Lahaye, Y., Durali, S., and Weyer, S., 2004. Lithium isotopic signatures of 
peridotite xenoliths and isotopic fractionation at high temperature between olivine and 
pyroxenes. Chem. Geol. 212, 163–177. 

Seyfried, Jr. W.E., Chen, X., and Chan, L.-H., 1998. Trace element mobility and lithium isotope 
exchange during hydrothermal alteration of seafloor weathered basalt: An experimental study at 
350°C, 500 bars, Geochim. Cosmochim. Acta 62, 949–960. 

Shaw, D. M., Dickin, A. P., Li, H., McNutt, R. H., Schwarcz, H. P., and Truscott, M. G., 1994. Crustal 
geochemistry in the Wawa-Foleyet region, Ontario. Can. J. Earth Sci. 31(7), 1104–1121. 

Sobolev, S.V., Zeyen,, H., Granet M., Achauer, U., Werling, F., Altherr, R. and Fuchs, Y., 1997. 
Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif 
Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics 
275, 143–164. 

Taylor, S. R. and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. 
Blackwell, Oxford. 

Teng, F. Z., McDonough, W. F., Rudnick, R. L., Dalpe, C., Tomascak, P. B., Chappell, B. W., and 
Gao, S., 2004. Lithium isotopic composition and concentration of the upper continental crust. 
Geochim. Cosmochim. Acta 68, 4167–4178. 

Teng, F.-Z., McDonough, W. F., Rudnick, R. L., and Walker, R. J., 2006. Diffusion-driven extreme 
lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. Sci. 
Lett. 243, 701-710. 

Teng, F.-Z., McDonough, W. F., Rudnick, R. L. and Wing, B. A., 2007. Limited lithium isotopic 
fractionation during progressive metamorphic dehydration in metapelites: A case study from the 
Onawa contact aureole, Maine. Chem. Geol. 239, 1-12. 

Teng, F.-Z., Rudnick, R. L., McDonough, W. F., Gao, S., Tomascak, P. B. and Liu, Y., 2008. Lithium 
isotopic composition and concentration of the deep continental crust. Chem. Geol. 255, 47-59. 

Teng, F.-Z., Rudnick, R. L., McDonough, W. F. and Wu, F.-Y., Lithium isotopic systematics of A-
type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the 
continental crust. Chem. Geol., In Press, Corrected Proof. 

Tomascak, P. B., Tera, F., Helz, R. T., and Walker, R. J., 1999. The absence of lithium isotope 
fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. 
Geochim. Cosmochim. Acta 63, 907-910. 

Tomascak, P. B., Langmuir, C. H., le Roux, P. J., and Shirey, S. B., 2008. Lithium isotopes in global 
mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626–1637. 

Villemant, B., 1979. Etude géochimique des éléments en traces dans les séries volcaniques du Massif 
Central. Thèse 3° cycle. Jussieu. 223p 

Villemant, B., Joron, J.-L., Jaffrezic, H., Treuil, M., Maury, R.C. and Brousse, R., 1980. Cristallisation 
fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, 
France). II. Géochimie. Bulletin de Minéralogie 103, 267–286. 

Villemant, B., Joron, J.-L., Jaffrezic, H. and Treuil, M., 1981. Distribution coefficients of major and 
trace elements: fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif 
Central, France). Geochim. Cosmochim. Acta 45, 1997–2016. 

Wagner, C. and Deloule, E., 2007. Behaviour of Li and its isotopes during metasomatism of French 
Massif Central lherzolites. Geochim. Cosmochim. Acta 71, 4279–4296. 

Wedepohl, H.,1995. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–
1239. 

28 
 



846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 

868 

Wenger, M., and Armbruster, T., 1991. Crystal-chemistry of lithium oxygen coordination and 
bonding, Eur. J. Mineral. 3, 387–399. 

Wilson, M. and Downes, H., 1991. Tertiary-Quaternary Extension-Related Alkaline Magmatism in 
Western and Central Europe. J. Petrol. 32, 811–849.  

Wilson, M. and Downes, H., 1992. Mafic alkaline magmatism associated with the European Cenozoic 
Rift system. Tectonophysics 208, 173–182.  

Wilson, M., Downes, H., and Cebria, J.-M., 1995. Contrasting fractionation trends in coexisting 
continental alkaline magma series; Cantal, Massif Central, France. J. Petrol. 36, 1729–1753. 

Wilson, M. and Downes, H., 2006. Tertiary-Quaternary intra-plate magmatism in Europe and its 
relationship to mantle dynamics. In: Gee D.G. and Stephenson R. (eds), European lithosphere 
dynamics. Geol. Soc. London Memoir 32, 167–190. 

Wunder, B., Meixner, A., Romer, R.L., and Heinrich, W., 2006. Temperature-dependent isotopic 
fractionation of lithium between clinopyroxene and high-pressure fluids. Contrib. Mineral. 
Petrol. 151, 112–120. 

Wunder, B., Meixner, A., Romer, R.L., Feenstra, A., Schettler, G., and Heinrich, W., 2007. Lithium 
isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An 
experimental study. Chem. Geol. 238, 277–290. 

Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpe, C., and McDonough, W. F., 2003. Extremely light 
Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted 
oceanic crust. Earth Planet. Sci. Lett. 208, 279–290. 

Zeyen, H., Novak, O., Landes, M., Prodhel, C., Driad, L. and Hirn, A., 1997. Refraction-sismic 
investigations of the northern Massif Central (France). Tectonophysics 275, 99–117. 

29 
 



Figure 1: Simplified geological map showing major features of the Chaîne des Puys
volcanic activity, as well as sample numbers.
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Figure 2: Alkalis versus SiO2 diagram (supplementary data are from Villemant, 1979).
Chaîne des Puys shows a complete compositional range from basalts to trachytes.
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Figure 6: Li isotopes histogram for Mid Oceanic Ridge Basalts (MORB, includes data:
Chan et al., 1992; Elliott et al., 2006; Moriguti and Nakamura, 1998; Nishio et al., 2007;
Tomascak et al., 2008) and Oceanic Island Basalts (OIB, includes data: Chan and Frey,
2003; Ryan and Kyle, 2004; Nishio et al, 2005; Chan et al., 2009 and basaltic lavas
from the Chaîne des Puys).
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Table 1: Major and trace element analyses of Chaîne des Puys samples. BH : basalts and hawaiites; Mu : 
mugearites; Ben : benmoreites; T : Trachytes. 

  PUY21 PUY16 PUY13 PUY20 PUY7 PUY18 PUY1 PUY5 
Type BH BH BH BH BH BH BH BH 

Long (°E) 3°01'39'' 3°02'41''  2°59'59'' 2°58'20'' 2°58'08" 3°03'30"  2°51'39'' 2°52'42'' 
Lat (°N) 45°39'42'' 45°52'40'' 45°52'32'' 45°39'41'' 45°44'21" 45°41'31" 45°50'02'' 45°47'06''

SiO2 47.16 46.04 46.61 47.3 47.57 47.22 48.45 48.03 
TiO2 2.4 2.53 2.39 2.29 2.26 2.32 2.07 2.42 
Al2O3 16.53 16.14 16.76 16.51 15.95 17.35 18.22 17.4 
Fe2O3 12.13 12.6 12.5 11.94 11.84 12.08 11.51 11.97 
MnO 0.19 0.19 0.21 0.18 0.19 0.19 0.21 0.21 
MgO 6.3 6.94 6.19 6.45 7.09 5.16 3.77 4.69 
CaO 9.83 10.46 9.97 9.67 9.98 9.27 8.62 8.43 
Na2O 3.79 3.57 3.32 3.58 3.44 3.79 4.11 4.48 
K2O 1.77 1.72 1.77 1.86 1.66 1.58 2.17 2.19 
P2O5 0.66 0.55 0.55 0.56 0.5 0.66 0.8 0.79 
L.O.I. -0.33 -0.42 -0.16 -0.41 -0.01 0.31 0.02 -0.2 
Total 100.43 100.32 100.11 99.93 100.47 99.93 99.95 100.41 
Mg# 50.7 52.2 49.5 51.7 54.3 45.8 39.3 43.7 

         
Li 6.2 6.4 6.6 7.3 7.4 7.6 8.1 10.5 
Be 1.77 1.81 1.92 1.76 1.76 1.94 2.3 2.48 
Sc 21.4 27 25.5 25.4 28.2 21.5 12.2 15.5 
Co 33.2 41.3 36.3 36.9 36.8 33.8 23.1 28.8 
Ni 59.8 76 45.1 73.1 82 31.8 - 24.6 
Cu 41.8 57.1 49.1 51.6 55.1 40.5 25.7 37.7 
Zn 92 111 107 98 94 101 116 115 
Ga 16.9 19.5 19.5 17.8 18.2 19.6 20.5 20.9 
Rb 37.6 40.5 48.6 40.8 40.1 55.8 54.4 53.9 
Sr 754 691 661 694 717 734 895 845 
Y 26.6 26.9 28.9 27.4 26.7 28.5 32.2 34.2 
Zr 219 220 237 211 225 240 277 316 
Nb 56 66 72 57 70 70 81 90 
Ba 510 542 577 574 565 598 660 719 
La 44.8 44.7 47.7 48.3 47.2 50.9 59.5 64.6 
Ce 90 90 98 90 87 103 118 126 
Pr 10.4 10 10.7 10 9.8 11.5 12.8 14 
Nd 39.6 37.7 40.5 36.4 35.1 42.2 47.9 52.2 
Sm 7.11 7.27 7.65 6.83 6.66 7.98 8.8 9.07 
Eu 2.28 2.28 2.33 2.06 2.01 2.43 2.6 2.79 
Gd 6.48 6.3 6.24 5.97 5.92 6.68 7.15 7.55 
Tb 0.91 0.92 0.94 0.87 0.87 0.99 1.08 1.14 
Dy 5.2 5.05 5.36 5.11 4.98 5.36 5.7 6.27 
Ho 0.98 0.94 1.01 0.97 0.88 1.01 1.1 1.18 
Er 2.51 2.52 2.57 2.51 2.37 2.73 2.9 3.01 
Yb 1.92 2.13 2.32 2.11 2.2 2.26 2.59 2.73 
Lu 0.29 0.31 0.35 0.31 0.34 0.34 0.39 0.39 
Hf 4.85 5.15 5.65 4.77 5.31 5.65 6.15 7.22 
Pb 3.34 3.82 4.14 4.15 4.06 3.7 4.43 5.19 
Th 4.89 5.68 6.06 6.13 6.19 6.57 7.27 8 
U 1.36 1.52 1.56 1.58 1.73 1.64 1.88 2.06 



Table 1: (continued) 

  PUY4 PUY8 PUY9 PUY17 PUY14 PUY11 PUY10 
Type Mu Mu Ben Ben Ben T T 

Long (°E) 2°52'05'' 3°01'39'' 2°59'15'' 3°00'21'' 3°01'08'' 2°57'26'' 2°58'56'' 
Lat (°N) 45°48'31'' 45°47'10'' 45°48'12'' 45°51'38'' 45°52'03'' 45°45'48'' 45°49'05''

SiO2 51.41 53.88 54.31 57.47 57.21 63.53 64.91 
TiO2 1.89 1.5 1.32 1.09 1.08 0.44 0.42 
Al2O3 17.85 18.28 18.49 18.55 18.4 17.71 17.67 
Fe2O3 10.01 8.52 7.78 6.61 6.7 2.85 3.02 
MnO 0.22 0.22 0.21 0.21 0.19 0.22 0.21 
MgO 3.61 2.62 2.31 1.92 2.01 0.5 0.63 
CaO 7.54 6.09 5.27 4.45 4.53 2.04 1.71 
Na2O 4.43 5.25 5.32 5.53 5.6 6.61 6.03 
K2O 2.53 3.04 3.3 3.38 3.53 4.47 4.95 
P2O5 0.7 0.77 0.72 0.57 0.6 0.18 0.16 
L.O.I. -0.22 0.09 0.95 0.45 0.15 1.47 0.25 
Total 99.97 100.26 99.98 100.23 100 100.02 99.96 
Mg# 41.7 37.9 37 36.5 37.3 25.8 29.2 

        
Li 10 12.1 15.3 16.1 16.2 20 20.3 
Be 2.37 3.35 3.54 3.88 3.83 4.67 4.66 
Sc 12.7 8 6.8 5 5.4 2.2 2.1 
Co 19.5 12.9 10.6 6.1 6.3 1 0.7 
Ni 22 10.8 8.5 5.7 6.2 - - 
Cu 25.8 16.8 14.1 11.9 11.8 6.2 4.8 
Zn 99 110 106 95 97 108 71 
Ga 20.1 21.3 22.2 20.1 20.5 20 20.3 
Rb 54.7 81.4 86.4 96.7 90.7 127.6 133.5 
Sr 803 825 819 715 742 458 317 
Y 33.4 37.4 38.1 36 36.9 31.5 29.5 
Zr 332 431 454 466 500 702 701 
Nb 107 120 123 115 135 177 178 
Ba 754 950 1026 1038 1037 1410 1184 
La 66.2 88.1 93.1 91.1 91.3 112.3 91.4 
Ce 131 161 180 163 171 211 176 
Pr 14.3 17.4 18.4 17.7 17.5 21.1 16.5 
Nd 51.5 61.4 64.6 59.3 59.9 68.9 51 
Sm 9.1 10.37 10.68 9.67 9.82 10.31 7.78 
Eu 2.7 2.86 2.95 2.62 2.75 2.6 1.89 
Gd 7.25 8.4 8.25 7.76 7.65 7.18 5.29 
Tb 1.1 1.23 1.22 1.15 1.1 1.06 0.86 
Dy 6.14 6.79 6.8 6.07 6.34 5.67 5.06 
Ho 1.18 1.26 1.28 1.18 1.2 1.11 0.95 
Er 2.94 3.37 3.33 3.42 3.31 3.29 2.7 
Yb 2.87 3.24 3.38 3.22 3.25 3.61 3.03 
Lu 0.42 0.48 0.52 0.47 0.5 0.59 0.45 
Hf 7.49 9.02 9.78 10.22 10.76 12.85 12.89 
Pb 5.58 6.18 5.78 7.86 7.68 7.26 9.16 
Th 8.92 11.5 12.77 13.28 13.51 15.87 18.35 
U 2.22 3.06 3.31 3.49 3.54 4.18 4.85 

 

 



Table 2: concentration (ppm) and isotopic composition of Sr, Nd, Pb and Li for the Chaîne des Puys volcanic rocks. BH : basalts and hawaiites; Mu : 

mugearites; Ben : benmoreites; T : Trachytes. Uncertainty is the 2σ standard deviation. 

 
 Th Sr Pb Nd Li 87Sr/86Sr 143Nd/144Nd εNd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb δ7Li 

PUY21 (BH) 4.9 754 3.34 39.6 6.2 0.703817±7 0.512835±8 + 3.85 19.592 15.651 39.563 +6.7 ±0.2 

PUY16 (BH) 5.7 691 3.82 37.7 6.4 0.703750±7 0.512832±6 + 3.79 19.566 15.635 39.519 +7.2 ±1.2 

PUY13 (BH) 6.0 661 4.14 40.5 6.6 0.703882±7 0.512814±5 + 3.44 19.507 15.641 39.493 +3.4 ±1.2 

PUY20 (BH) 6.1 694 4.15 36.4 7.3 0.703967±7 0.512800±8 + 3.17 - - - +6.3 ±0.9 

PUY7 (BH) 6.2 717 4.06 35.1 7.4 0.703968±6 0.512798±8 + 3.13 19.395 15.645 39.405 - 

PUY18 (BH) 6.6 734 3.70 42.2 7.6 0.703903±7 0.512813±6 + 3.42 19.437 15.645 39.478 +7.4 ±1.1 

PUY1 (BH) 7.3 895 4.43 47.9 8.1 0.703869±7 0.512802±9 + 3.21 19.494 15.643 39.501 +6.0 ±1.1 

PUY5 (BH) 8.0 845 5.19 52.2 10.5 0.703943±7 0.512839±8 + 3.93 19.398 15.645 39.384 +5.3 ±1.1 

PUY4 (Mu) 8.9 803 5.58 51.5 10.0 0.703937±8 0.512811±8 + 3.38 19.455 15.644 39.494 +4.1 ±0.5 

PUY8 (Mu) 11.5 825 6.18 61.4 12.1 0.704083±6 0.512803±8 + 3.23 19.389 15.655 39.402 +4.1 ±1.0 

PUY9 (Ben) 12.8 819 5.78 64.6 15.3 0.704139±7 0.512799±6 + 3.15 19.322 15.665 39.536 +1.8 ±0.6 

PUY17 (Ben) 13.3 715 7.86 59.3 16.1 0.704171±7 0.512781±7 + 2.8 19.364 15.657 39.387 +2.7 ±0.6 

PUY14 (Ben) 13.5 742 7.68 59.9 16.2 0.704181±7 0.512779±8 + 2.76 19.364 15.665 39.400 +5.3 ±0.8 

PUY11 (Tr) 15.9 458 7.26 68.9 20.0 0.704180±8 0.512776±8 + 2.70 19.421 15.663 39.472 +2.2 ±1.0 

PUY10 (Tr) 18.3 317 9.16 51.0 20.3 0.704297±7 0.512766±8 + 2.50 19.324 15.665 39.398 +0.4 ±0.7 
 



Table 3a: Bulk distribution coefficients for Sr and Nd as calculated from log-log diagrams. 

  D (1st step) D (2nd Step) D (3rd Step) 
Sr 0.57 0.9 2.9 
Nd 0.25 0.35 1.1 
Pb 0.23 0.5 0.5 
Th 0 0 0,2 

 

Table 3b: Composition of the components used for the AFC calculations. The geochemical 

characteristics of the crustal component are an average of meta-sedimentary xenoliths (Downes et al., 

1990; 1991). 

  
Initial Liquid Crustal 

contaminant 

Sr 680 236 

Nd 35 32.4 

Pb 3.2 16 

Th 5.1 9.6 
87Sr/86Sr 0.70378 0.71717 

143Nd/144Nd +3.84 -11.3 
206Pb/204Pb 19.59 18.60 
207Pb/204Pb 15.64 15.67 
208Pb/204Pb 39.52 38.99 

 

Table 3c: two different models used to obtain the best fit for the Li system (see text for more details). 

  model 1 model 2 

DLi 0 0.3 

[Li]c (ppm) 10 40 

δ7Lic (‰) -50 -9 
 
 

 

 

 

 




