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3Unidad de Glacioloǵıa y Recursos H́ıdricos, Huaŕaz, Peŕu
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Abstract. Sublimation plays a decisive role in the surface
energy and mass balance of tropical glaciers. During the dry
season (May–September) low specific humidity and high sur-
face roughness favour the direct transition from ice to vapour
and drastically reduce the energy available for melting. How-
ever, field measurements are scarce and little is known about
the performance of sublimation parameterisations in glacier
mass balance and runoff models.

During 15 days in August 2005 sublimation was measured
on the tongue of Glaciar Artesonraju (8◦58′ S, 77◦38′ W) in
the Cordillera Blanca, Perú, using simple lysimeters. Indi-
cating a strong dependence on surface roughness, daily to-
tals of sublimation range from 1–3 kg m−2 for smooth to 2–
5 kg m−2 for rough conditions. (The 15-day means at that
time of wind speed and specific humidity were 4.3 m s−1 and
3.8 g kg−1, respectively.)

Measured sublimation was related to characteristic sur-
face roughness lengths for momentum (zm) and for the
scalar quantities of temperature and water vapour (zs), us-
ing a process-based mass balance model. Input data were
provided by automatic weather stations, situated on the
glacier tongue at 4750 m a.s.l. and 4810 m a.s.l., respectively.
Under smooth conditions the combinationzm=2.0 mm and
zs=1.0 mm appeared to be most appropriate, for rough con-
ditionszm=20.0 mm andzs=10.0 mm fitted best.

Extending the sublimation record from April 2004 to De-
cember 2005 with the process-based model confirms, that
sublimation shows a clear seasonality. 60–90% of the energy
available for ablation is consumed by sublimation in the dry
season, but only 10–15% in the wet season (October–April).

Correspondence to: M. Winkler
(michael.winkler@uibk.ac.at)

The findings are finally used to evaluate the parameterisation
of sublimation in the lower-complexity mass balance model
ITGG, which has the advantage of requiring precipitation and
air temperature as only input data. It turns out that the imple-
mentation of mean wind speed is a possible improvement for
the representation of sublimation in the ITGG model.

1 Introduction

Tropical glacier mass balances provide valuable informa-
tion about climate and climate change in tropical mountain
regions, where long-term climate data is scarce. Tropical
climate is controlled by hygric seasonality and not by an-
nual temperature cycles, as in the mid- and high latitudes.
Since the mass balance of tropical glaciers is very sensitive to
shifts in hygric conditions, they are suitable proxies for trop-
ical climate change beyond the air temperature view (Kaser,
2001; Kaser and Osmaston, 2002). The mountain range of
the Cordillera Blanca, Perú, harbours about one quarter of
the area of all tropical glaciers (Kaser, 1999). Hence, a
greater knowledge of the glacier mass balance signal in the
Cordillera Blanca is vital to understand climate impacts on
tropical glaciers.

The specific net mass balance of a point on the glacier
surface is defined as the sum of accumulation and ablation.
Accumulation is controlled mainly by local solid precipita-
tion, the ablation processes are governed by the surface en-
ergy balance (e.g. Hoinkes, 1970; Kuhn, 1989). Wind drift,
avalanches and calving processes may also contribute but are
neglected for this paper. The surface energy balance is the
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Fig. 1. This picture of the tongue of Glaciar Artesonraju was taken
by M. Winkler in August 2005. The red dots indicate the measuring
sites, abbreviations are described in the text. A detailed map of the
area is given in Juen (2006) and Juen et al. (2007).

sum of all incoming (positive) and outgoing (negative) en-
ergy fluxes on the glacier surface and can be written as

R + QS + QL + QG = F [W m−2]. (1)

R is the net all-wave radiation,QS andQL are the turbulent
fluxes of sensible and latent heat,QG is the subsurface con-
ductive and radiative heat flux andF is the resulting energy
flux at the surface.F represents the energy used for melting,
if the surface temperatureTS=0◦C andF>0. Although pre-
cipitation can fall as rain on the lower sections of the glaciers
in the Cordillera Blanca (Juen, 2006), it is neglected as a pos-
sible energy source because precipitation intensities are weak
and rain temperatures are close to 0◦C.

The Peŕuvian Andes belong to the outer tropics, which are
characterised by one dry and one wet season (Kaser and Os-
maston, 2002). During the dry season (May-September) spe-
cific humidity is low, and the vertical water vapour pressure
gradient over the surface is generally positive downward, re-
sulting in a negativeQL. Sublimation occurs during most
of the time, decreasing the energy available for melting dras-
tically (Wagnon et al., 1999b), the reason being latent heat
of sublimation (LS=2848 kJ kg−1) is 8.5-times higher than
latent heat of fusion (LM=334 kJ kg−1). Therefore, it is cru-
cial to know how much ice sublimates from a tropical glacier,
in order to quantify the surface energy balance, and thus the
mass balance.

Few sublimation measurements have been carried out so
far, probably due to the minor role of sublimation in the sur-
face energy balance on well observed mid-latitude glaciers.
On tropical glaciers onlyWagnon et al. (1999a,b) carried
out intensive research on sublimation. Near the long-term
mean equilibrium line of Glaciar Zongo, Bolivia, they used
lysimeters to directly measure sublimation and calculated
the turbulent fluxes with the bulk method (see e.g. Garratt,

1992). They found thatQL is a major sink in the surface
energy balance and undergoes a significant seasonal varia-
tion. Sublimation rateṡS=QL/LS reach monthly means of
1.1 kg m−2 d−1 in the dry season, dropping to 0.3 kg m−2 d−1

in the wet season, which is comparable to mean subli-
mation rates on alpine glaciers on dry days in summer
(Ṡ≈0.25 kg m−2 d−1; Kaser, 1982). Cullen et al. (2007) used
eddy covariance instrumentation to assessQL during two
days in the dry season on the summit of Kilimanjaro (East
African inner tropics), obtaininġS=1.44 kg m−2 d−1. Model
results of M̈olg and Hardy (2004) show longer-term mean
sublimation rates on Kilimanjaro of 0.92 kg m−2 d−1.

The vertical mass balance profile model, named ITGG
model, developed and applied for the mass balance and
runoff studies in the Cordillera Blanca by the Innsbruck
Tropical Glaciology Group (Juen, 2006) parameterises sub-
limation based on the measurements on Glaciar Zongo be-
cause of lack of data from the Cordillera Blanca. The
Cordillera Blanca is influenced by the Intertropical Conver-
gence Zone and Glaciar Zongo, which is situated 1300 km
farther southeast (16◦ S, 68◦ W), is characterised by more
subtropical climate conditions. Therefore precipitation pat-
terns are assumed to be different and the use of the Glaciar
Zongo data to parameterise sublimation in the ITGG model
for the Cordillera Blanca is not optimal. The findings of this
study will be incorporated in future versions of the ITGG
model.

The current study aims to (1) quantify sublimation rates on
a glacier of the Cordillera Blanca in the dry season by direct
measurements, (2) model the sublimation for different time
scales, (3) improve the surface roughness parameterisation
for tropical glaciers in the bulk method and (4) assess the
way to parameterise sublimation in the ITGG model.

2 Measurement site and methods

As part of a field campaign in August 2005, sublimation
was measured on the tongue of Glaciar Artesonraju (Fig.1)
at 8◦58′ S, 77◦38′ W in the northern part of the Cordillera
Blanca. The areal extent of the glacier is 5.7 km2, reach-
ing from Nevado Artesonraju (6025 m) down to the end of
the short and distinct tongue at 4750 m (Juen, 2006; Winkler,
2007). The mean equilibrium line altitude is about 5150 m.
In 2005, the surface on many parts of the flat tongue showed
an undulated structure (Fig. 2, left), with many penitentes,
measuring a few centimeters to half a meter, and very deep
cryoconite holes (partly more than 1 m). Only sublimation
(no melting) occurred during night-time and in the morn-
ings, which is known to cause high surface albedo (Juen,
2006). This fact is supposed to be due to the sublimation-
induced formation of distinct surface features such as peni-
tentes, which favour multiple reflections of the incoming ra-
diation as well as the settling of dirt in small-scale troughs.
On most afternoons, melting got more and more dominant,
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Fig. 2. The automatic weather station (SEBS) on the tongue of Glaciar Artesonraju in August 2005 when this study was made (left, photo:
M. Winkler), and in July 2004 (right, photo: P. Wagnon). The difference in surface roughness is evident. In August 2005 a rough, undulated
surface with many penitentes and cryoconite holes was dominant, in July 2004 the surface was much smoother.

and water was ponding in the hollows, which decreased the
mean albedo of the tongue. The ponds froze again during
the nights. All these features made the surface geometrically
very rough and the surface albedo followed a clear diurnal
cycle.

Since 2000, a stake network on Glaciar Artesonraju
is maintained by the Unidad de Glaciologı́a y Recursos
Hı́dricos of the Peŕuvian Instituto National de Recursos Nat-
urales (INRENA). An automatic weather station – here re-
ferred to as surface energy balance station (SEBS) – was in-
stalled in March 2004 at an altitude of 4810 m on the tongue
and is maintained by the French Institute de Recherche pour
le Développment (IRD) and the INRENA (Fig. 1 and Fig. 2).
It measures the four components of the radiation balance
(shortwave and longwave incoming and outgoing radiation),
wind speed and direction, air temperature and relative humid-
ity. Additionally, the Innsbruck Tropical Glaciology Group
installed a radiation balance station (RBS) at 4750 m near
the terminus in 2004, where all components of the radiation
balance, as well as ablation (using a sonic ranging sensor)
are measured. The RBS has a specially designed mounting
device with a cardan-like joint to ensure that the radiation
instruments maintain their horizontal position (Kaser et al.,
2004). One automatic weather station next to and one op-
posite the glacier are also operated by the Innsbruck group
since 2004 (Juen, 2006).

To measure sublimation ten transparent, cylindric plastic
pots were used as lysimeters at two sites of different altitudes.
One of them was at the SEBS, where six pots were used. The
sublimation measurements from there can be linked directly
to the SEBS data and the record of the ablation stake at the
SEBS. The remaining four pots were used at 4890 m, next to
the highest stake of the ablation area (HAS). The sublimation
measurements at the HAS can be related to the stake record

at the HAS. Since the tongue of Glaciar Artesonraju is flat
and walking distances are long, the 80 m difference in alti-
tude between the two measuring sites was the maximum that
could be reached within this specific field experiment. This
is most probably too small to derive a characteristic vertical
gradient in sublimation.

There was no visual difference in surface roughness be-
tween the measuring sites at the SEBS and the HAS in Au-
gust 2005, but there can be differences on a seasonal or inter-
annual scale. Figure 2 shows a comparison between the sur-
face at the SEBS during the here presented sublimation mea-
surements (left), and during five days when P. Wagnon car-
ried out sublimation measurements with small scale plastic
pot lysimeters between 21 and 27 July 2004 (cf. Table 1 and
Fig. 3). Surface roughness was much lower in the dry sea-
son of 2004 than in the dry season of 2005. This difference
is also reflected in the different measured sublimation rates.
Consequently, P. Wagnon used smaller roughness lengths for
modelling the surface energy balance for the 2004 period
(cf. Sect. 3.2).

2.1 Measuring procedure

Holes of the size of the pots (diameter = 127 mm,
height = 85 mm) were dug with an ice axe. The pots were
filled with the excavated ice and weighed with an electronic
balance. They were then placed in the holes ensuring that
none of the rims were above the ice. So as to ensure the
surface roughness wasn’t changed. Still, there was no possi-
bility of meltwater flowing into the pots. The pots were left
in the ice for a certain time, then they were weighed again
and placed back in the holes.

The evolving mass difference can be interpreted as the
sublimated mass within the respective time span. For fur-
ther processing of the data, arithmetic means of the mass
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Table 1. Daily totals of measured sublimation [kg m−2 d−1] during field studies in July 2004 (carried out by P. Wagnon) and in August 2005
(this study) at the SEBS and the HAS. The respective day numbers of the year (DOY) are given in brackets. Daily means of wind speedv

[m s−1], specific humidityq [g kg−1] and air temperatureT [◦C] from the SEBS are also given.

2004 SEBS v q T 2005 SEBS SEBS HAS HAS v q T

July (smooth) August P− P+ P− P+

21st (203) 0.07 2.3 4.3 −1.6 2nd (214) 2.22 3.57 5.0 2.5 −0.1
22nd (204) 0.42 2.9 4.0 −1.9 3rd (215) 1.92 1.79 5.6 3.8 −0.2
23rd (205) 0.64 3.0 3.7 −1.6 4th (216) 0.58 0.94 3.2 4.5 −1.1
24th (206) 0.85 4.5 4.3 −0.4 5th (217) 0.98 0.52 4.4 5.2 0.9
27th (209) 0.84 4.1 4.5 −0.9 6th (218) 1.10 0.93 5.7 4.7 −0.2

7th (219) 0.86 0.74 4.7 4.4 −0.6
9th (221) 0.68 1.77 0.55 1.53 3.4 4.5−0.6
10th (222) 1.24 3.37 0.67 1.83 3.5 4.5 0.1
11th (223) 1.86 4.75 2.66 4.81 4.5 3.1−0.4
17th (229) 2.97 5.5 2.4 −0.3
18th (230) 2.13 5.7 4.3 −0.2
19th (231) 0.95 4.9 5.0 0.4
20th (232) 0.35 3.6 4.6 −0.1

changes of all available pots were calculated. As measure-
ments affected by precipitation were excluded, an increase
in mass can only be due to vapour deposition on the ice sur-
face (hoar), which occurred only sometimes before dawn.
Snow drift has never been observed during the measure-
ments, mainly because of low wind speeds. Incidentally,
with this method of measuring it is not possible to distinguish
between sublimation, defined as the direct transition from ice
to vapour, and evaporation following preceded melting. As
there is no difference in energy consumption and mass trans-
port between the two processes, henceforth the term subli-
mation will be used for both.

Two measurement series of sublimation were obtained.
One 10-day series with measurements at the SEBS and the
HAS with a resolution of 2 h during daytime, and one 5-day
series measured at the SEBS with a resolution of 30 min dur-
ing daytime. In late afternoon the pots were emptied, refilled,
weighed, inserted into a new hole, and left untouched until
the next morning. Hence, it was possible to calculate a mean
night-time sublimation rate. Some gaps in the sublimation
record occurred because of short showers or when the pots
were renewed. During the 10-day series there is only one
gap longer than 1 h in the record. It was caused by snowfall
during the night from 8 to 9 August (day of year 220–221).
During the 5-day series there is no gap longer than 1 h. The
30-min resolution data provided by the SEBS, were without
gaps during the whole period of investigation.

Not all parts of the glacier surface are well represented by
the smooth ice in the pots. To overcome this problem, peni-
tentes (5–12 cm) from the surroundings were broken off and
put on top of half of the samples during three full days of
the 10-day series. By doing this, the contact surface for tur-
bulent exchange was increased approximately by 50–100%.

Sublimation rates increased significantly, and measurements
“without penitentes” (P−) had to be processed separately
from the measurements “with penitentes” (P+). The P−-
measurements can be considered as a lower and the P+-
measurements as an upper limit for sublimation on Glaciar
Artesonraju during the dry season.

2.2 Assessing roughness lengths and surface emissivity
with a process-based mass balance model

To solve Eq. (1) the surface energy balance module of the
mass balance model described by Mölg et al. (2008) was
used. It allows the calculation ofF using air temperature,
relative humidity and wind speed as essential inputs. Short-
wave incoming (SWin) and outgoing (SWout) as well as long-
wave incoming (LWin) and outgoing (LWout) radiation (the
components ofR) can be parameterised or measured. In this
study SWin and SWout were taken from the SEBS record.
TheLWout-record of the SEBS regularly exceeds 320 W m−2

during daytime, especially under clear-sky conditions when
direct solar radiation warms the sensors. This corresponds
to a black body temperature of more than 274 K, which is
not possible on ice. The comparison with theLWout data of
the near RBS shows that the SEBS longwave radiation mea-
surements suffer from the window heating offset (Obleitner
and De Wolde, 1999). As the longwave data from the RBS
seem to be representative for the sublimation measurement
(nearly same altitude, same glacier surface structure, same
shading effects) and do not exhibit this offset, the model
inputs forLWin andLWout were taken from the RBS. The
SWin records from both stations differ negligibly, butSWout
data often differ considerably when the transient snow line is
between the two stations. As sublimation was measured near
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Fig. 3. Measured and modelled sublimation and modelled melting on Glaciar Artesonraju. On the middle and the lower graph daily totals of
sublimation for the SEBS during four days in July 2004 (measured and modelled by P. Wagnon, model description in Wagnon et al. (1999a,
2001)), and for the SEBS and the HAS from August 2005 (this study) are shown. The uppermost graph depicts daily means of wind speed
and specific humidity at the SEBS for the respective days. Note that days without bars are days without data from sublimation measurements,
and not without sublimation. The axes corresponding to melting are on the right and are scaled by the factorLS/LM=8.5 compared to the
axes for the sublimation values on the left (so energy needed for sublimation and melting are comparable). If the solid blue and red lines are
above the dashed, sublimation consumes more energy than melting, and vice versa. The difference between smooth (P−) and rough (P+)
surface conditions is explained in the text.

the SEBS, shortwave radiation data was taken from there.
QG is solved from the temperature difference of the two up-
permost model layers, and the turbulent fluxesQS andQL

are calculated using the bulk method, which is based on
the Monin-Obukhov similarity theory (e.g. Garratt, 1992).
Within this theory, roughness lengths for momentum (zm),
temperature and moisture are defined. The latter two are
almost equal (Andreas, 1987) and Mölg and Hardy (2004)
made no differentiation for Kilimanjaro. Both together are
labelled as scalar roughness lengths and are signified byzs

in the following.

Sublimation was measured with the lysimeters and total
point ablation is known from the daily visits of the stakes at
the SEBS and the HAS. The surface energy balance module
should simulate both, sublimation and ablation, correctly. It
was optimised by finding suitable roughness lengths, which
can hardly be measured directly. The model was run in 30-
min time steps, and three criteria were defined for the best
combination of the roughness lengths:

I The total sublimation of the measuring period should
be modelled correctly. For this purpose, the cumula-
tive sums of measured and modelled sublimation were

www.the-cryosphere.net/3/21/2009/ The Cryosphere, 3, 21–30, 2009
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calculated(
∑

Smeasand
∑

Smod, respectively). For the
most appropriate pair ofzm and zs the relative differ-
ence1, defined as

1 =

∑
Smeas−

∑
Smod

∑
Smeas

× 100%, (2)

is minimal.

II The measured and calculated daily sublimation sums
should agree. Therefore, the root mean square dif-
ference (RMSD1d ) between the two was calculated.
For the ideal combination of the roughness lengths
RMSD1d is minimal.

III The high resolution measurements should be met by the
model. For this purpose, the root mean square differ-
ence between the 30-min values of the model and the
measurements (RMSD30 min) was calculated and is min-
imal for the best pair ofzm andzs .

The emissivity coefficient of the ice surface (ǫ) was not mea-
sured directly. It was varied from 0.98 to 1 in the model.ǫ

was set to the value leading to the best fit of the stake mea-
surements and the modelled total ablation.

2.3 The vertical mass balance profile model (ITGG model)

In the Cordillera Blanca long-term records are only avail-
able for temperature and precipitation (1953 to 1996). The
monthly resolution is, however, too low as input for complex
mass balance models. Temperature-index models also fail,
because air temperature variations cannot properly account
for ablation on tropical glaciers (e.g. Kaser and Osmaston,
2002).

The ITGG model thus was designed to meet both, the lim-
ited data availability and the mass balance characteristics of
tropical glaciers. It was extended from a vertical mass bal-
ance profile model (Kaser, 2001) by Juen (2006, 2007). In or-
der to represent all humidity-related energy and mass fluxes
they are parameterised by combining monthly precipitation
from the Cordillera Blanca with short term energy balance
information from Glaciar Zongo. One of these parameteri-
sations concerns the distribution of the available energy for
melting and sublimation, which is expressed by

f =
LSS

LSS + LMM
, (3)

wheref is the proportion of energy used for sublimationS

(in [kg]) of the whole energy used for ablation (melting plus
sublimation in [kg],M+S).

In this study the precipitation record of Llupa was used to
assess monthly values off . Llupa is situated near Huaraz
at 3350 m a.s.l., 60 km south of Glaciar Artesonraju. The
characteristics of precipitation in Llupa and on the glacier
are assumed to be comparable, because both sites are west

of the main Cordillera Blanca mountain range, the dominat-
ing meteorological divide (Kaser et al., 2003). The limits for
f (see below) in the ITGG model (fITGG) were defined on
the basis of Wagnon et al. (1999b), with small adjustments
because Llupa has much lower maximum precipitation rates
than Glaciar Zongo.fITGG=0.9 was chosen for a very dry
month with no precipitation, andfITGG=0.1 for a wet month
with 150 mm of precipitation.fITGG of a certain month was
calculated with Eq. (4) using the respective monthly precipi-
tationP and is valid for the whole glacier area.

fITGG =
0.1 − 0.9

150 mm
P + 0.9 (4)

For months with precipitation rates exceeding 150 mm, the
value was set toP=150 mm.

As Wagnon et al. (1999b) conducted their study on Glacier
Zongo under slightly different climatic conditions (see Intro-
duction), the reliability of the results gained by this approach
is not optimal. One of the aims of the current study is to
assess the parameterisation offITGG.

3 Results and discussion

3.1 Measurement results

Field measurements show that daily sublimation sums
range from approximately 1−3 kg m−2 d−1 (mean:
1.4 kg m−2 d−1) for smooth (P−) to 2 − 5 kg m−2 d−1

(mean: 3.5 kg m−2 d−1) for rough (P+) conditions (Table 1
and Fig. 3).

Hourly maxima during daytime reach 0.28 kg m−2 h−1 for
P− and 0.40 kg m−2 h−1 for P+, while night-time sublima-
tion is generally reduced. Mean values are mainly lower
than 0.05 kg m−2 h−1, with three nights reaching means of
0.1−0.15 kg m−2 h−1 for P−. For P+ night-time sublima-
tion is 0.05−0.2 kg m−2 h−1, so the difference to P− during
night-time is smaller than during daytime. This is assumed
to be due to generally lower wind speeds during the nights,
causing lower turbulent fluxes (cf. Fig. 4). Generally, the
50–100% surface increase from P− to P+ cannot describe
the whole difference in sublimation. Also turbulence is en-
hanced by the increase in surface roughness from P− to P+,
which yields higher sublimation rates.

An extensive error estimation of the sublimation measure-
ments was done by Winkler (2007). The distribution function
of the sublimation measurements is almost perfectly Gaus-
sian. There are several sources of error, four of which have
been quantified.

1. Inaccuracy of the balance:δm∗=0.2 g (manufacturer in-
formation).

2. Too high values because of liquid water or hoar on the
outer side of the pots or too low values because of mass
loss due to the handling with the pots:δm∗∗=0.1 g (au-
thors’ estimation).

The Cryosphere, 3, 21–30, 2009 www.the-cryosphere.net/3/21/2009/



M. Winkler et al.: Sublimation on tropical glaciers 27

214 216 218 220 222 224 226 228 230 232 234

day of year 2005

0

0.1

0.2

0.3

0.4

0.5

k
g

 m
-2

 h
-1

sublimation measured

sublimation modelled

220 222 224

DOY 2005

0

0.1

0.2

0.3

0.4

0.5

k
g

 m
-2

 h
-1

 smooth      P-  rough       P+

Fig. 4. Sublimation rates during the measuring series at the SEBS
for P− (left) and P+ (right). The model values (red) were obtained
by takingzm=2.0 mm andzs=1.0 mm for P− andzm=20 mm and
zs=10 mm for P+. They are averaged in correspondence with the
temporal resolution of the measurements.

3. Inaccuracy of the cross section of the pots due to their
plasticity: δA=226 mm2 (authors’ calculation).

4. Inaccuracy of the time measurement between to weigh-
ings of the same pot:δt=2 min (authors’ estimation).

For the night-time measurements none of these errors was
relevant because of the long time period and the consider-
ably high mass differences of the pots between evening and
morning. For this case, all the errors summed up to a relative
error of only 2.6%. During daytimeδm∗ andδm∗∗ turned out
to be the most important sources of error. The 30-min reso-
lution measurements during the 5-day period at the SEBS
were affected most (hereδt played a role as well). For this
period, all the errors propagated to a relative error of 27.7% ,
because the time span between two measurements was short
and sublimated mass was low. 6.9% was the relative error
of the 2 h-resolution measurements during the 10-day series,
and the mean temporally weighted relative error in the subli-
mation rates for all day- and night-time measurements taken
together was only 5.6%.

Other sources of error, which have not been considered
in the calculations above, are the possible disturbance of the
subsurface fluxes by the pots, and the structural differences
between the undisturbed ice at the surface and the excavated
material in the pots. Both of them are very hard to quan-
tify, but they are considered to be at the order of the four er-
rors mentioned. The overall relative error, which sums up all
mentioned sources of error, is not expected to exceed 10%.

3.2 Optimal results forzm, zs andǫ

After various model runs with different roughness length
combinations, criterion (I) turned out to be most sensi-
tive to them, and it finally led to the decision of which
zm and zs to take. Using criterion (II) or (III) the
model showed good results for many different rough-
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Fig. 5. Measured and modelled cumulative sublimation and abla-
tion for the SEBS and the HAS. The gaps of the sublimation records
refer to the gaps of the measurement series. Therefore, the subli-
mation values do not represent the actual sum of sublimated mass
during the respective period. Note the different axis scaling, which
was chosen to balance the figure graphically.

ness length combinations and therefore only played a mi-
nor role in decision making. Criterion (III) indicated
that the correlation between model and measurement was
better for P− (RMSD30 min=0.021 kg m−2 h−1) than for
P+ (RMSD30 min=0.04 kg m−2 h−1). For P− conditions
zm=2.0 mm andzs=1.0 mm led to the smallest1 for both
sites (1<6%). The best solution for P+ conditions at SEBS
and HAS waszm=20.0 mm andzs=10.0 mm, one order of
magnitude greater than for P− (1<17%). Figure 5 shows
the good agreement of measured and modelled cumulative
sublimation (thick lines).

The ratiozs/zm equals 0.5 in both cases, and so the sur-
face counts as a ”rough” surface according to Andreas (1987,
his Fig. 8). The roughness lengths for P− are about the
same as other authors found for glacier surfaces (e.g. Denby
and Snellen, 2002; Cullen et al., 2007). For tropical Glaciar
Zongo Wagnon et al. (1999a) do not distinguish betweenzm

and zs . They assess different roughness lengths for every
month ranging from 2-5 mm during the wet season to 10–
30 mm during the dry season. These results correspond well
with the values for P− and P+ conditions found in this study.

In July 2004, when P. Wagnon measured sublimation on
Glaciar Artesonraju for five days, he also modelled the sur-
face energy balance using a roughness length of 0.3 mm.
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the SEBS.

This seems to be reasonable as surface features were much
smoother than in August 2005 (see Fig. 2). The results of
his measurements and the modelling are shown in Table 1
and Fig. 3, and a model description is given in Wagnon et al.
(1999a, 2001).

ǫ is a very sensitive parameter for derivingTS from LWout
measurements. (Sensitivity studies showed that for the RBS
data of 2005 a 1%-change fromǫ=1 to ǫ=0.99 results in
melting conditions (TS=0◦C) during 59% of the time, in-
stead of only 37%.)ǫ=0.998 turned out to be best for mod-
elling the ablation at the SEBS,ǫ=0.999 for the HAS. Fig-
ure 5 shows the modelled total ablation (thin lines). The
agreement with the stake records is acceptable, considering
that the reading accuracy of the stakes may be as large as
1 cm, which corresponds to about 9 kg m−2 of ablation.

3.3 Results for sublimation and melting from the process-
based model

The high resolution model results for the sublimation rates
are shown in Fig. 4 (red lines). In contrast to the measure-
ments, the modelled values have no gaps. The shape of the
daily cycle (low values during night-time and high values
during daytime) is reproduced well by the model, but am-
plitudes are often underestimated. Possibly, the stability cor-
rection used in the model (seeMölg and Hardy, 2004) is not
accurate enough during stable night-time layering or the am-
plitude of the measuredTS (which is a model input) is too
small. On a daily timescale these uncertainties balance to a
large extent (Fig. 3).

Daily melting rates vary at least as much as daily sublima-
tion rates (Fig. 3). During the field campaign there were days
with no melting at all, and others with melting rates of more
than 20 kg m−2 d−1. This stands in good agreement with the

observation of days with hardly any melting and days with
extensive meltwater ponding on the flat parts of the surface.
On 60% of the days more energy is consumed by sublima-
tion than by melting under P− conditions. When penitentes
are developed (P+), daily melting rates are even decreased
by 10-12% and sublimation is doubled. Normally more than
twice of the energy used for melting goes into sublimation at
this point.

Figure 3 and Table 1 also show the daily means of wind
speedv and specific humidityq. There is a striking corre-
lation between measured sublimation rates and the combina-
tion of v andq. High sublimation corresponds well with low
specific humidity (DOY 214, 215, 223, and 229), especially
if wind speeds are relatively high (DOY 214, 215, 229). On
the other hand, relatively high specific humidity in combina-
tion with low wind speeds (DOY 203–205, 216, 221, 222,
and 232) causes low sublimation. Daily means of air temper-
ature alone cannot explain sublimation at all (see Table 1).

To assessf on a monthly scale, the surface energy balance
was modelled from April 2004 to March 2005 and from Au-
gust 2005 to December 2005 (17 months).f is very sensitive
to the change of surface temperature (TS) from 0◦C to sub-
freezing, i.e. over the diurnal cycle. Generally, atTS=0◦C,f
is high, when sublimation is high. ForTS<0◦C no melting is
possible andf is always maximal, even though sublimation
rates are very low.

Monthly values off show a distinct seasonality with high
values during the dry season and low values during the wet
season (Fig. 6, gray lines).f ≥0.4 only occurred from June to
September, and it is always higher for P+ than for P− condi-
tions, because higher roughness increases turbulence which
enhances sublimation. Penitentes and surface roughness are
normally higher in the dry season than in the wet season. Re-
spectively, representative values off for the whole ablation
area of Glaciar Artesonraju are probably most realistic, when
taking the P− values in the wet season (fP −≈0.1) and the P+

values in the dry season (fP +≥0.7).

3.4 Results for the ITGG model

Like the monthlyf -values calculated with the process-based
mass balance model (fP − andfP + ), fITGG also shows a sea-
sonal variation (Fig. 6). Absolute values offITGG during the
core dry season of 2004 and the wet season are similar to
the mass balance model. The biggest differences occur dur-
ing the transition periods in April and May 2004 and from
September to November 2005. According tofITGG 70–90%
of the available energy goes into sublimation during these
periods, whereasfP − andfP + only range from 0.1–0.5.

This is partly because the limits forfITGG (0.1 and 0.9,
respectively) are based on Glaciar Zongo data (Wagnon
et al., 1999b), where rapid transitions from clear-sky con-
ditions to shower-like precipitation are more likely than in
the Cordillera Blanca. During months with low mean air hu-
midity, when sublimation is enhanced andf is high, notable
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precipitation might fall on Glaciar Zongo. In the Cordillera
Blanca, when monthly precipitation exceeds a certain thresh-
old, mean air humidity is supposed to be generally high re-
sulting in lowf -values. This explains, to some extent, why
fITGG, which is biased by the Glaciar Zongo conditions, is
higher thanfP − andfP + during the wet season. Moreover,
fITGG is designed to represent the whole glacier, whilefP −

andfP + are modelled for a point on the tongue. In reality
there is a high spatial variability in surface roughness.

Sublimation andf are not only humidity-related, but also
wind speed plays a particular role in forcing the turbulent
fluxes. Figure 6 shows the monthly mean wind speed (v) at
the SEBS. There is a slight seasonality as well, with higher
values during the dry season and lower values during the wet
season. Hence, a simple approach including wind speed in
the ITGG parameterisation looks as follows

fITGG (windscaled)= fITGG ×
v

5 m s−1
. (5)

fITGG (windscaled) is plotted in Fig. 6 demonstrating the
strong agreement withfP − andfP + . Unfortunately, there is
no long term record for wind speed available in the Cordillera
Blanca, but the results shown in Fig. 6 are encouraging. Fur-
ther studies may, e.g., explore downscaled reanalysis wind
data for a better parameterisation offITGG.

4 Conclusions

The importance of sublimation for the surface energy and
mass balance on tropical glaciers during the dry seasons was
confirmed by direct measurements using simple plastic pots
as lysimeters. Low specific humidity and moderate wind
speeds efficiently remove water vapour from the viscous sub-
layer over the glacier, resulting in a high turbulent latent heat
and moderate mass flux from the surface. As latent heat of
sublimation is 8.5-times higher than latent heat of fusion this
process cools the surface and reduces the energy available for
melting very efficiently and, as a net effect, decreases abla-
tion.

Surface roughness strongly increases turbulence, surface
area and, thus, sublimation. During the time of investiga-
tion the tongue of Glaciar Artesonraju was well-structured,
showing many penitentes. A differentiation between rough
and smooth conditions was necessary and led to the defini-
tion of a lower and an upper limit of sublimation (P−, P+).
In order to extend the measurement series from 15 days to 17
months, a process-based mass balance model was optimised
by the sublimation measurements. The parameterisation of
surface roughness on tropical glaciers could be reassessed
and results from other studies were verified. Surface rough-
ness lengths used in the bulk method (for momentum and
scalars) are variable within one order of magnitude, depend-
ing on surface structure.

Sublimation consumes 10–15% of the total energy avail-
able for ablation during the wet season and 60–90% dur-

ing the dry season. These results confirm the assumptions
made for the lower complexity mass balance model ITGG,
which is motivating because within the framework of the
ITGG only precipitation records were used to parameterise
the mentioned seasonality in sublimation. During the tran-
sition periods between dry and wet seasons further improve-
ments could be reached by including wind speed in this pa-
rameterisation.
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