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a b s t r a c t

Growth strata are used to determine the kinematics of synsedimentary structures such as faults. Classical
methods of analysis such as thickness versus throw plot consider that the available space created by fault
slip in the hanging wall of faults is instantaneously filled up by sediments. This has lead many previous
works to identify a cyclic activity for growth faults. Here we perform a careful analysis of the variation of
strata thicknesses on each side of a very well documented normal growth fault in the Niger delta. We
show that these thickness variations are induced by the alternation of sedimentary processes during
continuous fault slip. Suspended-load processes induce either uniform or slightly variable thickness of
a large majority of mudstone layers. Bedload processes result in a preferential thickening of sand layers in
the hanging wall. These high quality data thus provide strong grounds for doubting the polycyclic growth
diagnosed for some faults at the scale of sedimentary cycles and supports the notion that fault
displacement rates can be very well behaved. Our study emphasizes the important conclusion that stable
fault growth, and related displacement rates, can appear to be punctuated when viewed at the scale of
sedimentary cycles. It follows that care should be taken when attempting to derive displacement rates on
temporal scales equivalent to those of alternating sedimentological cycles.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since growth strata are defined as strata with thickness varia-
tions across faults, a synsedimentary fault can be defined as a fault
for which incremental displacements have created a fault scarp at
the Earth surface. Each incremental displacement of the fault is
therefore synchronous with the sedimentary processes of erosion,
transport, and sedimentation. Consequently, the degree to which
fault evolution induces disturbances of the surface processes is
controlled by the ratio between the height of the incremental fault
scarp versus the nature and magnitude of the operating sedimen-
tary processes (e.g. volume, thickness, velocity, turbulent/laminar
flow, suspended/traction load).

Synsedimentary normal faults (Fig. 1a) originate at crustal scale
due to long-term plate movements and at smaller scales in relation
with the spreading of a sedimentary cover on a décollement layer
(e.g. Edwards, 1976; Price, 1977; Coleman and Prior, 1978; Crans
et al.,1980; White et al.,1986; Jackson and White,1989; Childs et al.,
1993; Doglioni et al., 1998; Dawers and Underhill, 2000; Morley
et al., 2000; Back et al., 2006).
x: þ33 2 51 12 52 68.
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In the case of gravity-driven tectonics, the long-term behaviour
of normal faults over several millions of years is controlled by (1)
the evolution of the nature and quantity of the sediment supply and
its implications for sedimentary loading and overpressure (e.g.
Bruce, 1973; Vendeville and Cobbold, 1988; Ge et al., 1997; Mauduit
and Brun, 1998; Gaullier and Vendeville, 2005), (2) the rheology
and thickness of the décollement layer (shale versus salt for
example) (e.g. Dula, 1991; Childs et al., 1993; Hardy and McClay,
1999; Vendeville, 2005) and (3) the topography of the basement
(regional and local slope) (e.g. Crans et al., 1980; Koyi, 1991; Koyi
et al., 1993; Mauduit et al., 1997; Loncke et al., 2006).

At higher frequencies of thousands to hundreds of thousand
years the interactions between fault evolution and sedimentary
process still remains less understood partly because, at these time
scales, it is difficult to assess one independently of the other.
However, numerous studies have considered that synsedimentary
faults can react immediately to sedimentary loading variations. In
this view, an increase of sedimentation rate induces an increase of
fault displacement, and a decrease of sedimentation rate (i.e. of
sedimentary loading) can lead to fault quiescence (e.g. Lowrie,
1986; Cartwright et al., 1998; Bhattacharya and Davies, 2001;
Brown et al., 2004).

The main objective of the present work is to deconvolve the very
high-resolution temporal and vertical evolution of the throw on
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Fig. 1. Signification and construction of a theorical Th–z plot curve: a) Cross-section of a synsedimentary normal fault with growth strata in the hanging wall. ZHW 1–5 and ZFW 1–5
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a well documented normal fault in order to understand the
evolution of the long-term to short-term fault movement and the
influence of the nature of sedimentary processes (suspended-load,
bedload, erosion) on the geometry of the syntectonic layers.
We show that high-frequency variations of the growth strata
thicknesses across the studied fault are primarily controlled by
variations of sedimentary processes and dynamics.
2. Determining fault kinematics from growth strata:
an overview

The analysis of the variation of growth strata thickness across
a synsedimentary structure allows in principle the reconstruction
of its kinematics. For example, the Expansion Index (EI) established
by Thorsen (1963) measures the ratio of thickness variation
between the layers on the footwall and in the hanging wall of
a synsedimentary normal fault (Fig. 1a):

EI ¼ HWt
FWt

(1)

with HWt and FWt corresponding to the thickness of the layers in
the hanging wall and the footwall respectively. EI > 1 represents
a thickening in the hanging wall. Thus, assuming that sedimenta-
tion rate is constant over the footwall, positive and variable values
of EI (i.e. increase or decrease of HWt relative to FWt) can be
directly related to variations of the fault movement rate (Hardin
and Hardin, 1961; Thorsen, 1963).

The Th–z plot (Fig. 1a, b) is a graphical method which simply
consists in plotting, for each horizon, the vertical throw Th of
a stratigraphic marker versus its depth z in the hanging wall
(Tearpock and Bischke, 1991; Bischke, 1994) (Fig. 1a, b). This kind of
plot generally shows alternation of segments of positive, null and
negative slopes which directly reflect variations in the degree of
thickening of the strata towards the hanging wall (Bischke, 1994;
Mansfield and Cartwright, 1996; Cartwright et al., 1998; Castelltort
et al., 2004a, b; Pochat et al., 2004; Back et al., 2006; Baudon and
Cartwright, 2008) (Fig. 1b).

If the sedimentation rate in the hanging wall always exceeds the
fault displacement rate (‘‘fill-to-the-top’’ model) the Th–z plot can
be used to constrain the displacement history of synsedimentary
faults (Tearpock and Bischke, 1991; Bischke, 1994; Mansfield and
Cartwright, 1996; Cartwright et al., 1998). Thickening of strata
towards the hanging wall indicates a period of fault activity
(positive slopes, between Z5–Z4 and Z3–Z2 in Fig. 1b), non-thick-
ened intervals indicate periods of fault quiescence (null slopes,
between Z2 and Z1 in Fig. 1b), and negative slopes (between Z4 and
Z3 in Fig. 1b) may indicate fault linkage (Tearpock and Bischke,
1991; Bischke, 1994; Mansfield and Cartwright, 1996; Cartwright
et al., 1998) or fault inversion (Castelltort et al., 2004b). Castelltort
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et al. (2004b) demonstrated that the slope ai in a Th–z plot, in the
‘‘fill-to-the-top’’ model, is another expression of EI (Thorsen, 1963)

with ai ¼ 1� EI�1: (2)

In this way, ai ¼ 0 corresponds to EI ¼ 1, ai > 0 corresponds to
EI > 1 and ai < 0 corresponds to EI < 1. The additional information
displayed by Th–z plots which lacks in the Expansion Index method
(Thorsen, 1963) is the absolute magnitude of vertical displacement
on the considered fault.

This type of analysis has been extended at larger scales and
completed with additional absolute or relative dating in several
studies. Some of these studies use expansion or growth index (e.g.
Gibbs, 1983; Beach, 1984) which compound fault and sedimenta-
tion rates i.e. they are dependent both on potential changes in the
fault displacement rate and on changes in sedimentary processes
and in stratigraphic cycles. Others studies (e.g. Nicol et al., 1997,
2005; Meyer et al., 2002; Walsh et al., 2002; Mouslopoulou et al.,
2009) look at displacement versus age (or time) at temporal scale
greater than high-frequencies stratigraphic cycles and sedimentary
processes i.e. regardless of sedimentation processes and strati-
graphic cycle. At such scale of observation, the fault displacement is
found to be relatively stable at scale ranging from less than 100 kyr
up to several tens of millions of years.

Those studies are based on the principle that at the time scale of
observation (1) the sedimentation rate in the hanging wall always
exceeds the fault displacement with a minimum factor of 1/30, and
(2) the erosion on the footwall is not significant.

More generally, it is usually assumed that:

(1) thickness variations are directly the result of variations of fault
displacement rate;

(2) at the scale of the analysis, the creation and existence of
incremental fault scarps are always negligible.

With respect to the first assumption, Bischke (1994) initially
noted that the Th–z plot analysis could also provide information
about the contemporaneous sedimentary process. For example
Bischke (1994) observed that (1) a negative slope often correspond
to a condensed deposit in the hanging wall (e.g. as between Z4 and
Z3 in Fig. 1b) and (2) any change in the sedimentation may create
a slope break in Th–z plot. These basic observations remind us
simply that the thickness of syntectonic deposits contains always
two superimposed pieces of information: (1) one about the fault
movement which creates the available sedimentary space and (2)
the other about the sedimentary processes (rate and dynamics).
The interpretation of syntectonic thickness variations is thus
unlikely to be unequivocal.

With respect to the second assumption, synsedimentary fault
scarps have been widely documented on the present-day sea floor
and in ancient deposits through their influence on sedimentary
processes in a range of depositional settings (e.g. Petit and Beau-
champ, 1986; Thornburg et al., 1990; Leeder and Jackson, 1993;
Edwards, 1995; Morris et al., 1998; Newell, 2000; Hodgetts et al.,
2001; Hodgson and Haughton, 2004; Pochat and Van Den Dries-
sche, 2007). On the present-day sea floor, Ocamb (1961) and Oakes
(1959) document fault scarps on which undergo no deposition or
even erosion, whereas the subsiding compartments of the faults
they study is a zone of strong deposition. In this case thickness
variation on both sides of a fault has no straightforward relation
with the magnitude of the displacement. In such a case, the
assumption of ‘‘fill-to-the-top’’ sedimentation, which is required
to interpret growth strata in terms of fault kinematics, is not
always justified (Childs et al., 2003; Castelltort et al., 2004a, b;
Pochat et al., 2004).
In most depositional settings (deltaic, deep-water, fluvial)
sedimentation is always made up of stratigraphic cycles charac-
terized primarily by the alternation of fine suspended-load deposit
(settling out of suspension load) and coarser bedload deposit which
produce typical sand-shale alternations (Damuth, 1994; Edwards,
1995; Cross and Lessenger, 1998; Soreghan et al., 1999; Hiscott,
2001). The different processes record in different ways the differ-
ential subsidence due to growth faulting. Settling out of shale
particles (decantation) produces sedimentary layers homoge-
neously distributed across faults (Lowrie, 1986; Cartwright et al.,
1998; Hiscott, 2001), without being diffused to topographic lows on
time scales of 10–100s ka (Mitchell, 1996; Webb and Jordan, 2001).
In contrast, bedload deposition of sands tends to fill the topo-
graphic lows before the highs.

Castelltort et al. (2004b) have proposed that, if fault displacement
is treated as a continuous process on the scale of depositional cycles,
the slope variations on a Th–z plot may be interpreted as fault-
induced topography variations which can be in turn directly related
to changes of the sedimentary dynamics, as in the case of alternating
sand and shale deposition. In their work, were presented the inter-
pretation of a Th–z plots with the two end-members ‘‘fill-to-the-top’’
model (Fig. 2a) and ‘‘variable displacement/topography’’ or ‘‘fault
scarp’’ model (Fig. 2b) (Castelltort et al., 2004b).

In the first model (Fig. 2a), all the slope variations are controlled
by a combination of fault displacement rate and sedimentation rate.
With a constant displacement rate any change in the sedimentation
rate will produces a change in slope segment in the Th–z plot
diagram. For example, a large increase of the sedimentation rate
will produce a diminution of slope. A zero slope on the Th–z plot
indicates a cessation of the fault movement.
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In the second model (Fig. 2b), the slope variations are a conse-
quence of alternative period of fault scarp creation and fault scarp
filling or eroding. Preservation of fault scarp on the sea floor is more
likely associated with sedimentary processes such as suspended-
load deposit which prevent rapid smoothing of the topography. Fault
scarp filling is preferentially associated with ‘‘dynamic’’ bedload
processes. With this perspective, slope variations on the Th–z plot
can be directly linked to lithological variations, and null slopes can be
associated with dominant shale/mud layers rather than sand layers.

In absence of a permanent lithological control on both sides of
a fault, the Th–z plot method may introduce a bias in the analysis
of fault kinematics because alternating between null slopes and
positive slopes can be interpreted as the result of two opposite end-
member processes (Lowrie, 1986; Cartwright et al., 1998; Castelltort
et al., 2004a, b; Pochat et al., 2004): either (1) the alternation of
periods of suspended-load deposit (settling out of suspension load)
and bedload deposit (favouring alternating fault scarp preservation
and filling) over a continuous fault movement, or (2) the alternation
between periods of fault inactivity and activity over a constant
sedimentation rate background.
3. Geological setting

The Niger delta develops within the Gulf of Guinea on a surface
of about 140 000 km2 (Fig. 3) for a sediment thickness of about
12 km. This siliciclastic system began to prograde across the pre-
existing continental slope into the deep sea during the Late Eocene
(Burke, 1972) and is still active today. The stratigraphy of the Niger
delta can be divided into three major trangressive units of Paleo-
cene, Oligocene and recent ages respectively (Short and Stauble,
1967). The lowermost formation of Akata includes 6500 m of
marine clays with silty and sandy interbeds (Whiteman, 1982). The
intermediate formation of Agbada is characterized by paralic to
marine deltaic deposits mainly composed of sandstones and shales.
The uppermost unit, the Benin formation comprises fluvial sands,
gravel and back swamp deposits (2500 m thick).
Fig. 3. Regional map of the continental part of the Niger delta. The studied area (rectangle)
also shows the seismic activity (USGS/NEIC Earthquake Catalog 2007) of the West Afr
magnitude > M4 have been recorded in this part of Africa between 1974 and 2000 and only
Damuth, 1994; Heinio and Davies, 2007; Hooper et al., 2002; Magbagbeola and Willis, 200
The continental margin off the Niger Delta is undergoing
deformation caused by the seaward movement of the underlying
overpressured shale (Akata formation) which acts as a mobile
substrate, similar to natural evaporites deforming in response to
deltaic progradation and sedimentary loading (e.g. Merki, 1972;
Doust, 1990; Doust and Omatsola, 1990; Cohen and McClay, 1996a,
b). Consequently in the delta top, the sedimentation was concen-
trated in numerous arcuate depobelts bounded by large-scale
regional and counter-regional growth faults (Doust, 1990; Doust
and Omatsola, 1990) (Fig. 3). The activity of each depobelt prog-
resses in time and space towards the SSW in relation to the alluvial
progradation facilitated by large-scale withdrawal and forward
movement of the underlying shale (Damuth, 1994; Cohen and
McClay, 1996a). The outer shelf and the upper slope of the Niger
Delta are characterized by the evolution from an extensional zone
to a translational zone of diapir and shale ridges which evolved
eventually into a compressional zone of imbricate toe thrusts
beneath the lower slope and rise (Vannier and Durand, 1994;
Schulbaum et al., 1996).

Our study is located in the upper part of the modern Niger delta,
in the southeastern part of the Greater Ughelli Belt, 90 km north of
Port-Harcourt (Fig. 3) and was carried out on an NW–SE normal
fault which intersects the Agbada formation (Fig. 4a, b). This fault is
sealed under 2000 m of sedimentary deposits which indicated that
its period of activity was restricted during the deposition Agbada
formation. We used sets of lithological data, provided by Total, on 2
wells (Pochat et al., 2004) that are positioned on either side of the
fault and almost perpendicular to the fault direction (Fig. 4a, b). The
fault affected four major depositional environments which have
been recognized in this formation (Vannier and Durand, 1994;
Schulbaum et al., 1996): (1) upper deltaic plain, (2) tidal zone, (3)
delta front and (4) pro-delta shales. In the study area, the delta
mainly prograded southward during Early Oligocene to Late
Miocene times. In this dataset, 10 major maximum flooding
surfaces (mfs, Table 1) record the most argillaceous intervals and
define 9 major stratigraphic cycles (Regressive–Transgressive
cycles) (Pochat et al., 2004). The vertical position and relative age of
is located on the Greater Ughelli depobelt region (Doust and Omatsola, 1990). The map
ican region including the Niger delta region. Note that only 10 earthquakes with
one in the Niger delta whereas the faults are still active today (e.g. Adeogba et al., 2005;
7; Owoyemi and Willis, 2006).
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each mfs were provided by Total (Pochat, 2003) and correlated with
the Mesozoic–Cenozoic sequence-chronostratigraphic chart
(Hardenbol et al., 1998) which gives ages comprised between 29
and 18 My, and a duration of 0.5–3 My for individual cycles
Table 1
Maximum flooding surface age (in My) and vertical throw (in m). The relative age
with error bar of each maximum flooding surface are deduced from comparison
from Mesozoic–Cenozoic sequence-chronostratigraphic chart (Berggren et al., 1995;
Hardenbol et al., 1998) and data provided by Total (Pochat, 2003). In bold, the age of
mfs 3d and mfs 4c were obtain with biostratigraphic constraint (Pochat, 2003). The
vertical throw are extracted from well log data (This study).

Age (My) Error (My) Throw (m)

mfs 3d 18.2 0.3 15
mfs 3c 21.2 0.3 50
mfs 4e 22.6 0.6 135
mfs 4d 23.3 0.3 230
mfs 4c 23.9 0.3 290
mfs 4b 24.9 0.3 420
mfs 4a 25.9 0.3 520
mfs 5c 27 0.3 620
mfs 5b 28.3 0.3 750
mfs 5a 29.2 0.2 830
(Table 1), the age of mfs 3d and mfs 4c were obtain with
biostratigraphic constraint (Pochat, 2003). The maximum error
estimated on the age of the different mfs evolved from 0.2 to 0.6 My
(Table 1) (Pochat et al., 2004).
4. Method of decompaction

In order to compute the decompacted thicknesses of the various
sediment layers, we have adapted a simple procedure from Sclater
and Christie (1980) with local petrophysical values adapted to Niger
delta settings from Chukwueke et al. (1992). The decompaction
method is a meter-per-meter sequential decompaction of footwall
and hanging-wall sequences and computation of fault throw with
the same approach and mathematical formalism used by Taylor et al.
(2008) (see Appendix A for further details). The throw decompaction
method would principally have the effect of increasing fault throws
but would not alter the shorter time scale variability in displacement
rates (Taylor et al., 2008) which is at the heart of this study. The
borehole data provided by Total (Pochat, 2003) has a threshold
resolution of 1 m. The routine used to decompact gives results of
thickness with decimal which have no significance. Thus, in this
study, no change in throw or thickness variation less than 1 m has
been taken into account.
5. Lithological column description

The deposits are constituted of 26 sandstone layers and 25
mudstone layers, for a total thickness in the hanging wall of 3670 m
(Fig. 5). In the hanging wall, 8 sedimentary layers are found that
have no equivalent on the footwall, of which 6 are mudstone layers
included in thicker sandstone layers (S8–S10–S11–S12–S13–S15)
and 2 are sandstone layers included in thicker mudstone layers (A7)
(Fig. 5). On the footwall there are 2 extra layers made of mud
included in sandstone layers (S24–S25) (Fig. 5). The mud-rich
deposits are made up of 3 layers of offshore clays deposited above
the storm wave base which constitute the deeper facies present
here (basal part of A7, below mfs 4c, A11–A13) (Fig. 5). Two sand-
stone layers have strong erosive bases and tops (S16–S24) (Fig. 5)
which are both considered as regional erosive events (Pochat,
2003).
6. Throw versus times analysis

In order to determine the predominant factor that controls
short-term thickness variations in growth strata, i.e. fault move-
ment or sedimentation dynamics, we first analysed the long-term
evolution of the fault displacement rate during time.

Our analysis focuses on the variation of the vertical throw of
each mfs during time (Fig. 6). The benefit of using these particular
stratigraphic surfaces is that they can be considered as representing
a nearly instantaneous event at the scale of a sedimentary basin or
such kilometric structures (Van Wagoner et al., 1988; Mitchum and
Van Wagoner, 1991). Mfs are also not usually associated with
erosive events which may preclude the interpretation of the true
fault displacement (Childs et al., 1993). Thus, we assume that the
measured vertical throw of each mfs (between the footwall and the
hanging wall) is the closest approximation of the true fault
displacement, i.e. corresponds to the case of no fault scarps. This
analysis corresponds to the ‘‘fill-to-the-top’’ model (Castelltort
et al., 2004a, b). In order to minimize at best the error on the
vertical throw estimation and the relative ages of each mfs, we have
estimated the displacement rate from the best appropriate fitting
on the entire curve (Fig. 6).
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The analysis shows that the vertical throw encompasses a long-
term, progressive diminution with time from 830 m to 15 m, over
10 millions of years (Fig. 6). This evolution occurs without any
short-term break in slope which implies a continuous fault
displacement during 10 million year. Also, the fact that the youn-
gest marker has horizontally sealed the fault (Fig. 6), suggests
a long-term dampening of the fault displacement rate with time.
Indeed, the fault movement can be divided into 2 phases (Fig. 6):
a first longer phase from �29.5 to �21.5 My (8 My) with a rate of
displacement of 90 to 120 m/My (0.09–0.12 mm/y) abruptly
followed by a second, shorter phase from �21.5 My to �18
My (3.5 My) with a rate of displacement of 10 to 15 m/My
(0.01–0.015 mm/y). Since a straight line can be fitted to all but the
final and most recent point on the curve (mfs 3d), we considered
that fault growth rates were constant for 800 m of the total 850 m
throw history (i.e. ca 95%) during 10 My (Fig. 6). The unusual or
shifted position of mfs 3d may be the expression of a brutal shut-
ting down of the growth fault during this period. This brutal
cessation of activity could be correlate to the sealed character of the
fault inside the Agbada formation (Fig. 4a,b). However, we cannot
ruled out that the low value of mfs 3d vertical throw (10 m throw)
may be attributed to compaction-related displacement losses
which are more significant at low displacements (Taylor et al.,
2008). In this case, it is possible to envisage that the fault
displacement was constant until just before mfs 3d times (i.e. for
nearly 98% of the growth history).

Such long-term continuous rate of fault displacement over such
time scales has been previously described in different tectonic and
sedimentary settings (Nicol et al., 1997, 2005; Walsh et al., 2002;
Childs et al., 2003) and is characteristic of long-term behaviour of
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synsedimentary faults in a context of gravity-driven tectonics
(Ocamb, 1961). The highest displacement rates (0.1–0.12 mm/y) are
equivalent to moderate displacement rates for fossilized normal
faults in similar tectonic settings (Nicol et al., 1997, 2005), and
to present-day normal faults in the Mississippi river delta i.e.
0.1–1 mm/y (Gagliano et al., 2003). For the latter, Gagliano et al.
(2003) indicates that, since 1960, the Louisiana is affected by
active extensional faulting associated with normal fault scarps of
0.3–1.1 m high over 5–8 km lengths. We note that these high rates
of fault movement are not associated with a significant seismic
activity (USGS/NEIC Earthquake Catalog 2007). Similar active
normal faults in the present-day Niger delta show the same
Hanging-wall lithologic
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behaviour, i.e. the creation of fault scarps without seismic rupture
(Fig. 3). Aseismic behaviour of faults is found when deformation
occurs by ‘‘creeping’’ along the fault plane. Such behaviour is
favoured when faults merge at depth with décollement layers, such
as the shale-rich Akata formation in the Niger Delta (Merki, 1972;
Doust, 1990; Doust and Omatsola,1990; Cohen and McClay, 1996a, b).
The ductile behaviour of shales strongly depends on fluid pressure
and can vary with time and space (Morley and Guerin, 1996). Our
observation of long-term continuous fault displacement rate
during 10 million years suggests that the ductile behaviour of the
Akata shale layer remained stable at this time scale.

We can therefore assume a continuous fault displacement over
time scales of hundreds of thousand years (average duration of P–R
cycles) to several millions of years.
7. Throw versus depth analysis using Th–z plots

The first feature observed on the Th–z plot is the long-term
quasi linear decrease of the vertical throw from 835 to 0 m, over
a sediment thickness of 3670 m (Fig. 7). At higher resolution we
note that the Th–z curve is characterized by short-term variations
in slope between each point of the curve (Fig. 7).

Because the mfs are clearly defined stratigraphic surfaces on
either sides of the fault, we have added theirs positions (compare
Figs. 7 and 8). The objectives are (1) to increase precision of the
Th–z plot and (2) to subdivide a number of thick mud deposits. For
example without mfs position, the thicker mudstone layer (A7) has
only 2 points of measure over a thickness of 500 m (Fig. 7).

In order to more precisely define the values and origin of the
observed slope variations on the Th–z curve we report the slope
variation values versus the hanging-wall thickness evolution
(Fig. 8) for each sandstone layer (S1–S26) and mudstone layer
(A1–A25). We also report the position of each mfs inside their
associated mudstone layers (mfs 5a in A25, mfs 5b in A21, mfs 5c in
A17, mfs 4a in A13, mfs 4b in A11, mfs 4c and mfs 4d in A7; mfs 4e in
A6, mfs 3c in A5, mfs 3d in A2, see Fig. 5).
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The introduction of the mfs has no effect on the slopes for mfs
5c-4b i.e. no change of vertical throw on the curve (Figs. 7 and 8).
We note minor effects for mfs 5a, 5b, 4e, 3c and 3d (Fig. 8) i.e.
5–10 m below the initial curve (Fig. 7) and major effects for
mfs 4c, 4d, and 4a (Fig. 8), i.e. 35–40 m below the initial curve
(Fig. 7).

In the Th–z plot, a zero-slope interval corresponds to an
unthickened layer on both sides of the fault, a positive slope
corresponds to a thicker deposit in the hanging wall and a negative
slope corresponds to a thinner deposit in the hanging wall (thicker
deposit on the footwall (Castelltort et al., 2004a, b; Pochat and Van
Den Driessche, 2007) (Fig. 8).

The major striking feature of this Th–z plot (Figs. 7 and 8) is that
22 sand-to-shale transitions over 24 (i.e. 90%) are associated with
short-term changes of the slope on the Th–z curve (excepted
between A5–S5 and A8–S9).

Thus, in term of slope variation, we have distinguished 4 major
tendencies (Fig. 8):

(1) 13 layers show an equal thickness on both sides of the fault (i.e.
zero-slope segment, S5–S7–S9–S25 and A3–A4–A8–A11–A12–
A17–A20–A21–A22–A23). Considering additional mudstone
layers with mfs subdividing adds 4 new unthickened mudstone
layers in A2–A5–A13–A25. This gives a total of 17 unthickened
deposits. Nine unthickened deposits over 13 (70%) i.e. without
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and with the additional cutting with the mfs (dotted line). This composite curve will be us
mfs subdividing, or 13 unthickened deposits over 17 (75%) with
additional mfs subdividing, are made of shale.

(2) Three layers are thinned in the hanging wall (negative slope,
A24, A16 and S2), of which 2 are made of shale.

(3) 35 layers over 51 (i.e. 70% of the layers) are thicker in the
hanging wall which confirm the synsedimentary nature of
the normal fault. Among these 35 thickened layers (or among
the 39 with mfs subdividing (Fig. 8), 21 are made of sand
(i.e. 60% and 55% respectively).

(4) 18 over 25 of the mudstone layers (70%) are systematically
thinner than their immediate overlying sandstone layers, i.e.
the sandstone layers are systematically thicker in the hanging
wall than their immediate underlying mudstone layers. Thus
10 layers (11 layers with mfs in A5) show slope variations
greater than 0.5 (i.e. 200% of thickness variation) of which 8 are
sandstone layers (75–80%) and 2 are mudstone layers (þ1 layer
within A5); 12 layers (15 layers with mfs in A5–A7–A13) show
slope variations greater than 0.4 (i.e. 170% of thickness varia-
tion) of which 10 are sand layers (65–80%) and 2 are mudstone
layers (þ3 layers with mfs in A5–A7–A13) and 6 layers show
slope variation greater than 0.6 (i.e. 250% of thickness varia-
tion) which all are made of sand.

The largest differential of thickness variation is between the layer
A24 and S8, with a value of 700% of variation, the most important
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differential of thickness variation between two adjacent layers is
between shaly layer A8 and sandy layer S8 for a value of 350%.
8. Summary

The combined analysis of slope and lithological variations on the
Th–z plot indicates that:

1) each lithological variation is associated with a change of slope;
2) the mudstone layers are generally thinned or unthickened in

the hanging wall;
3) the sandstone layers are generally thickened in the hanging

wall.

The ‘‘fill-to-the-top’’ model excludes the consideration of fault
topographies and scarp creation. Interpreting the present case
study in the framework of the fill-to-the-top model would lead to
associate the systematic short-term slope variations observed here
to systematic short-term changes of the fault movement rate of
up to one order of magnitude (Fig. 8). The 17 zero-slope intervals
would imply 17 periods of fault quiescence and the 3 negative slope
intervals would indicate 3 periods of fault inversion or linkage. Such
erratic behaviuor of this normal fault is in contradiction with (1) the
observed long-term continuous fault displacement (Fig. 6) and (2)
the short-term ductile behaviour of the décollement layer (Morley
and Guerin, 1996).
9. New model of Th–z plot interpretation

Instead of interpreting all slope changes as purely tectonically
driven, an alternative solution is that every short-term slope vari-
ation rather indicates changes between periods of creation of
topography on the fault and periods of fault topography erosion or
filling (Castelltort et al., 2004a, b; Pochat et al., 2004).

Following this perspective, the fault topography at each instant
can be different from zero and cannot be further neglected in such
analysis. It follows that slope variation in Th–z plot variations no
longer represents only displacement but a combination of fault
displacement rate and remnant fault topography (Bischke, 1994;
Castelltort et al., 2004a, b; Pochat et al., 2004). The general
expression of ai the slope of the Th–z plot on any interval where Dei

is the variation of topography, di the incremental displacement and
HWt the thickness of the deposit in the hanging wall, is:
ai ¼
di � Dei

HWt
(3)

For a constant displacement di, the slope increases when
topography diminishes (Fig. 9). As a consequence, on a Th–z plot,
the points which follow the stronger slopes may be interpreted
with confidence as representing low to zero topography. By
contrast, between two of such points, the other points follow lower
or even negative slopes and result from the creation of topography
(Fig. 9).

Therefore, on any Th–z plots, one can draw straight segments
between the points of assumed low topography, starting from the
origin of the Th–z plot to the older horizon (Fig. 9). Important
conclusions of this model are that (1) the slope of each of these
segments represents the mean displacement rate relative to the
sedimentation rate on the considered interval, and (2) the vertical
deviations of the Th–z curve with respect to these segments
represent creation of fault-induced topography (shadowed areas in
Fig. 9) (Castelltort et al., 2004a, b; Pochat et al., 2004). A ‘‘fill-to-the-
top sedimentation’’ is implicitly assumed to work at the resolution
of the chosen segments, and topographies occur at a higher
frequency due to sedimentation changes. The only condition to
respect when choosing intervals of steady growth is that there
should be no point of any interval situated below the corresponding
segment. Indeed, such a situation would imply a negative topog-
raphy at the time of deposition of the considered horizon
(i.e. horizon topographically higher in the hanging wall than on the
footwall), which is unlikely. The Th–z plot thus contains the
magnitude of the displacement on the fault at the segment reso-
lution (interval), and the evolution of topography at each instant
within the deviation of the curve from the segments (Fig. 9).

From the initial Th–z plot curve, by respecting the conditions
previously defined, we built the ‘‘fill-to-the-top’’ curve envelope,
depending on the configuration of the Th–z plot curve, it is some-
times possible to define two ‘‘fill-to-the-top’’ curves which are
integrated as a degree of variability in the ‘‘fill-to-the-top’’ curve
creation (Figs. 10 and 11). We calculate the slope variation in the
‘‘fill-to-the-top’’ envelope curve and report it on the slope variation
diagram (Fig. 11). The existence of a vertical space between both
curves defines periods of fault scarp creation and periods of filling
and/or erosion of fault scarps. Thus each slope inferior to the slope
of the ‘‘fill-to-the-top’’ curve envelop corresponds to a fault
topography creation period, each slope superior to the slope of the
‘‘fill-to-the-top’’ curve envelop correspond to a fault topography
destruction period (predominantly filling or erosion) (Fig. 11). We
thus determine 18 periods of fault scarp creation which are
generally associated with mud deposits for 22 (75%) layers out of 29
(Figs. 11 and 12).

Between the ‘‘fill-to-the-top’’ curve and the Th–z plot curve, the
maximum vertical space allows us to estimate the maximum height
of the fault scarps (Castelltort et al., 2004a, b; Pochat et al., 2004).
For the periods with two possible ‘‘fill-to-the-top’’ curves we give
two possible values of fault scarp heights (Fig. 10–12), Thus the
heights of the fault scarps are between 5 and 40 m (Fig. 12a), the
cumulative fault scarp height is ranging from 340 to 355 m which
represents 40–45% of the total throw along the fault. The values of
fault scarp relief are consistent with observations of fault scarps on
the current sea floor in similar sedimentary and tectonic settings as
in the Mississippi river delta (Coleman and Prior, 1978, 1981), in the
Baram river delta (Hiscott, 2001) and in the Niger river delta
(Damuth, 1994; Cohen and McClay, 1996a, b; Armentrout et al.,
2000; Adeogba et al., 2005).

The longest period of maximum fault scarp creation is located
during the early history of the fault movement (Fig. 12b). Here the
rate of fault scarp creation are around 70% (0.7) of the rate of the
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fault displacement (Fig. 12b) which means that 70% of the fault
movement are expressed at the Earth surface or on sea floor in term
of fault scarp. The rate of fault scarp creation gradually decreases
from 50% to 30% but with a new increase to 60% at the end of the
curve (Fig. 12b). We have transform these rates into a rate of fault
scarp creation by using the fault displacement rate previously
calculated (see Fig. 6). Thus we obtain a gradual decrease of the
fault scarp creation rate from 65–85 m/My to 45–60 m/My to
25–30 m/My to a value inferior to 10 m/My (Fig. 12b).

We have also observed that the vertical displacement of the fault
are not entirely expressed in fault scarp creation at the Earth surface
or on the sea floor. This absence of fault scarp is observable when the
Th–z plot curve and ‘‘fill-to-the-top’’ curve are nearly or totally
merged (Fig. 10). These segments indicate 19 periods of non-
appearance of fault scarp on the sea floor (Fig.10) when the fault was
constantly active which corresponds to a ‘‘fill-to-the-top’’ model.

10. Model of fault scarp creation and its sedimentary
consequences

We propose that fault topography creation is preferentially
associated with clay deposition by suspended-load processes,
which allow the preservation of a fault-induced topography on the
sea floor. Conversely, sand transport by bedload processes will
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preferentially fill up and smooth fault-related topographies on the
sea floor. During periods of suspended-load deposition (preferen-
tially during transgressive and early highstand sea levels), the fault
scarp and fault trough can stay preserved rather than filled by
sediments. On the other hand, during periods of bedload deposition
(preferentially during late highstand and falling sea level), the fault
scarp and fault trough can become filled more quickly than reju-
venated. Thus, transgressive periods with dominant suspended
load deposition (shale) and/or low rate of sedimentation in offshore
environments will favour the expression of fault-induced topog-
raphies on the sea floor (Hiscott, 2001), whereas regressive periods
with dominant bedload (sand) and/or high rate of sedimentation
will favour filling up or erosion and smoothing of sea floor topog-
raphies created by faulting. The fact that fault-induced topography
is filled up is confirmed by abundance of extra layers in the hanging
wall (Fig. 10) see also Hodgetts et al. (2001). Given that the initial
precision of data (1 m), it is highly probable that extra layers of
thickness inferior than 1 m are distributed anywhere in the litho-
gical column.

The presence of negative slopes is usually associated with strong
erosion surfaces in the hanging wall as for mudstone layers 24 and
Flow stripping / flood deposits / levee construction above the scarp

Negative slope in mud layers

Positive slope in mud layers

Strong probalities of equal thickness

Erosion and by-pass Deposition

Stacked channels against the scarp

fault localized deposit

1)

2)

Footwall

Hanging wall

Fault scarp creation during clay suspensive deposition

b

a

Fig. 13. Model of fault scarp creation and filling during a continuous fault displace-
ment. a) Fault scarp creation is facilitated during the periods dominated by clay/mud
supensive-load deposits (highstand periods). b) Erosion phenomena associated with
bedload processes, can modify the initial distribution of the mud thicknesses above the
fault into two possible ways. 1) If flow thickness are smaller than fault scarp height:
the flow can be deviated or captured along to fault scarp or concentrated only in the
hanging wall with small impact on the footwall. Some sedimentary features can be
associated with this phenomenon such as stacked channels along the fault with their
large axis parallel to the fault. In this case, we should observe large discontinuity into
facies distribution and lithological composition of deposits above the scarp with the
preservation of infrequent deposit on the footwall (large flood in fluvial settings, flow
stripping in subaquaeous sediment gravity flows). 2) If flow thickness at the same or
higher scale than fault scarp height it may induces flow disturbances over the footwall
with enhanced erosion phenomena on this compartment (e.g. Edwards, 1995; Morris
et al., 1998; Pochat and Van Den Driessche, 2007). If the flow comes from the hanging
wall or from the footwall it may induces different response of the sedimentary
processes. We may observe, for example, a brutal transition from fault-localized ripples
or dunes in the hanging wall to planar lamination, strong basal erosion on the footwall,
high concentration of mud intraclasts and coarse to very coarse granulometry due to
fault scarp degradation.
16 (a and b in Fig. 11). They indicate that the thickness of the
hanging-wall layers is inferior to its counterpart on the footwall. In
a case of a continuous fault displacement it can also be explain by
sedimentary processes. Indeed the presence of a fault topographies
on sea-bed or at earth surface can induce flow channelization,
deviation or transformation along and/or again the scarp (see
reference in Introduction part) (Fig. 13). For example, flow chan-
nelization or flow capture along the fault scarp can be accompanied
by localized erosion at the base of scarp in the hanging wall (Fig.13).
Flow channelization or transformation in the hanging wall due to
the presence of fault scarps may enhance flow transformation
against the obstacle and induce particular sediment deposits on the
footwall (Fig. 13). For example, in submarine settings, fault scarp
may induce flow stripping processes flow channelization and
erosion in lows and deposition on highs (e.g. Piper and Normark,
1983; Anderson et al., 2000; Armentrout et al., 2000). In this case,
deposits in the hanging wall should be accompanied by fault-
parallel paleocurrent direction, amalgamated channel belt along
the scarp (submarine, deltaic, fluvial.) (Fig. 13).

Positive slopes associated with mudstone layers correspond to
intervals where shales deposits are thickened in the hanging wall
and could therefore be due to particular periods of erosion localized
over the footwall which is the most commonly described case in the
impact of fault scarps on sedimentation (e.g. Edwards, 1995; Morris
et al.,1998; Pochat and Van Den Driessche, 2007). Thus, we proposed
that all positive-slope associated with mudstone layers (13 layers)
(Fig. 11) indicate localized erosion surface at the top or inside of each
mudstone layers on the footwall with less even no erosion in the
hanging wall (Fig. 13). In this case, deposits in the hanging wall
can be accompanied with for example downstream-oriented fault-
localized oblique lamination associated with high concentration of
mud intraclasts (Fig. 13) (Pochat and Van Den Driessche, 2007).

In any case, strong thickness variation inside mudstone layers
due to fault scarp impact on flow dynamics and subsequent erosion
will be necessarily associated with large facies variation across the
same fault of the overlying sandstone deposit i.e. large variation of
reservoir properties over small distance (Fig. 13).

11. Conclusion

Analysis of kinematics of a synsedimentary normal fault in the
Niger delta based on throw versus time method has provided
a long-term evolution characterized by continuous slip of 0.1 mm/y
during 10 millions of years. Such stable fault growth, and related
displacement rates, can appear punctuated when viewed at the
scale of sedimentary cycles.

At such times scale, the Th–z plot diagram reveal that sand
deposits are always much thicker within the hanging wall than in
the footwall. By contrast, mudstone deposits are either only weakly
thickened in the hanging wall or have a similar thickness on each
side of the fault. The sand intervals are proportionally more thick-
ened than the mudstone intervals. Classical ‘‘fill-to-the-top’’ inter-
pretation of thickness variation of growth strata would lead to the
erroneous conclusion of alternation of fault activity and fault
quiescence and even of fault inversion, which is highly unlikely
given the gravity sliding context. Such alternation is moreover in
contradiction with the long-term evolution as documented by the
throw versus time method. The polycyclic fault behaviour diag-
nosed for some faults at the scale of sedimentary cycles is most
probably an artefact of the fill-to-the-top method and may instead
be entirely related to varying sedimentation rates. The high quality
data presented here also provide strong grounds for supporting the
notion that fault displacement rates can be very well behaved (e.g.
Nicol et al., 1997, 2005; Meyer et al., 2002; Walsh et al., 2002;
Mouslopoulou et al., 2009).
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A more suitable approach is to carefully take into account sedi-
mentation processes. Mudstone intervals correspond to dominant
suspended-load processes that result in the preservation of fault
scarps whereas sand intervals are created by dominant bedload
processes that result in the filling and smoothing of the fault-related
topographies. Negative slope can be related to flow channelization
and erosion in the hanging wall. The present example shows that the
variations of the growth strata thickness that reflect the alternation of
fault-induced scarp creation and fault scarp sealing in deltaic gravity
tectonics settings are controlled by sedimentation dynamics during
continuous fault slip rather than by pulsating fault activity. In the
future, such kind of analysis must include a 3D quantification along
and perpendicular to the fault plane orientation of (1) the sedi-
mentary processes and facies evolution and (2) the throw variation.

Eventually, along a synsedimentary fault, displacement analysis
at scales larger than alternating sedimentological processes (<1 m)
and high-frequencies stratigraphic cycle (up to w several m) will be
more suited to reveal the continuous nature of fault activity.
Moreover, analysis at the scales of alternating sedimentological
processes and high-frequencies stratigraphic cycle along synsedi-
mentary fault can reveal the nature of the sedimentary processes in
relation to sequence stratigraphic states.
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Appendix A. Method of decompaction

In order to compute the decompacted thicknesses of the various
sediment layers, we have adapted a simple procedure from Sclater
and Christie (1980). Assuming an exponential relationship between
porosity f and depth z:

f ¼ f0 expð�czÞ (1)

the volume of water zw in a given sediment layer between ztop and
zbot (for a cross-section with a unit area) is

zwðztop;zbotÞ ¼ f0=c
�

expð�cz topÞ � expð�cz botÞ
�

(2)

The volume conservation of a porous sediment layer with
thickness (ztop–zbot) exhumed from depth ztop to depth z0top then
implies

z0top � z0bot þ zwðz0top;z
0
botÞ ¼ ztop � zbot þ zwðztop;zbotÞ (3)

so that the new thickness (z0top–z0bot) of a layer culminating at
depth z0top is easily obtained. Repeating step by step a procedure
where a new depth z0top results from the decompaction of a layer
that is shallower in the sedimentary column thus leads to the
‘decompacted thickness’ of the whole column.
In the present study, we describe the compaction process with
an additional parameter corresponding to the ‘stride’ of sediment
loading: instead of using eq. (3) with (ztop,zbot) corresponding to the
vertical limits of the layer, we subdivide this layer with the incre-
mental thickness zinc and perform the integration with this value.
A simple algorithm based on the classical Newton–Raphson
method is used to find the zero of eq. (3) for each sublayer.
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