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Geochemical and Sr-Nd isotope data for Mesozoic greywackes of New Caledonia 

terranes, indicate a fore-arc tectonic environment at the Eastern Gondwanaland 

margin, but they support only minor continental influences. Detrital zircon U-Pb age 
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patterns for the greywackes similarly reflect an active-margin tectonic environment  

of Late Triassic, Late Jurassic, and in particular mid-Cretaceous, depocentres which 

comprise much contemporaneous volcanic detritus, but also include minor sediment 

inputs from early Paleozoic-Precambrian continental clastic rocks.  The 

contemporary volcanic sources are probably now hidden within a former hinterland 

to New Caledonia, such as Loyalty and Norfolk Ridges, Lord Howe Rise or Marion 

Plateau. The older, continental sediment sources were probably in northeasternmost 

Queensland, and beyond the northern extremity of the New England Orogen. Such 

sediments could have been supplied on long rivers, and submarine long-shore 

current systems outboard of the orogen. Alternatively, the depocentres could have 

been consolidated close to the contemporary Gondwanaland margin and then 

tectonically transported, as suspect terranes, southwards in Early Cretaceous times 

to their present New Caledonia position. 

 

KEY WORDS: New Caledonia, Gondwanaland, Mesozoic, volcaniclastic 

sedimentary rocks, geochronology, detrital zircon, geochemistry, strontium 

isotopes, neodymium isotopes. 

 

INTRODUCTION 

 

Situated at the Pacific edge of the Mesozoic Australasian continent crust, New 

Caledonia and New Zealand provide two comparable sectors of the former, late 

Paleozoic-Mesozoic Gondwanaland continental margin (Fig.1 inset). New Zealand and 

New Caledonia are part of a large, but mostly submerged, continental crustal block, 

‘Zealandia’. This extends from the Chatham Rise and Campbell Plateau (southwest 

Pacific Ocean), through New Zealand, the Challenger Plateau and Lord Howe Rise, to 
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New Caledonia. It has been extensively studied New Zealand where the Zealandia 

basement comprises Paleozoic and Mesozoic sedimentary rocks, active-margin volcanic 

arcs, and associated plutonic complexes. These are divided into an early Paleozoic, 

Western Province, clearly related to the Lachlan Fold Belt of southeast Australia, and an 

Eastern Province, which comprises six late Paleozoic-Mesozoic elongate, 

tectonostratigraphic terranes. Situated between Western and Eastern Provinces, a 

Median Batholith, of Permian-Cretaceous plutonic rocks (Bishop et al. 1985, Mortimer 

et al. 1999), may be correlated with the more extensive Carboniferous-Jurassic igneous 

complexes within the New England Fold Belt of northeast Australia, 

The Eastern Province terranes of New Zealand comprise an eastern group (Torlesse, 

Waipapa and Caples) of Permian to Cretaceous, greywacke-dominated turbiditic 

sequences deposited in an accretionary prism environment (Bishop et al. 1985). The 

easternmost, Torlesse Terrane is dominated by relatively quartzose greywacke 

sediments derived from continental sources which included plutonic and metamorphic 

rocks (MacKinnon 1985), whilst the Waipapa and Caples Terranes (Sporli 1978, 

Turnbull, 1979) have more acid-intermediate volcaniclastic sediment inputs, and 

resemble those of the New Caledonia Central Terrane.  The remaining, western, terrane 

group (Dun Mountain-Maitai, Murihiku, Brook Street), has mainly Permian, Triassic 

and Jurassic, redeposited volcaniclastic greywacke-dominated successions (Ballance & 

Campbell 1993, Landis et al. 1999), but in a more shallow-water, probable forearc 

setting. The Brook Street terrane includes substantial volcanic centres and some minor 

limestones (probably shallow-water). The Dun Mountain-Maitai terrane contains the 

major Dun Mountain Ophiolite Belt (Coombs et al. 1976), and also has some limestones 
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(calc-turbidites). In contrast, the Murihiku Terrane is dominated by volcaniclastic 

sediments with no limestones, and only rare volcanic horizons. It has excellent 

biostratigraphic subdivision (Ballance & Campbell 1993), whose faunas closely 

resemble those of the Teremba Terrane of New Caledonia (Campbell et al. 1985).  

Extensive references and details of biostratigraphy, geochemistry and geochronology of 

the Eastern Province terranes that are relevant to possible correlations with their New 

Caledonia counterparts are given in Mackinnon (1985), Roser & Korsch (1988, 1999), 

Adams et al. (2007). The relative position of the terranes with respect to the 

Gondwanaland continental margin, suggests that several, especially the Torlesse 

composite terrane, are suspect terranes i.e. tectonically displaced from elsewhere along 

the Gondwanaland margin. Original sedimentary depocentres have been suggested in 

the New Zealand-West Antarctic region (Cawood et al. 1999, Wandres et al. 2004a,b). 

Alternatively, original depocentres in the northeastern Australian sector have been 

suggested (Ireland 1992, Pickard et al 2000, Adams et al. 2007), where there are 

superior matches of Eastern Province detrital zircon age patterns with appropriate 

sediment sources. 

Despite their similarities in age, tectonic setting, sedimentary petrography and 

biostratigraphy, the exact relationships between New Zealand and New Caledonia 

terranes remain unclear. The disposition of New Caledonia terranes with respect to the 

Gondwana continental margin suggests that a suspect terrane scenario is also possible, 

similar to that described above for the Eastern Province of New Zealand. Thus to 

investigate their connection further, we present here new geochemical and detrital 

zircon age data for greywackes from three pre-Late Cretaceous terranes in New 
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Caledonia, and compare their sediment provenances with those from terranes of similar 

age and tectonic association in New Zealand. 

 

NEW CALEDONIA: GEOLOGICAL OUTLINE 

Two major terrane groups are distributed along the length of New Caledonia (Fig.1): an 

older, Late Permian to Early Cretaceous group of three subparallel, elongate terranes on 

the west coast (Teremba) and in the central mountain chain (Koh-Central, and Boghen); 

and a younger Late Cretaceous to Oligocene group, overlying the latter, that formed in 

response to break-up, drift, and subsequent collision of, an island arc (Aitchison et al, 

1995). The pre-Late Cretaceous terranes were formed during a period of accretion, and 

show the closest biostratigraphic correspondences with Eastern Province terranes of 

New Zealand.  

The three terranes that form the central mountains of New Caledonia are as follows:  

(1) Koh-Central Terrane: a disrupted, Early Permian ophiolite suite occurs locally 

along the centre of the island, comprising gabbro, dolerite, rare plagiogranite, 

IAT and boninite pillow basalt, and undated chert directly overlying the 

pillow basalts (the Koh ophiolite of Meffre et al. 1996). The Koh ophiolite 

rocks are closely associated with a thick deep-water succession of volcano-

sedimentary rocks: black shale, volcaniclastic turbidite (greywacke), 

radiolarian-bearing siltstone and chert. These sequences are regarded as a 

single terrane (Meffre et al. 1996; Aitchison et al., 1998). The black shales are 

several hundred metres thick, whilst greywackes are generally associated with 

20-50% argillite, giving this terrane a distal and deep-water character. The 
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greywackes are exclusively composed of volcanic lithic (andesite and basalt) 

and mineral clasts (feldspar, quartz, amphibole, etc.), and plutonic clasts are 

generally absent, except for one locality (late Early Cretaceous). Middle 

Triassic (Anisian), and Late Jurassic faunas are correlated with those of the 

New Zealand Murihiku Terrane (Campbell et al., 1985; Meffre, 1995). 

Recently, a fossiliferous succession at Pouembout, formerly considered Late 

Jurassic, is now considered Early Cretaceous (H.J. Campbell (pers. comm.). 

(2) Teremba (formerly Teremba-Moindou) Terrane: a succession of very low-

grade (zeolite facies), Late Permian to mid-Jurassic, shallow-water, 

volcaniclastic (calc-alkaline, island arc-derived, andesitic) sedimentary rocks 

and volcanics (andesites, dacites and rhyolites). The sedimentary rocks are 

typically medium grain greywackes with only minor (<10%) intercalated 

argillite, some shallow water volcaniclastic conglomerate and rare black 

shale, a few tens metres thick. The mineral composition of greywackes is 

closely similar to that of Central Terrane and similarly lack plutonic clasts. 

This terrane also contains abundant faunas resembling those of the Murihiku 

Terrane of New Zealand (Grant-Mackie et al., 1977; Paris 1981, Campbell, 

1984, Ballance & Campbell, 1993). 

(3) Boghen Terrane: (the ante-Permien of Paris, 1981), an accretionary complex 

comprising schistose unfossiliferous, volcano-sedimentary rocks (pillow 

basalts, chert, black shale, sandstone, tuffs, turbiditic greywackes, and mafic 

melange), at a metamorphic grade (lower greenschist to blueschist facies) that 

is notably higher than the adjacent terranes. Late Jurassic metamorphic ages 
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(ca. 150 Ma, whole-rock K-Ar) of the blueschists and metabasalt (Blake et al., 

1977) suggest a minimum mid-Jurassic age for metamorphism, and Early 

Jurassic detrital zircon ages (Cluzel & Meffre, 2002) set a maximum 

depositional age for the original sediments. However, zircon U-Pb ages of 

this present work infer a much younger maximum depositional age at ca. 135 

Ma (Early Cretaceous). This discrepancy may arise from limitations of the K-

Ar whole-rock dating method used (Blake et al. 1977), where presence of 

excess Ar is possible, and thus the Late Jurassic metamorphic age is rejected 

here.  

Since Triassic to Early Cretaceous shallow-water volcaniclastic sediments 

occur to the west, and deeper-water sediments (with the same origin) to the 

east, and volcanic rocks and shallow intrusions are absent in the Central 

Terrane, Meffre (1995) and Cluzel & Meffre (2002) have suggested that the 

Teremba and Central Terranes are respectively the onshore and offshore parts 

of the same fore-arc basin. This view is also supported by a westwards-

increasing metamorphic gradient in the HP-LT Boghen terrane (Guérangé et 

al., 1975; Paris, 1981), thus implying westwards-dipping Mesozoic 

subduction. 

 

Unconformably overlying the three above-mentioned terranes, there is a 

prominent Late Cretaceous (Coniacian to Maastrichtian), volcanosedimentary unit 

(classically referred to as Formation à Charbon) composed of marine shallow 

water sandstone, coal-bearing siltstone, tuffs and volcanic rocks. Sandstones of 
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this unit contain detrital zircon populations which have a dominant (c. 70%) 

component at 90-140 Ma, and a minor (c. 25%) component at 170-240 Ma 

(Aitchison et al., 1998). From probable correlative (Late Cretaceous) sandstones 

at Dumbéa River, Aronson & Tilton (1971) obtained discordant U-Pb zircon data 

that suggested dominant Late Cretaceous, and accessory Precambrian (>1000 Ma) 

age components. The occurrence of unconformable Late Cretaceous sediments 

upon terranes whose greywackes contain reworked Early Cretaceous zircons 

suggest that the pre-Late Cretaceous terranes were amalgamated in early Late 

Cretaceous time.  

 

TECHNICAL  METHODS 

Samples were initially collected for geochemical and isotopic analysis of both 

sedimentary rocks, and volcanic horizons in the three New Caledonia terranes. The 

analytical procedures relating to this study are described in the Appendix 1. 

A small group of representative sandstone samples from the three basement terranes, 

and the Cretaceous cover sequences, were also collected for detrital zircon studies, 

preferably from localities, or general areas where there was reasonable biostratigraphic 

control. Details of detrital zircon preparation procedures, LAM-ICPMS dating 

techniques, and U-Pb data treatment are listed in Appendix 1. 

 

GEOCHEMISTRY OF GREYWACKES AND VOLCANIC ROCKS 
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 Geochemical analyses of 16 volcanic rocks from Teremba Terrane and 21 greywacke 

samples from Teremba and Central Terranes are used here to constrain their origins. 

Permian volcanic rocks of the Teremba Terrane are mainly represented by ash fall 

deposits and/or pyroclastic flows (surge deposits) with occasional massive rhyolite and 

andesite, whereas Mesozoic volcanics (mainly Triassic) are dacitic to rhyolitic with 

many hypabyssal intrusions and only a few subaerial volcanic rocks and rare pillow 

lavas. In the Central terrane, the only volcanic rocks are scarce, massive, island-arc 

basalts (Meffre, 1995). Consistent with field observations, the major element 

compositions range from basalt-andesite to rhyolite (Table 1b). However, the trace 

element patterns allow tholeiitic and calc-alkaline suites to be distinguished. REE 

patterns (Pearce, 1982, not presented) for tholeiites are generally flat and slightly 

depleted in LREE, but, in contrast, calc-alkaline rocks are typically enriched in LREE 

(La to Sm), with the rest of the pattern similar to that of tholeiites. On a REE/trace 

element expanded spider-diagram (Sun & McDonough, 1989) (Fig. 2), all these rocks 

are enriched in LILE and typically display a prominent negative Nb-Ta anomaly, of 

which tholeiites (island-arc tholeiites) have the lowest incompatible element content. 

Except for the occurrence of biogenic carbonate in some samples, that result in 

relatively low SiO2 and high CaO contents (Table 1a), the greywackes, that are almost 

exclusively composed of volcanic lithic and mineral clasts, logically display 

geochemical features that are strikingly similar to those of the volcanic rocks. However, 

on average, the volcanic rocks sampled here are probably more mafic than the bulk of 

the sediment sources of the greywackes. A few of them display almost flat REE 

patterns, whereas the rest are enriched in LREE to various degrees. However, the bulk 
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REE content is more variable in the volcaniclastic sediments than in volcanic rocks, a 

possible consequence of limited dilution by weathering products and pelagic sediments. 

REE/trace elements patterns are closely similar to that of volcanic rocks (Fig. 2) and 

similarly indicate a volcanic-arc origin. Owing to the clastic mineral composition and 

similar geochemical features, greywackes and volcanic rocks appear to be derived from 

a similar magmatic source. Considering the westward coarsening and absence of erosion 

features within Mesozoic series, the greywackes are most likely derived from the 

erosion of volcanic rocks and coeval plutonic or shallow intrusive rocks which are now 

located to the west of present-day New Caledonia, e.g. in the Lord Howe Rise (Cluzel & 

Meffre, 2002). 

 

ND-SR ISOTOPE GEOCHEMISTRY OF GREYWACKES 

 

12 greywacke samples were selected for isotope analysis in order to identify their source 

rocks. In order to remove the biogenic carbonate which is obvious in some greywackes, 

all analysed samples have been leached with cold acetic acid. Most of them plot within 

a very narrow range of variation (Fig. 3) with positive εNd (+0.9 < εNd < +3) and low 

εSr (-4 < εSr < +25) values, that are typical of magmatic rocks derived from an 

undepleted mantle source with no evidence of contamination by sediment or continental 

crust rocks. Two samples display slightly negative εNd values (-6.7 < εNd < -2.8) 

whereas εSr remains only slightly positive (+9.5 < εSr < +25), implying a very limited 

contamination by a lower continental crust component. Only one sample displays a 

positive εSr (+212) together with a high Th content (13.8 ppm) consistent with the 
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involvement of a terrigenous (sedimentary) component, either by contamination of the 

mantle source, or more probably by mixing of the volcaniclastic component with a 

small amount of terrigenous argillite. It is worth noting that such differences in isotope 

ratios are not accompanied by noticeable geochemical changes (see Fig 2). 

In summary, the Mesozoic greywackes are derived from a volcanic-arc source with 

almost no contamination by continental crust or pelagic sediment. As already pointed 

out by Meffre (1995), the original material (andesite, dacite and/or rhyolite) is similar to 

that of most intra-oceanic volcanic arcs; therefore, Permian-Mesozoic volcanic-arc 

magmas may have been erupted through an oceanic lithosphere or a 

thinned/intermediate continental crust rather than in a "normal" continental active 

margin. If this is the case, then any older zircons (pre-Permian) must be recycled either 

from older sediments derived from continental sources, or entrained as xenoliths within 

deep primary sources of unknown location. Thus, it appears likely that, as proposed by 

Cluzel & Meffre (2002), Central and Teremba terrane sediments accumulated in a fore 

arc region, partly upon a trapped oceanic crust element now represented by the Koh 

ophiolite (Fig. 1). 

 

DETRITAL ZIRCON GEOCHRONOLOGY 

Detrital zircon U-Pb age data for greywackes from nine localities (Table 3) in three 

New Caledonia terranes are presented in three forms. 

Firstly, in Figs. 4-1 to 4-9, all 206Pb/238 zircon ages are treated with equal weight as 

combined probability density/histogram diagrams for each sample. These diagrams 

show individual points of detail well, but taken together, the nine diagrams are difficult 
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to compare visually. Thus, secondly, a summary table (Table 4) lists only those ages 

that form statistically significant components on the probability density plots of Fig. 4 

(see also Appendix 2), and these are then displayed in Fig. 5, taking into consideration 

their proportional contribution to the total zircon set. Thirdly, in Tables 5A, and 6A, all 

ages of the New Caledonia age datasets are used, by displaying the percentage of the 

zircon ages that fall within selected geological periods. In these diagrams, the data are 

compared with published datasets from New Zealand Eastern Province terranes (Table 

5B) and selected northeastern Australian terranes (Table 6B) (Adams et al. 2007, 

Korsch et al. 2008 in press).   

 

Formation á Charbon 

Sandstone at locality (1), correlative with Formation à Charbon nearby, has dominant 

Cretaceous (>80%), and a minor, Triassic-Jurassic (12%) zircon groups, but few (5%) 

Precambrian zircon ages (Fig. 4-1, Fig. 5, and Table 5A). The small, youngest zircon 

age component, 85±2 Ma, is in agreement with the estimated Coniacian-Santonian age, 

but this is overwhelmed (>70%) by several mid- and Early Cretaceous subcomponents, 

95±1, 102±4,110±2, 119±2 and 130±2 Ma. These latter clearly reflect reworking of a 

long-lived active Cretaceous igneous province, relatively isolated from older, 

‘continental’ inputs. Whilst the youngest zircons are probably derived from 

contemporaneous, dacite-rhyolite volcanic sources, c.85 Ma, it is probable that the older 

dominant group at 100-120 Ma reflects erosion not only of older parts of the igneous 

province but also reworking of detrital zircons from underlying Albian greywackes, 
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such as those at locality (2) (see below). The latter might also contribute the few 

inherited, Precambrian zircons. 

 

Central  Terrane  

Central Terrane greywackes at localites (2) and (3) have quite dissimilar detrital zircon 

age patterns.  

The locality (2) was originally mapped as a Late Jurassic succession within the terrane, 

but arising from the new Cretaceous zircon age data below, a closer search yielded 

Early Cretaceous fossils (H. Campbell pers. comm.). Its zircon age pattern is similar to 

that of Formation á Charbon at locality (1), with dominant Cretaceous (>80%), and 

minor (11%) Precambrian, groups (Fig. 4-1, Fig. 5, and Table 5A). Within the 

Cretaceous group, the youngest statistically significant age component, 108±2 Ma, is 

the major one, and provides a maximum Albian age for deposition, supporting the new 

fossil age assignment.  

In contrast, the Late Jurassic locality (3) has far fewer (28%) contemporary zircons (a 

single statistically significant component is 162±3 Ma), and a dramatically increased 

early Paleozoic-Precambrian proportion (>70%), with age components at 513±5, 539±6, 

557±5, and 592±5 Ma. 

 

Boghen Terrane 

The zircon age pattern for the Boghen terrane greywacke (4) is similar to the Late 

Jurassic, Central (11), and Late Triassic Teremba (6) Terrane samples, having low 

(<25%) proportions of contemporary zircons, and high proportions (>40%) of inherited, 
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early Paleozoic-Precambrian zircons (Table 5A). Significant older zircon component 

ages are Cambrian-late Neoproterozoic, 505±4, 563±6, and 584±5 Ma, similar to those 

in Central (3) and Teremba (5, 6, 8) Terrane samples. At this locality, the greywacke 

depositional age is uncertain, but the youngest zircon age group, at 170±2 Ma (which is 

just statistically significant), suggests a Middle Jurassic maximum. However, three 

younger individual ages, 137±2, 141±2 and 149±2 Ma reduce this to Early Cretaceous-

Late Jurassic.  

 

Teremba Terrane 

The Teremba Terrane samples from localities (5)-(8) have their youngest zircon ages 

close to their estimated Middle-Late Triassic depositional ages (Figs. 4-5 to 4-8, and 

Table 5A), and with the exception of locality (8), these form statistically significant age 

components. They thus probably reflect contemporary volcanic-arc sources. This would 

be particularly true of greywacke at locality (7), which unlike the remainder of the 

terrane samples, has an extremely high proportion (96%) of Triassic zircons, with the 

youngest age component, comprising 33% of the total, at 225±2 Ma (Late Triassic, 

Norian). An age discrepancy is apparent in the sample from locality (6). This is mapped 

within an area of Middle Triassic rocks (237-245 Ma), although four zircon ages c. 215 

Ma (Fig. 5) are clearly younger than this, and suggest that the sample is from a horizon 

no older than Late Triassic (Norian). With the exception of locality (7), the remaining 

Teremba Terrane samples have major proportions (>50%) of early Palaeozoic and 

Precambrian zircons and several statistically significant age components falling in the 

latest Neoproterozoic, c. 550-590 Ma (Fig. 5).  
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DISCUSSION  

None of the New Caledonia terranes have sandstones with detrital zircon age patterns 

sufficiently distinctive to discriminate one terrane from another (Fig. 5). Rather, all the 

zircon patterns fall between two extremes: those dominated by contemporary, volcanic 

(Fig. 5: 2, 7) sources, and those by inherited, continental (Fig. 5: 4, 8) sources. In this 

sense, it could be argued that all the terranes had broadly similar depocentres, capable of 

providing both substantial contemporary volcaniclastic detritus, from island-arc centres 

(perhaps local) and terrigenous clastic material from an old hinterland of continental 

character (perhaps more distant). However, the sandstones dominated by contemporary 

volcanic inputs are more typically Cretaceous, whilst those dominated by inherited 

inputs are all pre-Cretaceous. This may indicate that New Caledonia became more 

isolated from direct continental zircon sources in the late Early Cretaceous, probably at 

a time of extension, before major rifting created Tasman Sea ocean floor at c. 85 Ma 

(Santonian).  Alternatively, the contemporary Cretaceous volcanism may have been so 

dominant as to completely overwhelm any continuing continental zircon inputs. The 

zircon sources of the contemporary volcanic and older inherited continental components 

are thus discussed separately below. 

 

Contemporary zircon sources for sediments in the New Caledonia region 

Those youngest zircon age components in the Central and Teremba terrane greywacke 

samples that overlap estimated depositional ages, probably originate in contemporary 

volcanic centres and, given the first-cycle immature nature of the sediments, are 
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probably of local origin. Substantial volcanic centres of appropriate age and 

composition are absent in New Caledonia, and one must speculate that these are now 

either entirely eroded away or hidden elsewhere in a hinterland (in Cretaceous times) of 

the Norfolk or Loyalty Ridges and/or northern Lord Howe Rise. Early Triassic diorites 

and granodiorites, perhaps connected to volcanic centres, do occur on the Dampier 

Ridge, and southern Norfolk Ridge (McDougall et al. 1994, Mortimer et al. 1998), but 

pre-Cretaceous rocks are not known from either the Loyalty Ridge or northern Lord 

Howe Rise. None of these regions appears to have Late Triassic-Jurassic rocks, of 

appropriate extent or composition, to provide zircon sources for New Caledonia 

sediments. For the Late Jurassic-Early Cretaceous sediments, the acidic volcanic centres 

of Whitsunday Islands, Queensland, which might extend north and south along the 

northern Lord Howe Rise and Marion Plateau, would provide far more suitable zircon 

sources. In addition, mid-Cretaceous rhyolites are known from the southern Lord Howe 

Rise (McDougall and Van der Lingen 1994). To provide zircons for the New Caledonia 

terrane depocentres from adequate sediment sources, we must therefore speculate that 

offshore island-arc volcanic centres of Late Triassic to Early Cretaceous age, which are 

now hidden, once existed along the northern Lord Howe Rise and Marion Plateau. In 

addition these centres might have formed an intermittent barrier to rivers originating in 

eastern Gondwanaland which supplied the older, continental zircons. 

 

Inherited continental zircon components 

It is notable that the older (>250 Ma), zircons in the New Caledonia sediments are 

overwhelmingly (>90%) early Paleozoic and Precambrian (mostly 500-700 Ma). In 
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particular, there are few individual zircons in the Middle Permian-Early Triassic, 245-

270 Ma (Figs. 4, 5) age range, and none constitute statistically significant age 

components. This is surprising, because voluminous plutonic (and volcanic) complexes 

of this age (and also Early Permian-Late Carboniferous) are extensive within the New 

England Orogen, along 2000 kilometres of the northeastern, present-day, margin of 

Australia (Veevers 2000). This fold-belt would be have been undergoing uplift and 

erosion at this time, sufficiently to supply marine depocentres at the Gondwana 

continental margin at a latitude similar to present-day New Caledonia.  This is indeed 

the case for Permian-Triassic volcaniclastic sedimentary rocks of the Gympie Terrane of 

southeast Queensland (Table 4), now situated between the main plutonic/volcanic arcs 

of the New England Orogen and New Caledonia in its present position (Korsch et al., 

2008 in press).  In addition, the petrological, geochemical, mineralogical, faunal and 

particularly detrital mineral evidence (Pickard et al. 2000, Adams & Kelley 1998, 

Adams et al. 2007), indicate that the depocentres of several New Zealand Permian-

Jurassic, Eastern Province tectonostratigraphic terranes developed at these latitudes 

(Fig. 6). Their sedimentary rocks always contain substantial proportions of Early 

Triassic-Late Permian zircons and micas, c. 245-270 Ma. Depocentres such as those of 

the Gympie Terrane of Australia and the Eastern Province terranes of New Zealand, 

would thus explain the absence of Late Permian-Early Triassic zircons in New 

Caledonia rocks, by providing an effective sediment trap inshore of New Caledonia. 

There is the additional possibility that present-day Zealandia continental fragments such 

as the Lord Howe Rise, Marion Plateau, and Queensland Plateau might have existed 

then, and were elevated, to provide an additional barrier.   
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However, the early Paleozoic and Precambrian zircon components in New Caledonia 

sediments clearly indicate major access to older continental sources. The same is true of 

Late Paleozoic (probable Carboniferous) terrane metasediments of the Shoalwater and 

Wandilla terranes in eastern Queensland (Table 6, Korsch et al., 2008 in press). In 

contrast, pre-Carboniferous zircons are rare in the Permian-Triassic rocks of the Gympie 

Terrane (Table 6). It is possible that Early Paleozoic and Precambrian zircons might 

have originated locally in basement rocks now hidden under Cenozoic cover on the 

northern Lord Howe Rise, Marion and Queensland Plateaux, but in the absence of any 

evidence, this is purely speculative. It is perhaps more realistic to look to more distant, 

interior sources along the Gondwana margin, where early Paleozoic (470-550 Ma) 

zircons could clearly originate from Early Ordovician granitoids and Cambro-

Ordovician rhyolites of the Mt Windsor Volcanics in the Charters Towers Province 

(Veevers 2000). However, the origin of the Precambrian zircons is more problematical; 

for the major part, they could be recycled from Paleozoic metasediments (Cambrian-

Carboniferous) in the Charters Towers, Broken River and Hodgkinson Provinces of 

northeastern Queensland. In addition, there are also potential primary igneous sources, 

mostly late Paleoproterozoic and early Mesoproterozoic metavolcanics and gneisses 

(1500-1800Ma), in the Georgetown, Coen and Yambo Precambrian inliers of the same 

region (Blewett et al. 1998). However, no primary igneous sources for the late 

Mesoproterozoic-early Neoproterozoic (950-1150 Ma) zircons are known. 

  

Comparison of New Caledonia and New Zealand terranes  
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Similar to the New Caledonia sandstones, Eastern Province terrane metasediments of 

New Zealand share the same division between contemporary (probably volcanic) and 

inherited (probably continental) zircon sources. Like New Caledonia, there is difficulty 

in locating extensive volcanic sources of appropriate composition. The inherited zircon 

inputs are quite different in their proportions, and this feature suggests that the two 

regions occupied different positions at the eastern Australian Gondwanaland margin in 

Permian to Cretaceous times. Although now distant, New Zealand depocentres were 

then much closer to the New England Orogen, whilst New Caledonia, now adjacent, 

was formerly remote from it. 

 

TRIASSIC-JURASSIC COMPARISONS 

Triassic-Jurassic, Teremba Terrane rocks have tectonic associations and faunal 

assemblages similar to the New Zealand Murihiku Terrane (Campbell 1984, Ballance & 

Campbell 1993). However, in the latter, the major to dominant (40-80%) zircon age 

components are close to the depositional age, characteristic of an active volcanic margin 

setting. In the Teremba Terrane however, these youngest zircon groups are usually 

diminished (<25%) and there is instead a substantial component (usually >50%) of 

inherited early Paleozoic-Precambrian zircons. This latter feature is quite unlike any 

Permian, Triassic or Jurassic examples from the Murihiku Terrane (Table 5B, MATI4, 

PIOX5, HURW4 respectively). The proportion of early Paleozoic-Precambrian to 

Triassic-Permian zircons in the Teremba Terrane samples is particularly high, ratio >2.0 

(Table 5A), and cannot be matched in any New Zealand terranes, where the ratio is 

always <1.0. The closest comparisons are in the New Zealand Torlesse Terrane, where 
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Triassic samples (Table 5B, RBW1 to PUD1) are the most zircon-rich, carry the highest 

inherited zircon component (>40%), and the ratio is c. 0.7, e.g. Table 5B, NGQ2. A sole 

exception to this behaviour occurs in the Akatarawa microterrane (a 1 km2 enclave 

within the Torlesse Terrane) at a Late Permian locality (Table 5B, TAKA10), where the 

zircon pattern (with ratio, c. 2.0)  resembles that from the Late Triassic, Teremba 

locality (5). Significantly, the microfaunas in this microterrane are considered of 

Tethyan type (Hada et al. 1995) i.e. of more northerly, lower-latitude origin than that of 

surrounding Torlesse rocks. (An attempt to pursue this comparison further was 

unsuccessful, as several Teremba terrane samples of similar Late Permian age were 

found to be exceptionally zircon-poor and unfavourable for detrital zircon study).  

Like the New Caledonia examples, volcanic sources for contemporary zircon inputs into 

Triassic or Jurassic depocentres of the New Zealand Eastern Province terranes are rarely 

seen, and where present they are often very minor. This is surprising, as the coarse, first-

cycle, immature nature of the sediments suggests short transport from local sources. For 

this reason, the terranes are considered  ‘suspect, i.e far-travelled, and tectonically 

transported from sediment depocentres formerly much closer to the Australian (or 

Antarctic) Gondwanaland margin. 

  

CRETACEOUS COMPARISONS 

New Caledonia Cretaceous sedimentary successions have two potential points of 

comparison with New Zealand: (1) Early Cretaceous rocks form a major part of the 

Torlesse composite Terrane, as basement accretionary complexes (e.g. Pahau terrane) in 

eastern North Island and northeastern South Island, and (2) Late Cretaceous successions 
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are locally present at the base of widespread Cretaceous-Cenozoic cover rocks 

throughout New Zealand, and also within the Northland, Mt. Camel, and East Cape 

allochthons of the North Island (Fig. 6, Table 5B) (Suggate 1978). Similar to New 

Caledonia counterparts, the Cretaceous Torlesse greywackes (Table 5B, Pahau Terrane 

section) all carry significant proportions (>30%) of early Paleozoic and Precambrian 

zircons, but in contrast, carry an important additional component (>30%) of Triassic-

Permian zircons (a distinctive feature of all Eastern Province terrane rocks) that 

weakens the comparison. This latter problem does not arise in Cretaceous rocks from 

the Northland, Mt. Camel, and East Cape allochthons (Table 5B, allochthon section), 

since they have fewer (<10%) Triassic-Permian zircons, but in turn, their much-

diminished proportion (<5%) of early Paleozoic and Precambrian zircons also weakens 

any comparison too. Unlike New Caledonia there is better evidence for contemporary 

magmatism in late Early and Late Cretaceous time. Volcanic centres are widespread in 

the South Island, with major centres that include acid-intermediate magmatism at Mt 

Somers, Mt Mandamus and in the Clarence/Awatere river valleys, and minor horizons 

occur in Otago and north Westland (Suggate 1978), and offshore on the southern Lord 

Howe Rise (McDougall & Van der Lingen 1974). Major Mesozoic granitoid complexes 

of the Separation Point Batholith of Nelson (and its counterpart in Fiordland) and the 

Paparoa Suite of north Westland (Muir et al. 1994, 1996) almost certainly supplied 

contemporary volcanic centres, now uplifted and removed.  On this basis, the 

comparison of New Zealand with New Caledonia during the Cretaceous is poor. Whilst 

having major volcanic/plutonic late Early and Late Cretaceous zircon sources nearby, 

the New Zealand sediments maintained access to older continental zircon sources, (1) 
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by recycling of older zircons from underlying Permian-Triassic and early Paleozoic 

basement rocks within the New Zealand region, and (2) perhaps more distantly, from 

primary igneous sources in the southernmost part of the New England Orogen. In 

contrast the New Caledonia Cretaceous sediments evaded sources within the New 

England Orogen, yet maintained some access to older zircon sources. The latter might 

have been recycled from late Early Cretaceous sedimentary rocks (cf. sample NCAL10 

of the Central terrane) within New Caledonia, but now largely hidden or eroded away. 

Prior to 85 Ma (oldest seafloor in the Tasman Sea), during the initiation of rifting in 

mid-Cretaceous times, the development of the extensive Whitsunday Islands (eastern 

Queensland) silicic volcanic province, would have provided an important zircon source. 

This had the additional benefit of proximity to the early Paleozoic and Precambrian 

provinces of northeastern Queenland.  However, it must be recognised that this scenario 

is much weakened if one accepts a continuation, as suggested by Mortimer et al. (2008), 

of the New England Orogen beyond of its northernmost onshore occurrence on to the 

Queensland Plateau.  Sediments derived from this sources in this region would then 

surely contain the Late Permian-Early Triassic zircon components so characteristic of 

the New England Orogen, but which are mostly absent in New Caledonia.  

 

New Caledonia terranes at the eastern Australia Gondwana margin 

The Late Permian-Late Cretaceous terranes in New Caledonia and New Zealand have a 

similar tectonic setting in an accretionary prism environment. Terrane sediments in both 

areas show varying combinations of contemporary, redeposited volcaniclastic and 

inherited, continental clastic sediment inputs. However their geographic positions 
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relative to the Gondwanaland foreland must be quite different, with older Paleozoic-

Precambrian zircon sources more apparent in the New Caledonia terranes, at the 

expense of the Late Permian-Early Triassic sources which dominate the New Zealand 

terranes.  In New Caledonia, whilst the persistent contemporary volcaniclastic sediment 

sources are probably local, the older zircons sources are almost certainly outside the 

immediate New Caledonia region. The nearest available plutonic and metamorphic 

complexes of early Paleozoic-Precambrian age are in northeasternmost Queensland, at a 

point where the Australian Precambrian craton comes closest to the Pacific margin of 

Gondwanaland. However, it should be noted that the available age data for the 

northernmost Queensland Precambrian basement rocks Blewett et al. 1998), are 

dominantly early Mesoproterozoic, 1500-1600 Ma, rather than the younger 

Precambrian, 900-1100 Ma, ages more commonly seen in the New Caledonia detrital 

zircon sets.  In this scenario, there is a requirement for long sediment transport, up to 

2000 kilometres, via a river/delta/submarine canyon system, from sources that includes 

Cambrian-Ordovician rocks, such as those of the Broken River Province, and Neo- and 

Mesoproterozoic rocks, such as those in several adjacent Precambrian inliers. In the 

Triassic-Jurassic, any such river system must direct such sediments from these sources 

quite far offshore and then transport it by longshore currents into the New Caledonia 

region, to avoid capture of zircon sources from the northern New England Orogen (Fig. 

6). This latter requirement is especially difficult, as there can be no sediment input into 

such longshore currents along the 500 kilomtere sector of the northeast margin of the 

orogen. However, Leitch et al. (2003) have suggested a similar scenario for derivation 

of late Paleozoic, Shoalwater and Wandilla terrane sediments in eastern Queensland 
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from older continental sources in northeastern Queensland. The continental sediment 

supply must diminish substantially in Cretaceous times, either as a consequence of 

gradual erosion of the source areas, or the intervention of a sediment trap or barrier e.g. 

initiation of rift basins or volcanic arcs offshore.  

 

Alternatively, the sediment transport may have been relatively short (c. 200km), into 

depocentres at the immediate Gondwana margin of northeasternmost Queensland 

(Fig.6). In Early Cretaceous times, such depocentres would have been be consolidated 

and tectonically transported southwards, as suspect terranes, by dextral strike-slip, 

margin-parallel displacement, outboard of the New England Orogen, and into the New 

Caledonia region.  The Triassic-Jurassic terranes transported in this way would 

gradually approach a hinterland to New Caledonia, comprising local Cretaceous 

volcanic arcs e.g. Whitsunday Islands, Maryborough Basin, and hence become 

dominated by their contemporary volcaniclastic sediment inputs. Pickard et al. (2000) 

and Adams et al. (2007) have suggested this kind of scenario for transport the Late 

Palezoic–Mesozoic, Torlesse composite terrane of New Zealand from eastern Australia. 

However, like the New Zealand example, this scenario encounters anomalies, because 

the relative original positions of the New Caledonia sediment depocentres at the 

Gondwanaland margin would been the opposite of their final relative terrane positions 

in New Caledonia. The Boghen terrane, whose sediment depocentre had most 

‘continental’ (inherited) zircons, would now be outboard of the Teremba Terrane, whose 

sediment depocentre was more local, and had the least ‘continental’ influence. 
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SUMMARY OF CONCLUSIONS 

Geochemical and Sr-Nd isotopic characteristics of Mesozoic greywackes in the 

Teremba and Central Terranes of New Caledonia indicate a uniform offshore, probable 

subduction-related tectonic environment, with minor continental sediment contribution. 

Detrital zircon U-Pb age patterns for sandstones of the Formation á Charbon, and 

greywackes of the Central and Teremba Terranes indicate local offshore depocentres in 

an active margin tectonic environment, with substantial contemporaneous volcaniclastic 

sediment supplies in Late Triassic, Late Jurassic and particularly mid-Cretaceous times. 

In the Teremba Terrane, an older, inherited zircon component from continental sources 

is usually (but not always) important, most commonly Precambrian and Cambrian in 

age. In contrast, the Boghen terrane sandstones have much diminished contemporary 

(Late Jurassic) zircon contributions, and a major contribution (>50%) of Early Paleozoic 

and Precambrian zircons.  In all terranes there are few late Paleozoic-early Mesozoic 

zircons, especially in the age range Late Permian to Early Triassic, which latter feature 

would thus probably exclude sediment sources from along the adjacent Gondwana 

margin in the northern New England Orogen.  It is concluded that the primary 

contemporary zircon sources must lie hidden, or are now eroded, somewhere in the New 

Caledonia hinterland, on the Loyalty and Norfolk Ridges, or northern Lord Howe Rise 

and Dampier Ridge, or Marion and Queensland Plateaux.  A degree of local zircon 

reworking, from Triassic into Jurassic, and Jurassic into Cretaceous sediments is 

possible.  The continent-derived zircons probably have primary, and/or reworked 

detrital sources in Paleozoic and Precambrian rocks of northeast Queensland. Here there 

are several Proterozoic igneous/metamorphic inliers and Paleozoic sedimentary 
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successions of the Charters Towers, Broken River and Hodgkinson Provinces, which 

are close to the Gondwana margin and beyond the northernmost extremity of the New 

England Orogen. The sediment supplied from these areas must have been transported 

southwards by longshore currents, outboard of the orogen, to depocentres in New 

Caledonia.  Alternatively, the depocentres themselves may have originated closer to 

source at the contemporary Gondwana margin, and then transported tectonically 

southwards, as suspect terranes in Early Cretaceous times, to their present New 

Caledonia position. This latter scenario resembles that suggested for New Zealand 

Permian-Cretaceous sediment depocentres that developed close the Gondwana margin 

of northeastern Australia. 
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FIGURE CAPTIONS: 
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Figure 1a: Geological map of New Caledonia basement terranes and U-Pb geochronology sampling 

localities.   

Figure 1b: New Caledonia in the Southwest  Pacific region in Cretaceous times.  

Figure 2a: Expanded REE-trace elements spider-diagram normalised to the average MORB for selected 

New Caledonia terrane greywackes (normalising values are from Sun & McDonough, 1989). Labelled 

patterns refer to sediments which have slightly negative εNd (see Fig. 3 and Table 2) 

Figure 2b: Expanded REE-trace elements spider-diagram normalised to the average MORB for selected 

Teremba terrane volcanic rocks (normalising values are from Sun & McDonough, 1989) 

Figure 3: Sr-Nd evolution diagram for selected New Caledonia terrane greywackes showing   

remarkably constant isotopic ratios through time and the quasi-absence of contamination. Arrows with 

interrogation marks refer to either the array resulting from magma contamination by pelagic sediments 

(moderately negative εNd, high εSr); or, alternatively contamination by lower continental crust (negative 

εNd, slightly positive εSr). 

Figure 4: Combined histogram and probability density diagrams of detrital zircon age data from nine 

greywackes from New Caledonia terranes, Statistically significant age components (expressed in 

millions of years) are shown in bold italics. Ages >600 Ma are stacked at right side. Ages < 1000 Ma 

are 238U/ 206Pb data, ages > 1000 Ma are 207Pb/206Pb data.   

Figure 5: A summary of detrital zircon 238U/ 206Pb age component data from the cumulative probability 

diagrams (Fig. 4) of nine greywackes from New Caledonia terranes. These component age data are 

stacked from top to bottom in ascending biostratigraphic age order (where known), or estimated 

maximum and minimum stratigraphic ages derived respectively from youngest detrital zircon age 

components, and metamorphic ages. The height of each databox indicates the component’s proportion 

of total (see % scale bar at right) and the width is the component age error (at 95% confidence limits. 

The dot-dash line is the stratigraphic age limit - all zircon data should be older than this. 

Figure 6: Configuration of Eastern Gondwanaland during the Mesozoic (modified from Gaina et al. 

1998; Sutherland 1999; and Hall 200), showing possible position of sources of New Caledonia terrane 

sediments, suggested depocentres, and their final destinations for terrane assembly. Black arrows show 

generally local transport of sediments derived from contemporary volcanic arc sources. Light grey 
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arrows show more distant transport of older, continent-derived sediments from the Gondwana margin. 

Two scenarios are suggested: in Fig. 6A, the continent derived-sediments are supplied to on long-shore 

river systems to depocentres in New Caledonia and in Fig. 6B, the continent-derived sediments are 

supplied to more local depocentres at the Gondwana margin, which are then tectonically transported in 

Early Cretaceous times, as suspect terranes, to a final destination in New Caledonia.  The positions of 

equivalent New Zealand depocentres and terranes are taken from Adams et al. (2007). 
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Appendix I: Technical details 

GEOCHEMICAL AND ISOTOPIC ANALYSES 

Whole rock geochemical analysis of representative volcanic rocks and greywacke 

samples are by ICP-AES for major elements and ICP-MS for REE and other trace 

elements (Table 1) at the Service d'Analyse des Roches et des Minéraux of Vandeuvre 

(Centre National de la Recherche Scientifique, France), using the methods of 
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Govindaraju and Mevelle (1987). To avoid pollution by biogenic carbonate without 

affecting other mineral phases, all the greywackes samples have been leached with 

acetic acid prior to isotope analysis. Nd and Sr isotopic analyses (Table 2) were 

determined at the Clermont–Ferrand isotope laboratory by thermal ionization mass 

spectroscopy (TIMS) using a VG54E instrument in dynamic double collection mode 

and corrected for mass fractionation by normalization to 86Sr/88Sr = 0.1194 and 

146Nd/144Nd = 0.7219. The Sr–Nd sample decomposition and chemical separation 

procedures are those of Pin and Santos Zalduegui (1997). Sr and Nd isotopic ratios were 

corrected for radiogenic decay according to their assumed stratigraphic age. The 

concentrations of Sm, Nd, Rb and Sr are given in µg/g, and the precision of 147Sm/144Nd 

and 87Rb/86Sr measurements are 0.2% and 2%, respectively, at the 95% confidence 

level. The 143Nd/144Nd ratio measured for the La Jolla isotopic standard during the 

period of analysis gave a mean value of 0.511849 (SD = 8 x 10–6, n = 70). The εNdi is 

the initial 143Nd/144Nd expressed as a fractional deviation in parts per 104 from the 

contemporaneous value of a chondritic (bulk earth) reservoir with present-day 

143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1966 (Jacobsen & Wasserburg 1980). 

87Sr/86Sr ratios were normalized to 86Sr/88Sr = 0.1194, with an uncertainty equal to or 

better than ±0.00004 (two standard errors on the mean). The 87Sr/86Sr ratio measured for 

the National Institute of Standards and Technology, Standard Reference Material (NIST 

– SRM) 987 during the period of analysis gave a mean value of 0.71023 (SD = 2.7 x 10–

5, n = 29). 

 

DETRITAL ZIRCON DATING 
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Detrital zircon dating was done at the ARC Key Centre for Geochemical Evolution and 

Metallogeny of Continents (GEMOC), Macquarie University, Sydney, Australia. Eight 

samples for detrital zircon studies were chosen from representative collections taken at 

stratigraphic horizons where coarse-medium greywacke and sandstone predominate, and 

preferably with established biostratigraphic age control (Table 3).   Since these localities 

are in lower metamorphic grades (typically zeolite to lower pumpellyite-actinolite 

mineral facies), they are essentially unfoliated rocks and free of metamorphic zircon.  

To minimise sample handling for zircon recovery, a 1 kg sample was collected at the 

field outcrop as 5 mm-size gravel, removing all weathered rinds, blemishes, inclusions 

and joint faces. This enabled direct crushing in a tungsten carbide swingmill 2-3 times, 

for 5-10 seconds, sieving at each stage through a single, 250 micron mesh sieve. The 

sieved material was washed and decanted several times in water, to remove mud-size 

fractions, thus retaining a 200-300 g sample in a ~30-250 micron size range, which was 

then dried. A heavy mineral concentrate was obtained from a 100 g portion in sodium 

polytungstate liquid, adjusted to a specific gravity of 2.95-2.98, from which about 500 

zircon grains were then hand-picked as randomly as possible, i.e. taking all grains 

within a 1 mm microscope stage field of view. Of these, 50-100 grains were mounted in 

resin to be polished for LA-ICPMS (laser-ablation inductively-coupled plasma-source 

mass spectrometry) analysis. 

   Analytical protocols relating to ablation procedures, mass spectrometric analysis and 

data treatment are discussed in detail in Jackson et al. (2004). These authors’ preferred 

procedures were followed in this work, using a Merchantek pulsed Nd-YAG laser, 

frequency-quintupled to operate at 213 nm, and an Agilent 7500S ICPMS instrument. 
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   In all cases, the ablated spot size was in the range 30-40 microns, with the ablation 

time about 60 seconds, preceded by 60 seconds background measurement, and followed 

by 60-120 seconds washout.  Groups of 10-12 zircon sample grain analyses were 

preceded and followed by duplicate analyses of firstly, the in-house zircon standard GJ-

1, and secondly, by 1-2 analyses each of the international zircon standards, MT-1 and 

91500. The GLITTER data interpretation software package 

(www.els.mq.edu.au/GEMOC/) enabled analysis of U, Pb and Th absolute count rates, 

and all relevant isotopic ratios, during the run cycle, and the elimination of unstable 

beam intervals, and rejection of data where zircon core regions were inadvertently 

encountered. 

Using the laser spot size of 30-40 microns enabled age measurements to be made 

adjacent to crystal margins, rather than cores, and preferably, close to crystal 

terminations (as defined by two crystal edges). Isotopic data were continually monitored 

during ablation to check that zircon cores were not being intersected. Efficient use of the 

instrument time dictated that strongly unimodal patterns were investigated only to 

analysis totals of N=33-50, bimodal patterns to N=50-70, and strongly polymodal 

patterns to N=100 (N.B. throughout this work ‘N’ and ‘n’ refer to dataset totals and 

subgroups respectively). This allowed significant age groups (n) comprising >5% of the 

total to be revealed by three or more analyses (Andersen 2005). 

Full 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th age data (and 1 standard errors) 

are listed in the Appendix Table 1. All ages used here are 206Pb/238U zircon ages where 

<1000 Ma, and 207Pb/206Pb ages where >1000 Ma. A small minority of the analyses 

have common Pb corrections (using protocols of Andersen 2002). The age datasets are 
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shown in Fig. 4 as combined probability density/histogram diagrams (using a common 

X-axis format, 0-600 Ma, with ages >600 Ma stacked at right). 

Age groupings in probability density plots of the zircon age sets (Fig. 4) were 

determined by visual inspection and using deconvolution (and weighted average) 

algorithms in the ISOPLOT-Ex (version 3.0) software (kindly provided by K. Ludwig, 

United States Geological Survey). The treatment of these age datasets was constrained 

by two conservative criteria imposed to reveal only statistically significant age groups 

viz. those with n>3 concordant 206Pb/238U v. 207Pb/235U ages, and which comprise >4% 

of the total population (N). This was relaxed to n≥3 for datasets with N<30.  Following 

Andersen (2005), the age groups are discussed using five categories: ‘dominant’ >80%, 

‘large’ 50-79%, ‘major’ 20-49%, ‘minor’ 5-19%, and ‘accessory’ <5%, of the total. A 

summary of the statistically significant component ages and errors, their number (n) and 

proportion (as %) of the total (N), is given in Table 4. 

Detrital zircon age data for other previously-published and unpublished studies are 

collated in Tables 5 and 6, and presented with the present New Caledonia datasets. In 

these tables, all zircon age data are divided into selected geological periods.  The New 

Zealand timescale used here is that of Cooper (2005). 
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