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Abstract 

This paper reviews the traditional approach to sediment budget studies in geomorphology, 

new approaches and more specifically the potential impact of new methodological advances. 

Each component of the budget is discussed including the spatial and volumetric estimations of 

erosion, deposition and storage and the precision and accuracy of flux rate estimation. 

Examples are used from recent work in Germany, The Netherlands and the UK and include 

the pedogenic approach to erosion estimation, remote sensing (LiDAR), geophysics and 

sediment-based dating techniques for flux rate estimation. The precision and accuracy of 



catchment sediment flux estimates based upon sediment storage is not only dependant upon 

volumetric accuracy but also on the precision and accuracy of sediment dating. In this area 

there has been a revolution with direct sediment dating techniques (TL, OSL, ESR) freeing 

budget studies from the constraints and biases of radiocarbon. Of particular importance is the 

use of cosmogenic nuclides for dating but which can also be used to derive long-term erosion 

rates but only using a steady state assumption. Finally a tentative initial application of the 

sediment budget approach to Pleistocene terrace staircase in unglaciated basins is discussed. It 

is argued that only now do we have the techniques available to be able to produce accurate 

sediment budget estimations at spatial scales greater than that of zero order basins and over 

time periods greater than that covered by direct observations. 

Keywords : Sediment budget; Sedimentary records; Sediment dating; Alluviation; 

Colluviation; Fluvial terraces 
 

1. Introduction 

A sediment budget is in theory a relatively simple application of the continuity equation 

(Dietrich and Perron, 2006), indeed it can be conceived of as a form of geomorphic 

accountancy where the conservation of mass is given by: 

∂z/∂t=U−E−∇.qs 

and where z is the ground surface elevation, t is time, U is the uplift rate, E is erosion rate and qs is 

the volume flux of sediment and soil (used here to refer to sediment altered by some degree of 

pedogenesis). In the case of short periods of time the uplift rate can be ignored so reducing (1) to: 

∂z/∂t=E−∇.qs 

Assuming that all the operational transfers in the catchment have been recognised then the 

value of such budgets is entirely dependant upon the mass estimation and the temporal 

precision and accuracy. Accurately estimating masses of sediment or soil in storage is not a 

trivial problem let alone the estimation of negative mass i.e. eroded soil. There is an inevitable 

tension between scale and the precision and accuracy of estimation, due to economic 

constraints and time. Whilst it is possible to estimate the colluvial depth of soil to within 10% 

or even better in a small, zero or first order catchment (1–10 km
2
), this is unlikely to be a 

representative area and cannot easily be generalised up to the 10–100 km
2
 catchment scale. 

This estimation problem stems partially from the additive nature of the error through a 

number of budgets units, which generally increases with catchment size, and through the 

propagation of errors of mass and time, when calculating sediment fluxes. However, it is the 

quantification of these terms that is the basis of converting sedimentary records into 

sedimentary budgets. 

Although the basic principles of budgeting sediments are firmly established and widely used, 

the potential of using sediment budgets to better understand catchment fluxes has increased as 

a result of newly developed techniques and further evolved insights. The traditional approach 

(discussed in Section 2), based on field data, has limited applicability potential, as it is time 

and money consuming to gather enough accurate data. In addition, direct dating of sediments 

has been problematic until recently. Several decades of applying this traditional approach to 



estimate sediment volumes and fluxes amplified the problems of budgeting sediments in 

palaeo-environments, such as establishing hillslope-channel connectivity and estimating 

sediment residence time. Lately, new approaches complementary to the traditional approach 

were developed, facilitated by recent technical advances in data acquisition, data storage and 

sediment dating. In this paper, examples of recent work in sediment budgeting are presented, 

using both new techniques within a traditional approach as well as completely new 

approaches to sediment budgeting. Section 2 of this paper discusses several parts of the 

traditional sediment budget study and the latest advance herein. Recent technical advances 

allow for more direct measurement of the extent and volume of sediment bodies, this is 

exemplified by case studies using laser altimetry measurements (Section 3.2), better GIS 

applications (Section 4) and sub-surface remote sensing (Section 3.3). Just as important a 

contribution is the continuously evolving range of available dating techniques (Section 4), 

which enables the construction of a chronostratigraphy for sediment budgets. Lastly, the 

possibilities and limitations of recent and future developments in dating techniques (4.1, 

4.2 and 4.3) and sediment budget approaches (4.4 and 4.5) are discussed. 

2. Traditional approaches 

Traditional approaches are based on sediment-store or soil observation and sampling using 

drilling and the correlation of sedimentary units by inspection in order to construct a 

stratigraphic model in 2D or 3D. An appropriate approach to this problem was the use of 

computers in the correlation of boreholes and the creation of 3D volumetric models 

particularly for the petroleum exploration industry (Hanley and Merriam, 1986). However, 

whilst these systems work well at the geological scale of sedimentary basins they are much 

more difficult to apply to superficial data due to the greater lateral variability and the finer 

spatial resolution required. One approach has been to use an extremely high density of cores 

or boreholes, an excellent example of which is the sedimentary models of the Rhine–Meuse 

delta by Berendsen and Stouthamer (2001). At the opposite end of the spatial spectrum high 

density augering and the excavation of trenches can be part of ‘four-dimensional landscape 

analysis’ (Reiß et al., 2006) which could include budget estimation. However, high density 

augering and coring is extremely time consuming and expensive and is rarely possible for 

short research projects. There are a number of computer programs now routinely used for the 

correlation and visualization of such data, the most commonly used of which is probably 

RockWorks (RockWare™, USA). Early attempts were made in the 1980s to use remote 

sensing but these were only extensions of standard photogeology (Drury, 1987) and it is only 

recently that a suite of remote sensing techniques have become available which are beginning 

to allow us to tackle this problem. 

Sedimentary archives enable sediment flux analysis in deep time, especially for the Holocene, 

which is necessary to evaluate the cumulative impact of human activities. Detailed analysis of 

sediments, although time consuming and expensive, is a fundamental and necessary approach 

to understanding the calculated sediment budget for a given period. Indeed, it provides not 

only useful data for the quantification of fluxes, but also reveals the composition and the 

origin (solid, dissolved, mineral, organic) of the sediment-forming material and thus the 

nature of the flux. It also details the sedimentation landscape dynamics which gives 

information about the retention capacity of the basin, crucial for the budget evaluation. The 

interpretation of sedimentary archives for sediment budget evaluation raises classical 

questions (Meade et al., 1990), but some of them are often underestimated such as the 

calculation and interpretation of budgets. 



2.1. Quantifying sediment storage and residence time 

In order to calculate a budget it is necessary to quantify sediment storage and flux rate or 

residence time. Each catchment has particular characteristics which influence the proportion 

of the matter in transit stored in the form of sediments. These characteristics involve the area 

where the matter is generated on one hand, that has to be studied very carefully (lithology, 

topography, vegetation, etc.), but especially important is the area of sedimentation (geometry, 

hydrodynamics, preservation potential, etc.). For example, the same sedimentation basin (lake 

or floodplain) can store little sediment if the sediment yield is mainly composed of dissolved 

matter, and much sediment if the yield is mainly clastic. In addition; the quantity of stored 

matter (detrital or precipitated) in a lake of given geometry varies greatly according to the 

lithological characteristic of a dam (impermeable or permeable) which also influences the 

hydrology of the retention basin. 

When starting to quantify storage in a retention basin, the composition of the sediment has to 

be studied first. A distinction between the detrital and the precipitated sediment phases is 

necessary in order to separate what is due to solid and dissolved fluxes respectively. Although 

this is sometimes difficult to establish, especially for carbonate sediments or for the clay-rich 

fraction, mineralogical, geochemical or microfacies analyses can give very useful 

information. If organics are abundant, a study using suitable methods of organic petrography 

and geochemistry can enable the distinction between allochthonous (due to rock and soil 

erosion) or autochthonous (mainly peat) origin (Macaire et al., 2006). 

A second step is to calculate as accurately as possible the quantity of stored sediment. In 

spatially limited sedimentation basins (lakes, flood plains), it is relatively easy to estimate the 

volume of stores from the geometry of the basin using classical or recently developed 

methods of surveying, geophysics or remote sensing, but it is always necessary to check the 

data with coring, especially in basins containing a number of sediment facies. In more 

complex sedimentation basins (deltas, larger trunk valleys), using a well developed facies 

model is inevitable to budget masses of specific transported sediment (bedload, suspended 

load). Eventually, the bulk of sediment has to be expressed in mass, which requires 

measurement of the volumetric mass of various sediment facies. Often, this varies by a factor 

> 10 between different facies, depending particularly upon the content of organic matter and 

the degree of burial and compaction. 

Finally, the duration of storage has to be estimated from the age of the sediments. There are 

many dating methods, classical or more recently developed (see later section), but their use 

and reliability greatly depends on the sediment composition and origin: organic matter for the 

radiocarbon methods, quartz for the OSL, calcite for uranium-series disequilibrium dating and 

shells for amino acid racemisation dating. At present, reliably dating sediments is often the 

main limiting factor in the calculation of sediment budgets. An important question is that of 

diachronism between the dated period of sediment storage and the period of sediment yield: 

ideally the duration of matter transport within the catchment has to be evaluated (sediment 

residence time). A fully developed, temporally dissolved sediment budget has the possibility 

of estimating the residence time of sediment in sinks (lakes, floodplains) within a catchment. 

2.2. Through-flow: sediment delivery ratio's and solid vs. dissolved sediment loads 

It is pertinent to ask what the rates of sediment yield calculated for given periods from large 

sediment sinks actually means, since a given proportion of matter is delivered downstream 



from the sedimentation basin. Within sediment budget studies, the sediment through-flow 

between (sub) catchments and/or sinks is therefore a very relevant component. It is, 

unfortunately, also one of the most difficult to calculate. The only possibility to address it 

directly is to calculate both erosion and deposition on a (sub)catchment-wide scale as 

accurately as possible (e.g. method followed by Houben, 2006). The difference between the 

two units is the through-flow. The relative amount of sediment through-flow is also called the 

sediment delivery ratio (SDR), which describes the proportion of sediment leaving an area, 

relative to the amount of sediment eroded in that area. The proportion of erosion-generated 

sediment that reaches the river is referred to as the hillslope SDR. In contrast, the proportion 

of sediment that reaches the outlet compared with the sediment delivered to the channel is 

referred to as the channel SDR (terminology following Asselman et al., 2003). This is crucial 

if sediment dating is accurate (decades for the Holocene) because material can be stored as 

colluvium on slopes for very variable periods of time. A fully developed sediment budget 

requires a calculation of the volume of colluvium or other slope sediments. This is a difficult 

exercise because of the scattered and the heterogeneous nature (spatial spread and depth) of 

these formations. Advances in the evaluation of these formations can be obtained from 

predictive models based on relations between these deposits and environmental parameters, 

especially morphology; but the problems are complex and very different depending on 

whether deposits are of natural origin or due to human activity. Recently this approach has 

been used by the British Geological Survey for the mapping of ‘head’ (solifluction) deposits. 

The notion of connection–disconnection between the slopes and the channel network 

(hillslope SDR) is therefore very important. 

Because the SDR is usually not known, the calculated sediment yields are always minimum 

estimates, possibly far from the real values. The estimated rates of solid yield which at present 

greatly dominates at global scale (80%–90%: Probst, 1992), are generally quite close to the 

real values if the analysed storage is a low energy sedimentation basin (lakes, flood plains) 

where not only the bed load, but also the suspended matter are efficiently trapped. Hoffmann 

et al. (2007) calculated a Holocene sediment budget for the entire Rhine catchment and 

estimated channel SDRs of large sinks from present-day measured channel SDRs. However, 

permanently flooded fens seem to be poor traps for suspended matter (Macaire et al., 2006). 

The rates of dissolved yield, currently low at the global scale (10%–20%), can be very high in 

some catchments (carbonate catchments especially), but are generally not evaluated for past 

periods. Dissolved yield can be approached in two ways: (1) from the volume of precipitated 

matter in sedimentary stores ( [Arnaud et al., 2005] and [Fourmont, 2005]), (2) by comparison 

of mean chemical composition of sediments with the mean chemical composition of soil 

parent materials in the catchment (iso-element geochemical budget method: Gay and Macaire, 

1999). The second approach can be applied if sediments are detrital in origin and directly 

weathered (first weathering cycle: Suttner et al., 1981), which is more frequently the case in 

small upstream catchments. The quasi dissolved yield can be evaluated using method (1) in 

endorheic basins or using method (2) above (e.g., Bréhéret et al., in press). 

2.3. Using pedogenetic properties and soil profile truncation 

The pedogenetic approach is based on the assumption, that in areas where the most important 

soil forming factors (e.g. parent material, terrain, climate, vegetation cover) varied relatively 

little during the Holocene, uniform soil properties prevailed over great distances constituting a 

so called soilscape, where related soil types show very similar horizonation (i.e. within a soil 

group) ( [Ganssen and Gracanin, 1972] and [Semmel, 1977]). Since soil horizons tend to 



develop parallel to the surface and show relatively constant thickness values (Jenny, 1994) 

they serve as ideal markers for recent to sub-recent geomorphic processes. Erosion can easily 

be estimated from the amount of soil profile truncation (Fig. 1), whilst accumulation is 

indicated by colluvial deposits (colluvia in the sense of detached and redeposited material 

originating from soils). In the case where colluvium covers pristine soil with a complete 

succession of horizons only sedimentation occurred. If colluvium is deposited on a truncated 

soil, it can be stated that erosion as well as sedimentation took place at this specific point. 

Moreover, by applying pedological analyses it is often possible to distinguish different 

colluvial beds which are indicative of a more complex history of erosional and/or depositional 

processes. The working steps for this approach are: 

(i) The assessment of natural soilscape for the area of interest. 

(ii)The determination of suitable soils within the catchment or adjacent to it. 

(iii)Estimation of average thickness of horizons either by using soil maps or a field survey. 

(iv)The delineation of a typical soil profile as a reference. 



 

Fig. 1. A schematic diagram of a small sub-catchment with erosional and depositional zones and 

representations of gully truncation and colluvial and alluvial stores. Based upon a small catchment 

(Ripple Catchment) in the West Midlands of England. 

 

Clear examples are given in Houben (2006) for Central European catchments characterized by 

Luvisols that developed in loess. The degree of truncation of the Luvisols was calculated 

spatially (combining soil profile descriptions in a GIS). Although it is not necessarily a 

precondition, this approach works best in areas where pedogenesis produced highly 



differentiated soil profiles (e.g. Luvisols in loess, glacial till, glaciofluvial deposits or silt rich 

eolian sands). Here, detailed estimations of the extent of truncation are usually possible 

(Houben et al., 2006) but unlikely in basins dominated by very variable lithology and 

complex soil–landform relationships such as many granitic and limestone areas. 

As outlined in Houben (2006), it is also possible to apply this approach to soils developed in 

solifluction cover beds. In this case the thickness of sedimentary successions serves as an 

indicator of postdepositional erosion. In particular the Main Solifluction Sheet (LH) is 

suitable for estimations because of its ubiquitous nature and constant thickness values of 0.4 

to 0.6 m. This could be dated by incorporated remnants of Laacher Sea Tephra showing that 

the Main Solifluction Sheet (LH) accumulated during the Younger Dryas on nearly all slopes 

> 2° and it is thought to be the fossilised active layer of the Latest Pleistocene permafrost 

which is the reason for constant thickness ( [Semmel, 1964] and [Semmel, 1973]). 

3. New approaches: advances in the acquisition of spatial and temporal data 

Several recent technical advances have the potential to improve our estimation of the storage 

of sediment within catchments both in spatial, volumetric and temporal precision and 

accuracy. 

3.1. High-precision topographic measurements 

Many studies have shown that the stratigraphy of floodplains is at least to some extent related 

to surface topography and micro-topography and geomorphometry ( [Evans, 

1986] and [Carey et al., 2006]). The high horizontal and vertical precision of Light Detection 

and Ranging (LiDAR) system allows this relationship to be exploited. In a study of the 

sedimentary sequence of a confluence area of a floodplain in Central England Carey et al. 

(2006) have shown that the lateral and vertical units identified from the LiDAR reflect both 

the sub-surface stratigraphy and the depositional sequence of the floodplain (Fig. 2). The 

LiDAR survey was flown in February 2003 by Infoterra (www.infoterra-global.com) using an 

Optech 2033 ALTM with a 1047 nm laser, operating in the Near-Infrared (NIR) portion of the 

electromagnetic spectrum (Optech, 2003). In order to map the topography at a resolution 

sufficient for the identification of cultural and geomorphological features a 1 m survey 

posting was used. This created 1,000,000 data collection points/1 km
2
, creating a data set of 

8,000,000 points over the survey area. The vertical resolution of LiDAR is estimated to be 

10 cm to 15 cm, allowing high precision mapping of cultural (field boundaries, banks etc.) 

and geomorphological features. Post-survey processing of the simultaneously recorded laser, 

location and altitude data allows reconstruction of elevation values for the ground surface. 

Raw survey data in the form of a three dimensional point-cloud are projected to a local map 

datum, sorted, filtered and used to generate a regular grid of elevation values. The laser 

receiver is able to record multiple returns for a single pulse, recording a partial return from the 

top of a semi-opaque object such as a woodland canopy–the first pulse return (FP) and from 

the opaque ground beneath the canopy–the last pulse return (LP). Other information, such as 

the intensity (amplitude) was also recorded. Intensity data provide a record of the 

backscattered intensity of reflection of each laser pulse. Backscattered intensity values vary 

according to changes in the reflectance of differing earth surface materials at NIR 

wavelengths (Wehr and Lohr, 1999). These studies have also shown that not only is the last 

pulse return data valuable for generating the digital terrain model (DTM) but that the intensity 

of return can show features with no topographic expression, probably through surface 

moisture variations, which can include palaeochannels and sedimentary boundaries. For larger 



systems satellite mounted radar can be appropriate such as IFSAR. These techniques can also 

reveal cultural features which may be important in the delivery of soil down slopes and onto 

floodplains such as headlands, lynchets and ridge and furrow cultivation forms. The universal 

availability of GIS allows these data to be integrated with sub-surface modelling. 

 

Fig. 2. LIDAR DTM of the Trent–Soar junction in the East Midlands UK. 

The use and advantages of Digital Elevation Models in catchment flux studies is exemplified 

by recent work in The Netherlands. In 2004, the so-called AHN (Actueel Hoogtebestand 

Nederland) digital elevation model of the Netherlands based on laser-altimetry was released 

(Rijkswaterstaat-AGI, 2005). This remote sensing dataset has an undreamt of accuracy and 

resolution: 1 measurement/8 m
2
 on average for The Netherlands (of ground elevation, i.e. 



after filtering to remove canopy reflections) and is commonly viewed as mean elevation for 

5 × 5 m grid-cells calculated over an 8 × 8 m footprint (van Heerd et al., 2000). Using GIS, it 

can easily be combined with topographical maps, borehole databases, and other digital 

databases. The potential of this DEM already radically changed geomorphological and 

geological mapping in the traditional approach (e.g. Berendsen and Volleberg, 2007). Ideal 

location for boreholes can be determined much more efficiently, using the ability to map 

patterns in surface elevation in detail. Additional boreholes remain necessary to reconstruct 

the genesis and geological history. In other words, the new data source allows the mapping 

and correlating sediment bodies with greater accuracy and in a shorter period of time. 

Especially field-based sediment budget studies in larger catchments or the up-scaling of 

smaller scale sediment budgets can benefit from this. It also has large advantages for the 

(new) topographical approach where high resolution digital elevation models can be used in 

estimating sediment volumes by using voxels. A case study example of using a very primitive 

voxel approach is the Holocene sediment budget for the Rhine delta (Erkens et al., 2006). 

The Rhine Delta in The Netherlands is a near-complete sediment trap for Rhine sediments 

during the last 9000 years (Erkens et al., 2006). These deposits form a deltaic wedge or prism. 

This is a volume of sediment enveloped by a lower and an upper bounding surface: 

respectively, the Late-Pleistocene subsurface (the buried palaeovalley of the last glacial 

course of the Rhine) and the modern land surface (Cohen, 2005). To reconstruct sediment 

delivery into the delta as a part of a sediment budget study, the starting point was to calculate 

the total amount of sediment trapped within this prism. An extensive database of 200,000 

borehole descriptions was assessed (Berendsen and Stouthamer, 2001) to create a digital 

elevation model (DEM) of the Late-Pleistocene surface (cell size 250 × 250 m) using all 

borings that reached the Holocene–Pleistocene interface. A second DEM with the same cell 

size was created for the modern surface by resampling the high-resolution DEM available 

from laser altimetry (Rijkswaterstaat-AGI, 2005). Calculating their difference yielded the 

thickness of the Holocene deposits for each cell, which after summation gave the total volume 

of the Holocene fluvial prism (Erkens et al., 2006). Calculation errors are considered to be in 

the order of 20%, caused by different delineations of the prism and differences in DEM 

resolution. This estimate is based on cross-checking volume estimates independently derived 

from different data sets (Erkens et al., 2006). The calculated volumes represent a net result of 

9000 years of sedimentation. A long-term averaged yearly deposition rate can be derived by 

dividing the total amount by deposition time (assuming 100% trapping efficiency). As the 

total volume was broken down to depositional environments, a direct comparison with today's 

bed load and suspension load measurements is enabled. Suspension load of the last decades 

and Holocene-averaged estimates are within the same order of magnitude. This suggests that 

although this is a very gross method, DEMs provide the opportunity to calculate sediment 

volume over a large area with a relatively small error (Erkens et al., 2006). 

Due to computing power and readily available software it is also possible to use DEM drapes 

to estimate volume in terms of voxels within channel and coastal systems. An example of this 

approach for in-channel sediments is the work done near Brashear Island, USA by the Oak 

Ridge National Laboratory which used regularized spline with tension and smoothing to 

interpolate the sub-bottom densities in 3 dimensions. This algorithm is a part of the GRASS 

GIS as s.surf.3d, a variant of s.surf.tps (http://research.esd.ornl.gov/CRERP/SEDIMENT/ 

BRASHEAR.HTM). 



3.2. The use of GIS in catchment flux studies 

When evolving from a classical sedimentary record study towards a more complex sediment 

budget study, it is very important to be able to integrate different types of data and to make 

both spatial as well as temporal analyses and correlations. GIS provides a tool to make this 

step; using two of its main advantages. Firstly, GIS is known for its spatial database function, 

archiving raw observational evidence and making it accessible. For some areas of study such 

as the Rhine–Meuse delta (Berendsen and Stouthamer, 2000) and the Mississippi delta (Kesel 

et al., 1992), extremely large data sets are now available that ask for a clear spatial database 

structure. In addition, many databases used for sediment budgeting studies are constructed 

from several smaller databases and/or even from databases with different types of data 

(borehole data, elevation data, etc.); GIS can be used here to integrate the data. In the near 

future, instead of data availability, data management may be the limiting factor. Secondly, 

GIS allows data and palaeogeographical reconstructions to be verified and improved 

progressively. It provides in the ability to perform iterative editing during implementation of a 

palaeogeographical reconstruction ( [Berendsen et al., 2001], [Cohen, 2003], [Berendsen and 

Volleberg, 2007] and [Berendsen et al., 2007]). When the reconstruction is locally modified, 

e.g. by more accurate mapping, new relative dating insights, new absolute age evidence, GIS 

cannot only be used as a mapping tool but also as a manipulation and analysis tool for 

reconstruction past sedimentary environments and fluxes (Berendsen and Volleberg, 2007. 

3.3. Sub-surface remote sensing 

Several geophysical approaches have been taken for investigating the stratigraphy of alluvial 

floodplains. The earliest was shallow seismic survey which was used particularly in the 

1970s–80s to investigate buried valleys in the coastal reaches of floodplains (e.g. Williams, 

1968). For example, from these studies we know that almost all the valleys in SW England 

have buried valleys under their estuaries trending to base-levels between 30 and 120 m below 

the present sea level ( [Durrance, 1980] and [Lenham et al., in press]). It remains a powerful 

technique for the larger alluvial systems and is currently being used in the engineering 

prospection of large floodplains (Hayward and Goforth, 1997). 

In the 1990s new geophysical techniques were explored, largely stimulated by their use in 

archaeological prospecting. The most common use was for soil related features (e.g., 

cropmarks), utilising techniques such as magnetometry and electrical resistance or its inverse, 

electrical conductivity ( [Clarke, 1990] and [Gaffney and Gater, 2003]). All geophysical 

techniques have their peculiarities in relation to natural variations in sediment composition, 

salt content and moisture variation (Linford, 2006). There is also normally a trade-off between 

resolution and depth of penetration. For the delimitation of alluvial units (budget stores) a 

penetration depth of 1–30 m is required which in most cases will intersect with the local 

groundwater table. 

Probably the most geomorphologically useful geophysical technique has been the use of 

ground penetrating radar (GPR) generally operating at between 200 and 1000 MHz (Heinz 

and Aigner, 2003). This is particularly useful for mid-range depths (1–10 m) in coarse- to 

medium-grained substratum and where there are strong dielectrical variations in the 

subsurface. Boundaries between geomorphological units are seen as discontinuities, due to 

different sediment properties. The identification of radar terminations allows a relative 

chronology for a sequence of sediment units to be constructed (Bristow et al., 2005). 

Estimating the depth of discontinuities within floodplain sediments by GPR is complicated, 



due to different dielectric constants found within different geomorphological units. Within an 

alluvial context the relative dielectric permittivity (RDP) of different sediment units is critical 

(the ability of sediment to absorb, reflect and be permeated by the radar pulse). To calibrate 

the electric depth model created by the GPR the dielectric properties of the soil profile needs 

to be accurately estimated. Within alluvial environments this is difficult as any GPR transect 

may cross a series of contrasting geomorphological units, each having a different RDP. The 

two most common methods of GPR depth calibration within geomorphological studies 

through comparison with gouge core data (Bridge et al., 1998) or through common mid point 

analysis through using multiple radar antennas (Bristow et al., 2005). 

GPR data can be collected in two or three dimensional survey. A two dimensional survey is 

effectively a single transect of data shown as a depth section. Three dimensional surveys use 

multiple transects collected either in zig-zag or parallel traverses. Whilst three dimensional 

data surveys are more costly in terms of time of data collection they have the advantage of 

showing geomorphological features in plan view as well as in section. Such planar time sliced 

data can be readily imported into conventional GIS systems for display and further query. In a 

study on the floodplain of the River Trent in Central England (Carey et al., 2006), GPR 

survey was adequate for resolving the terrace sediment stratigraphies but was poor at 

resolving either the depth or internal stratigraphy of channels and backswamp areas. The 

presence of either significant clay deposits or high water tables caused rapid attenuation of the 

radar signal, drastically reducing its effective depth of penetration. 

In order to overcome to the problem of limited GPR prospection within clay rich and water 

saturated environments, Electrical Resistivity Ground Imaging (ERGI) can be used. Electrical 

resistivity surveys determine the subsurface resistivity distribution by making measurements 

at the ground surface, allowing gross horizontal and vertical changes in subsurface sediment 

architecture to be seen. The definition of alluvial sediment units such as gravel and sand units 

are not defined as well as GPR, due to a lower level of data resolution. However, ERGI has 

the potential to penetrate to greater depths than GPR and can be used to investigate alluvial 

stratigraphies that have clay dominated matrices. ERGI sections in alluvial environments 

suffer from the problem of non-uniqueness, with different inversion methods producing 

different outputs from the same data sets. The inversion method used in Fig. 3 was a least 

squares inversion with a robust constraint, which attempts to minimise the square of 

difference between the observed and calculated apparent resistivity values. The robust 

constraint is less sensitive to noisy data and is suitable for analysing data sets that contain 

discrete geomorphological units with sharp boundaries, e.g. the change between a gravel 

terrace and clay filled palaeochannel. The ERGI section clearly identifies the palaeochannel 

and the terrace. The definition of the terrace stratigraphy is not clear and the gravel/alluvium 

interface is not definable. In contrast the GPR profile reveals no information about the 

sediment architecture of the palaeochannel, but the definition of the terrace alluvium and the 

edge of the terrace gravels is clear. 

 



 

Fig. 3. Combined GPR and ER of transects within the floodplain of the Trent–Soar junction, East 

Midlands, UK. 

 

There is a high potential for the application of combined ERGI and GPR in alluvial 

environments. Together they provide complementary data on sediment stratigraphies, 



allowing more robust interpretations and will probably play an increasingly important role in 

the quantification of both alluvial and colluvial sediment stores. Key baseline data such as the 

depth of above gravel alluvium and depths of gravel bedrock interfaces can be readily defined 

using these techniques, as well as revealing subtlety in the sediment architecture of larger 

geomorphological units. Research is also underway on using these techniques in an even more 

remote manner. In particular it is theoretically feasible to use GPR from an airborne platform 

giving both a radar DTM and sub-surface information (Sen et al., 2003). 

4. Chronostratigraphy of sediment flux: advances and ongoing challenges in 

sediment budgeting 

Following Eq. (1), the quantitative investigation of sediment budgets presupposes an age 

determination of the stored sediments (colluvium, alluvium, soils) in order to determine ∂z/∂t. 

To achieve the temporal information, next to the direct observation and monitoring of the 

erosional process, the sediments have to be dated. Due to methodological and technical 

developments of the last few years, there are now several chronometric dating techniques 

available. The applicability of a certain dating technique to sediments depends on (i) the 

existence of suitable dating material, (ii) the age range and (iii) the precision and accuracy of 

the technique. Additionally, the question (iv) of which process and event can be dated with a 

certain dating technique also has to be considered (Wagner, 1998). 

4.1. Radiocarbon dating 

Due to a steady flux of cosmic rays, cosmogenic nuclides are formed within the Earth's 

atmosphere and surface. One of the most important atmospherically formed cosmogenic 

nuclides is 
14

C, which can be found in any organic material. As with other cosmogenic 

radionuclides the estimation of the production rate is critical. Fortunately from the matching 

of long tree-ring chronologies and most recently long varve sequences from Lake Suigetsu 

which is located near the coast of the Sea of Japan a calibration curve now exists back well 

beyond 10,000 BP ( [Kitagawa and von der Plicht, 1998] and [Kitagawa and von der Plicht, 

2000]). Due to its establishment as a method over 40 years ago and its universal use there is a 

vast literature on it including recent developments of accelerator–mass spectrometry, 

improved processing to remove contaminants (e.g. the A-box method—Higham et al., 2006) 

which have led to a dramatic reduction in the size of sample required (by a factor of 100) and 

extension of maximum reliable dating (but cf. Reimer et al., 2006). Radiocarbon can be used 

on different fluvial sediments in different ways—to give maximum ages for example from 

soils, to give activity such as fragile organic matter (e.g. a leaf) incorporated into a single-

episode deposit or minimum ages such as a peat developed over a flood deposit ( [Brown, 

1997], [Lewin et al., 2005] and [Chiverrell et al., 2008a]). When non-fragile organic matter, 

such as peat or wood, is incorporated into sediments, a maximum sedimentation age can be 

determined, due to the fact that an unknown time elapse developed between the formation of 

the organic matter and its incorporation into the sediment. This is a particular problem with 

colluvial sedimentation and can cause unavoidable uncertainty in the depositional time-frame 

but which can be resolved using frequency analyses (Lang, 2003). Soils also present 

considerable problems due to the potentially long and variable residence-time of the different 

forms of C compounds in soils, which is related to the soil forming environment and which 

can change over time. Several alluvial studies have shown a systematic variation with the 

humin and humic fraction in alluvial sediments ( [Brown et al., 2005] and [Brown et al., 

2007]). One approach to these problems in fluvial sequences has been to mass the dates and 

plot them as probability density functions (Johnstone et al., 2006; Panin et al., 2009-this issue) 



after removal of the artefacts of calibration. This implicitly accepts that there is considerable 

noise in the system, is biased to sequences with high amounts of organic materials and since it 

is based upon correlation with other proxy series may suggest rather than imply causality. 

4.2. Long-lived cosmogenic nuclides 

In addition to 
14

C, the analysis of cosmogenic nuclides 
10

Be, 
26

Al and 
36

Cl became an 

important tool for calculating catchment based erosion rates. There are two principal 

approaches, surface exposure dating and concentration profiles. Surface exposure dating 

assumes that either there has been no erosion of the rock surface over the time period in 

question or that it can be reliably estimated. The concentration profile has to consider depth 

attenuation but in theory is itself a proxy of the localized sediment budget. However, in order 

to use these methods in catchment sediment budgeting several fundamental assumptions have 

to be made. In particular the assumption of a steady state erosion rate, referring to the 

timescale of cosmogenic production in the parent rock material, is a potential drawback of the 

approach (Vance et al., 2003). 

The use of longer-lived cosmogenic isotopes, particularly 
10

Be and 
26

Al for the estimation of 

medium–long term erosion rates is a relatively new methodology in research concerning the 

feedbacks between tectonics, erosion and climate ( [Bierman and Steig, 1996], [Granger et al., 

1996], [Vance et al., 2003] and [von Blanckenburg, 2005]). The technique will be introduced 

only briefly here, more details are given in reviews by Gosse and Phillips (2001), Bierman 

and Nichols (2004) and by Cockburn and Summerfield (2004). Depending on the sampling 

strategy the measurement of cosmogenic nuclides allows the estimation of i) mean erosion 

rates of catchments from fluvial sediment, ii) hillslope erosion rates from bedrock outcrops or 

iii) bedrock exposure ages (if erosion rate is zero). However, using cosmogenic inventories of 

river sediments to estimate mean erosion rates of catchments all studies make the assumption 

that the erosion rate is at steady state for the timescale of cosmogenic production in 

soil/bedrock, and sediment storage is minor/short in comparison to cosmogenic nuclide decay 

times. 

In theory the surface nuclide concentration C of river sediments is inversely proportional to 

the erosion rate ε: 

C=P0/(λ+ρɛ/Λ) 

where λ is the decay constant of the nuclide, ρ the density of material and Λ the 1/e attenuation length 

(von Blanckenburg, 2005). The surface production rate P0 depends on the intensity of secondary 

cosmic rays (nucleos and muons) and therefore is scaled for altitude, magnetic inclination and latitude 

(Eq. (3)). Because production rates are still not well constrained it is estimated that cosmogenic 

production decreases with depth with an exponential length scale of approximately 0.6 m. This 

includes some impreciseness and yet the effects of i) non steady state of erosion rates, ii) longterm 

sediment storage iii) landslides, iv) progressive concentration of quartz in soil through weathering and 

soil erosion and v) processes on grain size selection are rarely known. However, major advances to 

solve some of these uncertainties have been achieved by numerical modelling studies ( [Niemi et al., 

2005], [Schaller and Ehlers, 2006] and [Reinhardt et al., 2007]). One of the most exciting future 

applications of terrestrial nuclides in combination with other dating evidence (e.g. optically stimulated 

luminescence (OSL) dating), is the estimation of palaeo-erosion histories as shown by Schaller et al. 

(2002) in the case of the Meuse river. New developments to measure cosmogenic nuclides in 

sediments promise much to reconstruct longterm catchment wide sediment fluxes. This methodology 



needs to be tested in an integrated study of a medium sized catchment budget with independent dating 

controls. 

4.3. Radiation dosimetry 

The principle of this dating method is the time dependent accumulation of energy in minerals, 

primarily quartz and feldspar, resulting from omnipresent low level radiation from natural 

radioactivity and cosmic radiation. An excellent summary of the method with information on 

sampling methodology can be found in Duller (2008) but basically the resetting of the 

accumulated energy is caused by heat or daylight, the latter of which is of crucial importance 

for the dating of sediments. Consequently, the last exposure of the mineral grains to daylight 

is determined, and thus the age of sediment deposition. Insufficient resetting of the 

accumulated energy would result in an age overestimation. Currently, three different 

dosimetric dating techniques, thermoluminescence (TL), optically stimulated luminescence 

(OSL) and electron spin resonance (ESR) dating prevail. The basic difference between these 

methods is the way the accumulated energy is exploited and detected. Furthermore, their 

sensitivity to the resetting process by daylight is different. OSL shows the fastest bleaching 

characteristics by daylight, making this method the most important for dating fluvial 

sediments (Jain et al., 2004) although there are problems. These include when some quartz is 

frequently not fully bleached or zeroed, feldspar contamination and dose-rate disequilibrium 

caused by high uranium levels. Even colluvial sediments with a short transport distance may 

successfully be dated by OSL (Fig. 4; Fuchs et al., 2004). In the case of TL, bleaching 

behaviour is less reliable, and even less reliable again for ESR. Nevertheless, recent 

developments in single quartz grain analysis allow the selective extraction of only well 

bleached grains (Beerten and Stesmans, 2005). 

 



 

Fig. 4. OSL dating results from a colluvial profile in Greece (after Fuchs et al., 2004). OSL ages are 

plotted according to the depth of sampling. Additionally, sediment columns and Munsell color is 

plotted. Ages given in italics are interpreted as maximum ages due to insufficient bleaching. 

 

Due to the advantages of direct sediment dating, luminescence plays an increasingly 

important role in sediment budget studies. Dating fluvial-transported sediments, optical 

stimulated luminescence (OSL) is the preferred technique, with faster bleaching 

characteristics than thermoluminescence (TL). However, when dealing with fluvial sediments 

the total resetting of the former luminescence signal often does not occur, resulting in an age 

overestimation, which has a stronger impact on young samples than on older ones (Jain et al., 

2004). To deal with the problem of insufficient bleaching, various approaches are being 

followed in ongoing research studies ( [Arnold et al., 2007] and [Fuchs et al., 2007]). 

Depending on the fluvial process of sediment transportation, certain mineral grain sizes are 

prone to be better bleached than others. In a case study on recent river flood sediments from 

the Elbe River (Germany), Fuchs et al. (2005) showed that fine-grained quartz seems to be 

better bleached than fine-grained feldspar. The residual luminescence signal from fine-grain 

quartz resulted in an estimated residual age of ca. 0.1 ka, which would be problematic only for 

very young samples. Another approach is the reduction of the analyzed sample material to 

small aliquots or even single grains (e.g., [Fuchs and Wagner, 2005] and [Thomas et al., 

2005]). Based on the assumption that insufficiently bleached samples consist of a mixture of 

well and incomplete bleached mineral grains, the measurement of several subsamples would 

result in a specific distribution. The part of the distribution with the lowest values represents 



the subsamples with the best bleaching characteristics, thus supposed to be closest to the true 

deposition age (Olley et al., 1999). A very promising approach to dating insufficiently 

bleached samples is the analyses of specific OSL components, each with certain bleaching 

characteristics. Analyzing only the fast bleaching component, Singarayer et al. (2005) 

achieved promising results for insufficiently bleached samples from various environments, 

applying the linear modulation technique. 

4.4. Uranium series 

This series of dating methods comprises the radioactive decay series of the uranium isotopes 
238

U and 
235

U (e.g. 
230

Th–
234

U) as based on the measurement of radiometric disequilibria. The 

event which can be dated with these dating methods is the closing of a geochemical system, 

which was previously disturbed by chemical fractionation. For sediment dating, uranium 

series can be applied to pedogenic carbonates of sediment bodies (Sharp et al., 2003). 

However, the interpretation of these ages would result in minimum ages, due to the unknown 

time elapsed between the sediment formation and carbonate precipitation which can be at 

least as long as c. 40,000 years (Birkeland, 1974). Another challenging problem is the 

polycyclic formation of pedogenic carbonates and the possible reopening of the system which 

may result in recrystallisation. Micro-sampling techniques may be used to solve this problem 

(Mallick and Frank, 2002). 

4.5. Varve chronology and sediment budgets from lake sediments 

Seasonal variation of environmental conditions (e.g., temperature, vegetation cover) result in 

annually laminated lake sediments. These layers show a characteristic succession of 

sedimentary features such as variable laminae thickness, organic carbon content or grain size 

distribution. The varved sediments can be dated by counting, thus sediment yield from the 

catchment can be deduced with a potentially high or even annual resolution ( [Zolitschka, 

1998] and [Slaymaker et al., 2003]). There are problems and frequently the chronology has to 

be left floating within a time-frame established by another method such as 
14

C. However, long 

chronologies such as that of Lake Suigetsu are now, as previously described, being used to 

provide improved radiocarbon chronologies ( [Kitagawa and von der Plicht, 

1998] and [Kitagawa and von der Plicht, 2000]). 

4.6. Short-lived fallout radionuclides 

Recent advances in the use of the short-lived fallout radionuclides 
137

Cs, excess 
210

Pb and 
7
Be 

in contemporary (i.e. < 100 years) sediment budget investigations (Walling, 2003) have 

provided a valuable complement to more traditional plot and laboratory experiments, 

catchment monitoring and direct observations. 
137

Cs and excess 
210

Pb have been successfully 

used for many years to provide chronologies for recent sediments in lakes, marshes and river 

floodplains (e.g., Stokes and Walling, 2003), and such measurements have provided a 

valuable means of assessing rates of sediment accumulation in sediment sinks. However, it is 

the use of these short-lived fallout radionuclides as sediment tracers that has provided new 

opportunities (Walling, 2006). In this context, the input of the fallout radionuclide tracers can 

be likened to the application of a tracer to the entire surface of a catchment. Since the fallout 

input is rapidly and strongly fixed by the surface soil of the catchment, measurements of the 

redistribution of the radionuclide across the catchment surface provide a means of 

documenting rates of soil and sediment redistribution. The basis of the approach is to compare 

the areal activity density measured at a sampling point with a reference value or inventory, 



representing the areal activity density to be expected where no net loss or gain of soil or 

sediment has occurred. A wide range of ‘conversion models’ have been developed to derive 

estimates of erosion and deposition rates from the increase or decrease in the radionuclide 

inventory (see Walling et al., 2002a). 

In the case of 
137

Cs, a man-made radionuclide with a half-life of 30.2 years that originated 

primarily from weapons testing in the late 1950s and in some parts of the world also from the 

Chernobyl accident in 1986, the radionuclide affords a means of tracing soil and sediment 

redistribution over the past ca. 50 years. With, excess 
210

Pb, a natural geogenic radionuclide, 

the timescales are somewhat longer, but necessarily limited by the relatively short half-life of 

the radionuclide (22.2 years) to ca. 100 years. In contrast, the very short half-life of 
7
Be 

(53 days), provides a basis for documenting soil and sediment redistribution during individual 

events (Blake et al., 2002). Zapata (2002) provides a useful explanation of the basis for using 

these short-lived radionuclides for establishing soil erosion rates and net rates of sediment 

transfer from the slopes of a catchment to the stream system. Zhang and Walling (2005) 

discuss how information on the depth distribution of 
137

Cs in lake sediments can be used to 

derive information on rates of surface lowering within a catchment and the dominant sediment 

sources. Similarly, He and Walling (1996), Walling and He (1997) and Walling and Owens 

(2003) discuss their application to documenting sediment accretion on river floodplains and 

sediment storage within floodplain systems. Since the same radionuclide can be used to trace 

sediment transfer and storage through the different compartments of the sediment budget they 

can provide a basis for establishing the overall sediment budget for a catchment, although this 

is usually achieved by combining the radionuclide measurements with more traditional 

measurements of the sediment flux at the catchment outlet and with sediment source 

fingerprinting techniques (Walling, 2005). Useful examples of the application of this 

catchment-wide approach are provided by [Walling et al., 2001], [Walling et al., 2002b], 

[Walling et al., 2003] and [Walling et al., 2006] and Blake et al. (2002). 

4.7. Age-sample context and age-depth modelling 

The various sediment dating methods can also be divided into direct and indirect dating 

methods. For direct methods like luminescence, the sediment itself will be dated, whereas for 

indirect methods, datable material which is stratigraphically related to the sediment is used for 

dating. An example for indirect dating is the widely used 
14

C dating of organic matter within 

floodplain sequences in order to establish fluctuations in erosion and deposition and their 

relationship to proxy measures of climate change (Johnstone et al., 2006). One drawback of 

this method is the possible incorporation of old organic matter into the sediment which results 

in an overestimation of the real sedimentation age. This phenomenon in well known and 

described by Lang and Höhnscheidt (1999) from a case study in southwest Germany, where a 

colluvial chronostratigraphy was established by both 
14

C datings of charcoal and 

luminescence dating of feldspar. In summary, the 
14

C datings show a rather chaotic pattern of 

ages, whereas the luminescence dating results represent a consistent chronostratigraphy with 

increasing ages with depth. For this reason, incorporated material-based dating of the 

sedimentation process can only be successfully achieved if there is no significant time gap 

between sedimentation and the age of the incorporated material. This has been be shown by 

Fuchs et al. (2004) whilst investigating an alluvial archive in Greece, where ‘in situ’ charcoal 

was identified and 
14

C dated. In this case, additional luminescence dating confirms the 

correctness of the 
14

C ages interpreted as sedimentation ages. An additional problem with 
14

C 

and of course generally true for all sediments is selective bias, generally in favour of more 

recent sediments caused by the preservation of organic material in alluvial sequences. This 



has led recent studies of Mediterranean alluviation to favour luminescence methods (Fuchs et 

al., 2004). 

The age-depth model can be taken as a proxy for the sediment budget (Eq. (4)) and to 

estimate catchment erosion during the Holocene ( [Dearing and Foster, 1986], [Foster et al., 

1998], [Dearing and Zolitschka, 1999] and [Jenkins et al., 2005]). 

∇.qs∝∂d/∂t 

where d is the sediment depth in a dated core. However, there are major assumptions and inaccuracies 

in both the dating, which is notoriously problematic in lakes, and in the volumetric estimates of 

sediment as the visual correlation of strata across the lake bed is rarely possible. An alternative is the 

correlation of cores using sediment magnetic properties (Dearing, 1986). However, this assumes that 

the magnetic properties are sediment dependant and there has been little or no lateral sorting of 

sediments across the lake bed. In reservoirs the sediment budget approach is routinely used in order to 

estimate the life expectancy and capacity of dams (Small et al., 2005). In general, either a total 

sediment depth to the pre-existing land surface is used as a mean erosion rate for the period since the 

dam was constructed or depths derived from sequential bathymetric surveys are used. Future 

investigations of sediment budgets from lake sediments urgently need to incorporate catchment-wide 

sediment dynamics to explore the complex and nonlinear system dynamics in sedimentary systems ( 

[Dearing and Zolitschka, 1999] and [Coulthard and von De Wiel, 2007]). 

A major approach to improving the precision and accuracy of chronologies using both 
14

C and 

other sources has been through the use of Bayesian modelling of age-depth profiles ( [Sahu, 

2004] and [Chiverrell et al., 2008b]) and wiggle-matching both of which are now included in 

calibration packages such as OxCal (v4.0) and Calib5 ( [Buck et al., 1996] and [Bronk 

Ramsey et al., 2001]). Such modelling is proving particularly important in dating lake 

sediments which are notorious for age inversions, hiatuses and a spread of dates from 

different fractions. In a study of Lake Wigry in Poland, Piotrowska et al. (2006) used both 

Bayesian analysis and a non-linear regression method, called generalized additive models 

(GAMs; Birks and Heegaard, 2003). 

5. New approaches to calculate long term sediment fluxes 

Probably the most common sedimentary records relating to the medium–long term 

development of present landscapes in former glaciated and periglaciated zones are fluvial 

terrace sequences, at least in areas of regional uplift. Traditionally the approach to terraces has 

either been through the morphometric analysis of longitudinal profiles (typical in the 1950s–

1980s) or more recently through paleoenvironmental studies and dating using luminescence, 

amino acid racemisation (AAR) or biological correlation such as the ‘vole clock’ (Bridgland 

et al., 2004). Recently, the continuity equation has been used by Hancock and Anderson 

(2002) in the modelling of strath terrace formation. However, alluvial terraces are units of 

mass derived from erosion, deposited and preserved due to river incision with restricted 

lateral erosion. In many cases it is known that the catchment has changed dramatically making 

a sediment budget approach inappropriate, but in areas beyond glacial limits a basic 

assumption that catchments have remained fixed and constant in area during the Later 

Pleistocene, with exceptions caused by processes such as rapid incision rates or neotectonics, 

can be conceded as true in many cases. Fig. 5 shows a simplified valley reach with three 

paired terraces where the incision depth equals the terrace thickness. If the time periods are 



known this allows the calculation in Eq. (5) of the total deposited mass in t1, the eroded mass 

from the reach only in t1 − t2, the deposited mass in t2 and so on. 

∇.qs=w.h.x 

where w is alluvial plain width, h is terrace thickness and x is the reach length. After incision into this 

highest (original or palaeo) terrace (PT1qs) the upstream and terrace continuity situation (when ▿

.qs = 0) can be defined as: 

PT1qs=T1qs+T2qs+T3qs+T4qs 

and in the case of a valley where scour had been equal to terrace thickness then bedrock erosion in 

the reach (Bqs) is: 

Bqs=T2+2T3+3T4 



 

 

Fig. 5. A schematic model of paired terraces with a scour depth equal to terrace thickness and a zero 

balance of erosion/deposition. 

 

For the Hancock and Anderson (2002) model x becomes downstream distance: 

(8) 

∂h/∂t=1/w.∂qs/∂x 

As a preliminary test of comparable mass and in the absence of sufficiently reliable dating, a 

modified version of Eq. (6) has been applied to a well developed terrace reach on the River 

Exe in SW England. The Exe catchment (4500 km
2
) lies entirely outside the maximum 

Pleistocene glacial limit and is assumed not to have suffered change to its catchment 

boundaries. The results (Fig. 6) show an interesting constancy in terrace fragment mass, with 

the decreasing width of alluvial terrace being offset by an increase in thickness. 

 



 

Fig. 6. A histogram of the terrace volume estimates along the lower River Exe, in SW England. 

 

 

The uniform underlying geology of this reach is a relatively erodible sandstone which is not 

found as a significant clast component in any of the terraces except as matrix. Fig. 6 shows 

the estimated sediment volumes for the 18 km reach that existed within each terrace when it 

had just been formed. From this the volume associated with each terrace fragment has been 

calculated by subtraction. As can be seen from Fig. 6 the volumes, which are in effect a flux 

rate, are approximately constant with the exception of terrace 4. The reason for this is that 

whilst the reduction in width from terrace 5 to 4 is minimal (300 m reduction) the mean depth 

of terrace 4 (1.8 m) is far less than that of all the other terraces so there is less mass in terrace 

4 than is predicted by the erosion of terrace 5 suggesting that at this point in the evolution of 

the terraces there was a net loss of terrace gravel. However, in general there is a constancy 

suggesting that bedrock erosion creates sand-sized sediment which is largely lost from the 

reach with the vast bulk of the terrace mass being simply reworked from the previous terrace 

gravels. Of course, many recent studies of terrace sequences have shown how common 

composite terraces are but the approach could still be used to demarcate between periods of 

net aggradation and periods of net erosion. Although this is a very crude and preliminary 

approach it is a first approximation. Luminescence dating on the Exe terraces is underway and 

increased precision in the measurement of terrace volumes (using remote sensing) combined 

sediment budget modelling could provide us with long-term sediment budgets linked to 

landscape evolution, climate and uplift. 

This preliminary approach exemplifies one of the future challenges in converting sedimentary 

records to calculation of catchment sediment fluxes. To temporally resolve sediment budgets, 

multiple sediment bodies have to be dated in one catchment; for upstream terrace reaches 

using the approach described above, for downstream alluvial plains and deltas by working 

with time lines enveloping a certain sediment body (e.g., the approach used by Erkens et al., 

2006). Combining these two approaches would allow catchment-wide sediment budgets 

studies on a larger spatial scale. These temporally resolved sediment budgets would induce an 

important step towards calculating catchment-scale sediment fluxes and residence time of 

sediment in catchments (see also Section 2), both of which are crucial elements in the 

understanding of the landscape and its formation. 



6. Conclusions 

All the constraints inherent in the sediment budget approach seem amenable to technological 

advancements. Our ability to remote sense topography and near-surface sediments offers the 

potential to overcome the present constraints of time and space. The ever expanding 

possibilities of GIS help us to manage data in large databases and enable statistical analyses of 

data therein. Simultaneously the development of improved, largely clastic sediment-based 

dating techniques have the potential to enable accurate multi-period budgeting that will allow 

the correlation of sediment flux with forcing factors including climate and human activity. 

These developments all make calculation of sediment budgets for (sub)catchment-wide 

systems much more feasible. This also evokes new questions and challenges, such as through-

flow rates, residence time of sediment and erosion quantification. The development of 

cosmogenic nuclide based estimation of erosion rates is important and must be reconciled 

with studies of the short to medium radionuclide erosion rate estimates and the short-term 

storage response of basins and apparent non-steady state behaviour. Two under-researched 

areas are highlighted; firstly the pedogenetic approach to hillslope erosion and secondly the 

use of lakes in the estimation of catchment erosion rates. Lastly the application of the 

sediment budget approach to river terrace deposits from unglaciated catchments is explored as 

a future avenue in the modelling of landform evolution. All recent developments and new 

approaches in sediment budgeting mentioned in this paper contribute to the process of 

translating sedimentary records into sediment budgets. This review concludes that due to a 

combination of technological advances the true potential of the sediment budget approach can 

only now be realized and will make a significant contribution to geomorphology. 
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