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Abstract 

This paper presents a lake-level record established for the last millennium at Lake Saint-Point 

in the French Jura Mountains. A comparison of this lake-level record with a solar irradiance 

record supports the hypothesis of a solar forcing of variations in the hydrological cycle linked 

to climatic oscillations over the last millennium in west-central Europe, with higher lake 

levels during the solar minimums of Oort (around AD 1060), Wolf (around AD 1320), Spörer 

(around AD 1450), Maunder (around AD 1690), and Dalton (around AD 1820). Further 

comparisons of the Saint-Point record with the fluctuations of the Great Aletsch Glacier 

(Swiss Alps) and a record of Rhône River floods from Lake Bourget (French Alps) give 

evidence of possible imprints of proxy sensitivity on reconstructed paleohydrological records. 

In particular, the Great Aletsch record shows an increasing glacier mass from AD 1350 to 

1850, suggesting a cumulative effect of the Little Ice Age cooling and/or a possible reflection 

of a millennial-scale general cooling until the mid-19th century in the Northern Hemisphere. 

In contrast, the Saint-Point and Bourget records show a general trend toward a decrease in 

lake levels and in flood magnitude anti-correlated with generally increasing solar irradiance. 

Keywords: Lake levels; River discharge; Glacier fluctuations; Last millennium; Solar 

forcing; Jura Mountains; Central; NW Alps 

Introduction 

The perspective of a global warming scenario has provoked an increasing interest in studies of 

climate variability over the last millennium. They preferentially document past changes in 

temperature ( [Mann et al., 1999] , [Mann et al., 2008] , [Crowley, 2000] , [Jones et al., 2001] 

, [Guiot et al., 2005] and [Moberg et al., 2005] ). However, the reconstruction of changes in 

the hydrological cycle associated with climatic oscillations and with relationships concerning 

availability of water resources is a scientific key question for the paleoclimatologist 

community (Vörösmarty et al., 2000). 

http://www.sciencedirect.com/science/article/pii/S0033589409001367#aff6


As a contribution to such studies, this paper presents a new paleohydrological record for the 

last millennium based on the reconstruction of changes in lake level at Lake Saint-Point in the 

French Jura Mountains. This record offers the opportunity to test hypotheses about the 

possible driving factors behind regional paleohydrological variability during this period 

(Magny et al., 2008), while inter-regional comparisons with other paleohydrological records 

point to other possible imprints on records such as proxy sensitivity and/or complex 

interactions between precipitation and temperature. 

Site and methods 

Lake Saint-Point (46°48′N, 6°12′E) is a 7.6-km-long narrow and overdeepened basin of 

glacial origin. The present water depth reaches  41 m and the lake area is  7 km
2
. It is located 

at an altitude of  850 m a.s.l. in the highest part of the French Jura Mountains (Fig. 1). The 

surrounding mountains attain ca.  1450 m a.s.l. The catchment area of the lake covers ca.  247 

km
2
. The substratum mainly comprises Upper Jurassic and Tertiary limestones (Leroux et al., 

2008). 

The main inlet (as well as the outlet) of the lake is the Doubs River. The seasonal fluctuations 

of the water table are characterized by maximal levels most often due to autumn rains and 

spring snowmelt, while minimal levels result from summer droughts ( [Magnin, 1904] and [2] 

). The Lake Saint-Point region is marked by relatively severe semi-continental climatic 

conditions. At lake altitude, mean annual precipitation attains ca. 1500 to  1900 mm, mean 

annual temperature ca. 10.2°C (2.7°C in the coldest month, and 21.3°C in the warmest 

month). During severe winters, the lake surface may remain frozen for several successive 

weeks. 

The coring site is located in a littoral mire, close to the southwestern lake shore (Fig. 1). After 

establishing a core transect perpendicular to the shore by means of a Russian peat corer, a 

core (labeled core 7) was taken for lake-level studies on a site where the sediment sequence 

shows an alternation of peat and carbonate layers characteristic of past changes in lake level. 

While previous studies of Lake Saint-Point sediment sequences focused on the early and mid-

Holocene (Magny and Ruffaldi, 1995), the present paper deals with the late Holocene as 

documented by the upper part of the core 7 sedimentary sequence. 

The lake-level fluctuations were reconstructed using a specific sedimentological method ( 

[Magny, 1998] and [Magny, 2006] ), based on multiple lines of evidence, including changes 

in the lithology (organic versus carbonate deposits) and the relative frequency of various 

carbonate concretion morphotypes of biochemical origin. Modern analogue studies have 

given evidence that each morphotype shows a specific spatial distribution from the shore to 

the extremity of the littoral platform, with the successive domination of oncolites (nearshore 

areas with shallow water and high energy environment), cauliflower-like forms (littoral 

platform), plate-like concretions (encrustations of leaves from the Potamogetonion and 

Nymphaeion belts), and finally tube-like concretions (stem encrustations from the Characeae 

belt on the platform slope; [Magny, 1998] and [Magny, 2006] ). In addition to variations in 

the assemblages of carbonate concretions, the relative frequency of plant macro-remains 

provides further information about the deposition environment. Thus, abundance of vegetal 

remains partly inherited from littoral vegetation (particularly ligneous vegetal remains) 

increases toward the shore. 



The chronology is based on five radiocarbon dates (Table 1). Ages have been calibrated using 

Calib 5.1 ( [Stuiver et al., 1998] and [Reimer, 2004] ). Probably due to reworked material, 

level  47 cm provided an inconsistent age of 6900 ± 40 
14

C yr BP (Fig. 2). Level  111 cm 

appears to be dated to 3315 ± 30 
14

C yr BP (i.e., 3631–3471 cal yr BP at 2σ range), in 

agreement with pollen data obtained in previous studies (Magny and Ruffaldi, 1995). This 

suggests that the organic layer at level 110–112 cm, embedded between two distinct white and 

yellow-beige layers of carbonate lake marl, corresponds to a sediment hiatus. Figure 2 shows 

the age–depth model established for the upper part of Saint-Point core 7, taking into account 

the maximum probability intervals at 2σ range. It indicates that, based on the upper part of 

core 7 above level 110 cm, the lake-level studies presented in this paper document the last 

millennium with a mean temporal resolution of ca. 50 yr/5-cm-thick sample. 

Results 

Figure 3 shows the sediment diagram established for the upper part of the sediment sequence 

of Saint-Point core 7, above level  110 cm. One may observe that the carbonate lake-marl 

layers of this sediment sequence are generally characterized by a relatively high 

representation of oncolites, while the percentages of tube and plate concretions remain at a 

low level. This suggests that, even during the phases of higher lake-level conditions marked 

by the deposition of carbonate lake marl, the coring site remained close to the shore (eulittoral 

zone). In general, the representation of oncolites appears to be anti-correlated with that of 

ligneous vegetal remains. Hence, on the right of the sediment diagram, a curve of relative 

changes in lake level is shown as reflected by the ratio between the total scores (i.e., 

percentages of representation) of markers indicating lower lake-level conditions (i.e., vegetal 

remains) and those indicating higher lake-level conditions with a sedimentation in open water 

(i.e., carbonate concretions; [Magny, 1998] and [Magny, 2006] ; see also Site and methods 

above). In addition, the curve of lithoclasts appears to mimic that of oncolites, with peaks in 

the carbonate lake-marl layers. Given that the coring site is closed to the inlet of the Doubs 

River, this suggests that a higher frequency of lithoclasts probably reflects increasing water 

discharge and clastic input into the lake by the Doubs. The curve of relative changes in lake 

level highlights eight successive phases of high and low water table as follows: 

-

  

Phase 1 developed before 840 ± 30 14C yr BP and was characterized by a relatively high lake 

level marked by the deposition of a carbonate lake-marl layer. 

-

  

Phase 2 corresponded to low lake-level conditions around 840 ± 30 14C yr BP. Such 

conditions favored the deposition of a peaty layer (peak of ligneous vegetal remains). 

-

  

After 840 ± 30 14C yr BP, Phase 3 coincided with a marked rise in lake level as indicated by 

the development of concretions and the concomitant strong retreat of ligneous vegetal 

components. The frequency of lithoclasts also increases with maximal values over 20%. At 

level  72 cm, a decline in oncolites and lithoclasts as well as an increase in non-ligneous 

vegetal remains mark an intermediate lowering dated to 350 ± 30 14C yr BP. 

-

  

Phase 4 was characterized by lower lake-level conditions that provoked a return to the 

deposition of organic sediments (peak of ligneous vegetal remains). 

-

  

Phase 5 corresponded to higher lake-level conditions reflected by a peak of oncolites in 

addition to the presence of cauliflower, plate and tube concretions. 



-

  

During Phase 6 (ca. 245 ± 30 14C yr BP), low lake-level conditions prevailed, as shown by an 

increase in the representation of vegetal remains and the quasi-disappearance of carbonate 

concretions (deposition of a peaty layer). 

-

  

After 245 ± 30 14C yr BP, Phase 7 coincided with higher lake-level conditions responsible for 

the deposition of a carbonate lake-marl layer. In addition to a peak of oncolites, the 

representation of tube concretions reaches ca. 10%. 

-

  

Finally, dated to ca. 117.27 ± 0.38 pMC (i.e., percent modern carbon), Phase 8 marks a 

lowering well illustrated by maximal values of the ligneous vegetal remains (peat layer). The 

accumulation of organic deposits in the 18-cm-thick superficial peat layer may reflect an 

impact of the recent regulation of the water table to avoid excessive lowstands during the 

tourist summer season. 

Discussion 

The Saint-Point lake-level record offers a new opportunity to test hypotheses on the possible 

forcing factors of paleohydrological changes associated with climate variations in west-

central Europe over the last millennium. The right panel of Figure 4 compares the Saint-Point 

record with the curve of variations in solar irradiance based on cosmogenic nuclides (Bard et 

al., 2000). Within the age uncertainties given by the radiocarbon dates (Table 1; Figure 2 and 

Figure 4, right panel), the Saint-Point record has been tuned to the solar irradiance record. 

Figure 4 (right panel) shows the radiocarbon age as well as the age uncertainty (maximum 

probability intervals at 2σ range defined by calibration; see Table 1 and Fig. 2) of lake-level 

events used to tune the Saint-Point record to the solar irradiance record (Bard et al., 2000). 

The comparison of the two records suggests a possible general agreement between the lake-

level events reconstructed at Lake Saint-Point and variations in the solar activity. Highstands 

developed during the successive solar minimums of Oort at around AD 1060, Wolf at around 

AD 1320, Spörer at around AD 1450, Maunder at around AD 1690, and Dalton at around AD 

1820. 

Thus, the paleohydrological record of Lake Saint-Point supports the hypothesis of a possible 

solar forcing of climate as inferred from previous studies at Lake Joux in the Swiss Jura 

Mountains for the last millennium ( [Magny, 2004] and [Magny et al., 2008] ) or from various 

proxy records for the late Holocene in northwestern Europe ( [Mauquoy et al., 2002] and 

[Haltia-Hovi et al., 2006] ), in northeastern North America (Hughes et al., 2006), in the 

western North Atlantic Ocean (Lund and Curry, 2006), as well as in equatorial east Africa 

(Verschuren et al., 2000). Figure 4 also gives evidence that the periods of minimum water 

table at Lake Saint-Point, which were marked by the sedimentation of organic deposits, 

closely coincided with phases of stronger solar activity at around AD 1200 (Medieval Warm 

Period, i.e., MWP), AD 1630 and 1760 (i.e., just before and after the Maunder minimum), and 

since the late 19th century (recent warming). 

To sum up, the early part of the millennium and the Little Ice Age (LIA) generally coincided 

with higher lake-level conditions, while the last part of the Medieval Warm Period (MWP) 

around ca. AD 1200 and the recent warming since the mid-19th century corresponded to 

lower water tables. Finally, considered as a whole, the solar irradiance and the Saint-Point 

lake-level records show anti-correlated general trend, with solar maximum and lake-level 

minimums at ca. AD 1200, a rapid decrease in solar irradiance and increase in lake levels 



from ca. AD 1200 to ca. AD 1450, followed by a general increase in solar irradiance and 

decrease in lake level until present time. 

For further tests and comparisons with other west-central European paleohydrological records 

based on different types of proxies, Figure 4 presents the variations in size of the Great 

Aletsch Glacier in the Swiss Alps (Holzhauser et al., 2005) and the Titanium record 

established from core LDB 04-I at Lake Le Bourget in the French northern Pre-Alps ( 

[Arnaud et al., 2005] and [Jacob et al., 2008] ; Fig. 1). The Aletsch record (central panel of 

Fig. 4) benefits from a robust chronology based on tree-ring analysis of in situ subfossil 

trunks, in addition to archeological and historical pictorial data. As pointed out by Holzhauser 

et al. (2005), the behavior of mountain glaciers (advance or retreat) reflects the sum of 

complex interactions of climatic parameters (e.g., temperature and precipitation) and 

topographic conditions. Basically, they advance if temperatures decrease (particularly in 

summer) and/or precipitation increases. Moreover, it has been calculated that the response 

time of the Great Aletsch Glacier is an order of 50 to 100 yr (Haeberli and Holzhauser, 2003). 

Core LDB 04-I was taken at  100-m water depth in Lake Le Bourget, a fjord-type foreland 

lake of the French NW Pre-Alps, and which is a tributary of the Rhône River (Fig. 1). The Ti 

record reconstructed from core LDB 04-I (left panel of Fig. 4) gives evidence of major floods 

from the Rhône River, which enters the northern part of the lake through the lake outlet, and 

brings water discharge and clastic input in particular from high-elevated zones (catchment 

area of the Arve River in the French NW Alps, Mont Blanc massif; [Chapron et al., 2002] , 

[Arnaud et al., 2005] , [Revel-Rolland et al., 2005] and [Jacob et al., 2008] ). The chronology 

of this high-resolution (< 8 yr) continuous record is based on (1) the identification of the 

varve-count dated eutrophication of the lake at AD 1943 (Giguet-Covex et al., 2009), (2) the 

identification of flood deposits (underflows) related to historical floods after AD 1734 

(Chapron et al., 1999), and (3) one radiocarbon date that yields an age of 1200 ± 30 cal yr BP 

(i.e., AD 710–940 at 2σ range). Hence, whereas the age uncertainty is < 10 yr since the early 

18th century, for the lower part of the Ti record presented in Figure 4, it is at least on an order 

of ± 100 yr if the radiocarbon age calibration is taken into account. 

On a general scale, similarities appear between the different types of records as follows. At 

ca. AD 1200, low lake levels in the Jura Mountains coincided with a Ti minimum at Lake Le 

Bourget and a retreat of the Great Aletsch Glacier. Between ca. AD 1300 and 1850, the LIA 

appears to be characterized by general conditions marked by wetter and cooler climate 

resulting in higher lake levels in the Jura Mountains, more frequent floods in the upper Rhône 

Valley. These general conditions may have favored an advance of the Aletsch Glacier 

(Holzhauser et al., 2005), while dry easterly atmospheric flow during the coldest periods of 

LIA may also have favored the preservation of Alpine glaciers. This general pattern for LIA is 

in agreement with the high level of summer and annual mean precipitation reconstructed by 

[Casty et al., 2005] and [Pauling et al., 2006] in the Alps from AD 1500 to AD 1700. The 

recent warming since AD 1850 is marked by a concomitant lake-level lowering, a glacier 

retreat, and a decrease in river discharge (the latter has also been enhanced by anthropogenic 

embanking along the Rhône River since ca. AD 1870; Chapron et al., 2002). Before AD 1200, 

one observes a high lake-level phase in the Jura Mountains at ca. AD 1060, an advance of the 

Aletsch Glacier culminating at ca. AD 1100–1150, and a Ti peak at Lake Le Bourget at ca. 

AD 1160. Chronological discrepancies that appear between records before AD 1200 may be 

due to a longer response time of the Aletsch Glacier at the end of the MWP (which favored a 

marked retreat in higher elevation areas), and chronological uncertainties in the Le Bourget 

record as explained above. 

http://www.sciencedirect.com/science/article/pii/S0033589409001367#ref_fig4


Dissimilarities also appear between the records presented in Figure 4. The Aletsch and Le 

Bourget records, which reflect changes in high-elevation areas, show river discharge and 

glacier maxima early in the LIA (at ca. AD 1300–1370), while in the lower elevation Jura 

Mountains, lake-level maxima culminated later at ca. AD 1450 (in agreement with the Spörer 

solar irradiance minimum). Such a strong early impact of the beginning LIA in NW Alps has 

also been observed from a chironomid-based temperature record at Lake Anterne (Millet et 

al., 2009). However, the Ti peak in the Le Bourget record around AD 1300 may also, at least 

in part, reflect a possible contribution of human impact at a crucial transition between the late 

medieval forest clearing and the beginning LIA. Such a hypothesis has been illustrated in 

Germany by extensive soil erosion due to a combination of human impact and heavy rainfall 

in the 14th century (Bork, 1989). 

Furthermore, considering the general trend outlined by every record, it is noteworthy that the 

Le Bourget and Saint-Point records are characterized by a general decrease (in Rhone River 

floods and in lake level, respectively), anti-correlated with a general increase in solar 

irradiance from AD 1500 onward. In contrast, beyond three size-equivalent maxima at ca. AD 

1370, 1670 and 1860, the less and less marked retreats of the Aletsch Glacier at ca. AD 1250, 

1500 and 1750 suggest a cumulative effect of LIA cooling with an increasing mass of the 

glacier, before a rapid melting and retreat after AD 1850 (Fig. 4). As an alternative but not 

conflicting explanation, the pattern shown by the Aletsch Glacier record, which has 

equivalents elsewhere (see for instance in northern North America; Barclay et al., 2009), may 

also be a reflection of a millennial-scale general cooling until the mid-19th century 

reconstructed in the Northern Hemisphere ( [Mann et al., 1999] and [Solomon et al., 2007] ). 

This may suggest a relatively strong influence of the temperature parameter in addition to that 

of precipitation. 

Finally, on a centennial scale, correspondences may be observed in the details between the 

solar irradiance record and (1) the Saint-Point lake-level record during the entire LIA, and (2) 

the detrital discharge record of the Rhône River after AD 1400. On the other hand, the 

Aletsch record shows correspondences with the solar irradiance record more particularly on a 

plurisecular scale, as pointed out by Holzhauser et al. (2005). This probably results from the 

fact that the Aletsch Glacier fluctuations reflect more complex interactions between climatic 

parameters, which result in this delayed reaction and response time. 

Conclusion 

The establishment of a new lake-level record at Lake Saint-Point confirms the regional 

paleohydrological pattern reconstructed for the last millennium in the Jura Mountains and 

characterized by generally higher lake-level conditions during the LIA. It also supports the 

hypothesis of a major solar forcing of climate and associated hydrological variations in this 

region during the last 1000 yr. This conclusion does not rule out the possible contribution of 

other factors such as volcanic forcing, for example around AD 1250–1300, 1450, 1600, 1700, 

and 1809–1830 ( [Zielinski, 2000] and [Castellano, 2005] ), or changes in Atlantic Ocean 

circulation (Lund and Curry, 2006). In addition, while an increasing literature (e.g., [De 

Vleeschouwer et al., 2009] and [Liu et al., 2009] ) suggests apparent correlations between sun 

and climate over the last millennia, recent papers also point to the fact that the amplitude of 

changes in solar activity was probably small (e.g., Krivova and Solanki, 2008). This calls for 

further investigations before establishing a more comprehensive view of possible mechanisms 

behind such a sun–climate relation (e.g., [van Geel et al., 1999] , [Renssen et al., 2006] and 

[Meehl et al., 2009] ). 



The comparison of the Saint-Point lake-level record with the fluctuations of the Aletsch 

Glacier in the Swiss Alps and the record of detrital discharge in the upper Rhône River as 

reflected by a Ti record from Lake Le Bourget in the French NW Alps gives evidence of 

possible imprints of the type of proxy and/or site used to establish paleohydrological records. 

Both Le Bourget and Aletsch Glacier records suggest a particularly strong impact of the 

beginning LIA on high-elevation areas of the NW Alps, with a strong paleohydrological 

signal as early as AD 1300–1350. In addition, while the Lake Saint-Point and Le Bourget 

records after AD 1450 show a common general trend toward a decrease in lake level in the 

Jura Mountains as well as in floods in the upper Rhône Valley (in agreement with a general 

trend toward increasing solar irradiance), the Aletsch record suggests a cumulative effect of 

the LIA cooling marked by an increasing mass of the glacier until AD 1850, and/or a possible 

reflection of the general cooling trend of the Northern Hemisphere temperature during the 

LIA. Finally, on a centennial scale, the Aletsch record also shows differences from the Saint-

Point and Le Bourget records. This points to a likelihood of more complex interactions 

between climatic parameters in the behavior of large glaciers such as the Aletsch Glacier, 

whereas both lake-level fluctuations and river-flood records are more directly linked to 

changes in hydrological conditions (precipitation). 
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Figure 1. : Geographical location of the study site and reference sites. LSP: Lake Saint-Point; 

LJ: Lake Joux; LLB: Lake Le Bourget; GA: Great Aletsch Glacier. 



Table 1. Radiocarbon dates obtained from the upper part of Saint-Point core 7. 

Depth 

(cm) 

Radiocarbon 

date 

Calibrated age at 2 sigma 

range (maximum probability 

intervals) 

Laboratory 

reference 

Material 

9.5–

10.5 

117.27 ± 0.38 

pMC 

> AD 1955 Poz-18513 Peat 

31–32 245 ± 30 
14

C yr 

BP 

AD 1523–1951 (AD 1630–1681 

and AD 1763–1802) 

Poz-18514 Charcoal + carex 

seeds + wood 

71.5–

72.5 

350 ± 30 
14

C yr 

BP 

AD 1458–1635 (AD 1458–1531 

and AD 1537–1635) 

Poz-18517 Charcoal 

97–98 840 ± 30 
14

C yr 

BP 

AD 1058–1265 ( AD 1155–

1265) 

Poz-18519 Charcoal + 

wood 

111–

112 

3315 ± 30 
14

C 

yr BP 

3631–3471  cal yr BP Poz-20683 Wood 

pMC: percent modern carbon (Goslar et al., 2005).  



 

 

Figure 2.  :Age–depth model of Saint-Point core 7. The radiocarbon ages have been calibrated 

and the maximum probability intervals have been defined using Calib 5.1 (Stuiver et al., 

1998). Circles with cross mark the calibrated age of levels 31–32, 71.5–72.5, and 97–98  cm 

when tuning the Saint-Point lake-level record (this study) and the solar irradiance record 

established by Bard et al. (2000; see Fig. 4, right panel). The gray-shaded area marks the age 

uncertainty as defined by the maximum probability intervals at 2σ range (see Table 1 for 

explanation of radiocarbon age estimates). 



 

Figure 3. : Sediment diagram of Saint-Point core 7 (above level  110 cm) and inferred lake-

level fluctuations for the last millennium. CF: cauliflower-like concretions. See Table 1 for 

explanation of radiocarbon age estimates. Rectangles on the lake-level curve indicate the 

radiocarbon-dated events used to tune the Saint-Point lake-level record to the solar irradiance 

record (see Fig. 4, right panel). 

 

 

 



 

Figure 4. : Comparison over the last millennium between the Saint-Point lake-level record 

(this study) in the Jura Mountains, the Ti record from Lake Le Bourget in the French NW 

Alps (Arnaud et al., 2005), the Great Aletsch Glacier record in the Swiss Alps (Holzhauser et 

al., 2005), and the total solar irradiance record (Bard et al., 2000) with indication of the 

successive solar minimums of Oort, Wolf, Spörer, Maunder, and Dalton. The Saint-Point 

record has been tuned to the solar record on the basis of constraints defined by the 

radiocarbon dates as illustrated by Figure 2. As in Figure 3, rectangles on the lake-level curve 

mark the radiocarbon-dated events, while vertical bars show the age uncertainty of these 

events (maximal probability intervals at 2σ range; see Fig. 2 and Table 1). The gray area 

suggests the cumulative effect of LIA cooling on the mass of Great Aletsch Glacier until AD 

1850. The arrows point to the general trend characterizing every record over the LIA. See 

Table 1 for explanation of radiocarbon age estimates. 

 

 

 

 


