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Maison des Géosciences, BP 53, 38041 Grenoble Cedex 9, France
(Received 1 February 2008; revised manuscript received 22 March 2009; published 5 June 2009)

Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it
addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an
upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations
is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of
order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to
turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation
rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number P,
fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power
of the shear velocity) for magnetic Reynolds numbers below P;ll and follows a steeper evolution for magnetic
Reynolds numbers above P,_nl (i.e., proportional to the shear velocity to the power of 4) in the case of
electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall
conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be
bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conduc-
tance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are

discussed.

DOI: 10.1103/PhysRevE.79.066304

I. INTRODUCTION

Natural dynamos exist whenever the conditions of their
existence is possible, i.e., when a sufficiently large magnetic
Reynolds is reached. One can imagine that this is an addi-
tional route for mechanical energy dissipation and that it is
more likely for natural systems to take it than not to take it.
It has been argued sometimes that a state of maximal dissi-
pation rate should be reached and this idea has been used as
a closure assumption for turbulence (e.g., Malkus [1]). Tt is
not necessary to make such an assumption, as explained
clearly by Howard [2], and yet one can draw useful informa-
tion from the determination of rigorous lower and upper
bounds on energy dissipation in turbulent flows. These
bounds are obtained in a larger functional space than the
solutions to the Navier-Stokes equation; hence, they are not
necessarily attained. However, in a number of cases, turbu-
lent flows lead to a dissipation rate of the same magnitude as
this upper bound [3].

The variational approach to turbulence was introduced by
Malkus [4], Busse [5], and Howard [6]. More recently, this
approach was reformulated by Doering and Constantin [7]
and expressed in a simpler way, using the concept of a back-
ground function (not necessarily the mean flow of turbu-
lence) following Hopf [8]. The objective is to bound energy
dissipation under the constraint of horizontally averaged en-
ergy balance (for statistically plane invariant configurations).
In a series of papers, the approach was improved by optimiz-
ing the spectral Lagrange parameter [9] and the background
function [3]. The final bound is better than the nearly rigor-
ous bound of Busse. Our objective here is not to exhaust
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these possibilities of optimization but rather to apply the gen-
eral principle to different configuration, i.e., a dynamo prob-
lem.

The idea of applying a variational approach to a magne-
tohydrodynamic flow has been applied already to a Couette
and Poiseuille flow subjected to an applied transverse mag-
netic field [10]. This paper has been a source of motivation
for the present work with two significant variations. First,
there is now no imposed magnetic field and, second, mag-
netic boundary conditions are different. In the paper by Al-
exakis et al., magnetic disturbances are constrained to vanish
at the boundaries, which does not correspond to a physically
plausible situation. It is assumed here that the fluid domain is
bounded by an infinite domain of electrically insulating me-
dium (or with a conducting solid wall of finite thickness in
between).

A plane Couette flow configuration is considered and our
objective is to find an upper bound to the total-energy dissi-
pation when a prescribed velocity is applied. There is no
applied magnetic field of external origin and the problem
may look like a purely hydrodynamical one. However, the
flow may support dynamo action (see [11,12]) and the
amount of dissipated energy must then take into account
Joule dissipation. Upper bounds will be obtained as a func-
tion of two dimensionless parameters: the Reynolds number
and the magnetic Reynolds number. In addition, the effect of
electrically conducting walls of finite thickness will be inves-
tigated.

Section II provides details on the flow configuration, no-
tation, dimensionless variables, and equations. In Sec. I, the
principle of decomposition with background flow is pre-
sented. The horizontally averaged energy balance is obtained
in Sec. IV and the expression for the total-energy dissipation
(Joule plus viscous) is given in Sec. V. Energy dissipation
bounds are obtained in Secs. VI and VII respectively, when
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FIG. 1. Plane Couette flow configuration.

velocity fluctuations and magnetic fluctuations are consid-
ered, respectively, in addition to the background flow. An
improved bound is determined numerically in Sec. VIII. Sec-
tion IX is devoted to a discussion of the bounds obtained and
their relevance to experimental and geophysical configura-
tions and Sec. X to the directions in which the variational
approach could be extended to deal with more relevant mod-
els of dynamo.

It may be useful to provide some guidance on how to read
this paper. The Hopf-Doering-Constantin method is explic-
itly introduced and subsequent calculations of upper bounds
are also detailed explicitly. A reader with no prior knowledge
of the method can check all results with pen and paper until
the end of Sec. VII. Section VIII does not provide any fun-
damentally new result and can be ignored in a first reading.
This section has required some standard numerical calcula-
tions of eigenvalues related to the magnetic spectral con-
straint, and the method is only sketched. This section serves
two purposes: first, it provides a better upper bound as it
corresponds to a background function for which the spectral
condition is only just satisfied (it is zero for a particular
disturbance) and, second, it provides a confirmation that the
upper bound derived analytically in Sec. VII is relevant as it
obeys the same scaling law as the numerical bound at large
magnetic Reynolds numbers.

II. PLANE COUETTE FLOW CONFIGURATION

The dimensionless Navier-Stokes and induction equations
can be written as

Jdu . 1w

E+U-Vu=—Vp+JXB+RC V-u, (1)
JB -lg2
E+u~VB=B-Vu+RmVB. (2)

In the equations above, the dimensional length and velocity
scales are chosen to be half the distance H and differential
velocity U between the plates (see Fig. 1) while the quanti-
ties H/U, pU?, U \f‘m, and \s“mU/H are taken as dimen-
sional scales for time, pressure, magnetic field, and electric
current density, respectively. The dimensionless parameters
are the Reynolds number Re=UH/ v and the magnetic Rey-
nolds number R,,=uocUH. The symbols p, u, v, and o de-
note density, vacuum magnetic permeability, kinematic vis-
cosity, and electrical conductivity, respectively. In this
dimensionless formulation, the electric current density j is
simply the curl of the magnetic field B.
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As shown in Fig. 1, the thickness of the fluid layer is
2H-2FE, where E is the thickness of the electrically conduct-
ing layer of the wall. That thickness may be zero E=0, in
which case the wall is electrically insulating. In all cases, the
overall thickness of the electrically conducting domain is
2H. For simplicity, the electrical conductivity of the solid
conducting layer is identical to that of the fluid. Hence, at
z=H-E and z=—H+E, there is continuity of all three com-
ponents of the magnetic field. Moreover, the induction equa-
tion is identical in the fluid and in the conducting layer.
Therefore, there is no boundary condition to consider at z
=H-E or z=—H+E. The magnetic boundary condition, at
z=* H, is that the magnetic field in the electrically conduct-
ing domain is matched continuously to a curl-free and
divergence-free magnetic field outside (see Appendix A).

III. BACKGROUND VELOCITY DECOMPOSITION

A frame of reference (x,y,z) is chosen with x aligned
with the direction of the imposed shear velocity and z in the
direction perpendicular to the plates. Its origin is halfway
between the plates.

The velocity field u is written as the sum of a steady
parallel profile ®(z)e, satisfying the boundary conditions
O(+(1-¢))==1 and of a field v with homogeneous bound-
ary conditions v(x,y, =(1-e),)=0, i.e.,

u(x,y,z,t) = P(z)e, + v(x,y,z,1). (3)

It must be stressed here that ®—the so-called background
velocity profile—needs not be the average value of the full
velocity field u, neither in the temporal nor in the horizontal
space average sense.

Substituting this decomposition into the Navier-Stokes
and the induction equations leads to evolution equations for
v and B for any particular choice of a background profile,

v av
—+Vv-VWv+O—+u D'e,
ot ox N
=—-Vp+jXB+Re [D", + V], (4)

JB B e
E+V-VB+Q)6—=B-VV+BZ<IJ'eX+RmV B, (5)
X

where @’ and ®” denote the first and the second derivatives
of the background velocity profile @, respectively.

IV. ENERGY BALANCE OF FLUCTUATIONS

The dot product of Egs. (4) and (5) with v and B, respec-
tively, are integrated over )V a large rectangular volume —L
<x<L,-L<y<L,and —1<z<1. They are then integrated
over a long period of time 7. The following space and time
averaged equations are obtained:

(P'vw)=((FXB)-v)- Re_l<<b'(;—vzx> —Re {Vv:Vv),

(6)
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0=(®'B,B)+(j- (vXB)) R, (%, (7)

where the Poynting flux going out of the control volume has
been assumed to be zero (there is no external source or sink,
see Appendix A) and where the following global space-time
average is introduced for any quantity f:

1 (T (! (L (L
(f)=lim lim — j J f j fdxdydzdt. (8)
T—x L*}OOL T 0 -1 0 0

The work of Lorentz forces ((j XB)-v) and electromotive
work (j- (v XB)) are equal and opposite, so that the sum of
Egs. (6) and (7) leads to the following energy balance:

dv,
d

—(P'vw,)+(P'B,B,) - Re‘1<CI>’ > —Re (Vv:Vv)
2

-R,(j%) =0. )

V. TOTAL-ENERGY DISSIPATION

Let us take prU?/H? as a dimensional scale for energy
dissipation per cubic meter. The average dimensionless en-
ergy dissipation due to viscous effects is (Vu:Vu) and the
average dimensionless Joule dissipation is P;ql(jz). When u is
expressed using decomposition (3), the total dissipation D
=(Vu:Vu)+P;,(j?) becomes

D=(Vv:Vv) +(DP'?) + 2<¢'%> +P Y. (10)

Combining the energy constraint (9), so as to remove the
linear term (P’ dv,/dz), gives the following expression for
the dissipation:

D=(®'?) - [(Vv:Vv) +2 Re{D'v,0.,)]
- P,'[(j%) - 2R, (P'B,B.)]. (11)

Dissipation is bounded by the background dissipation (®’?)
when both conditions (Vv:Vv)+2 Re(®'v,v,)>0 and (j?)
—2R,(P'B,B,)>0 are satisfied for all admissible vector
fields v and B, i.e., divergence-free vector fields satisfying
the appropriate boundary conditions. Those two conditions
are called spectral conditions in the framework of the back-
ground method, because they can be treated as an eigenvalue
problem and this is precisely the method that will be fol-
lowed in Sec. VIII. However, it is also possible to ensure that
those conditions are satisfied using other methods and they
will be dealt with using functional inequalities in the follow-
ing Secs. VI and VIIL.

VI. VELOCITY SPECTRAL CONDITION

Equation (11) shows that the spectral conditions can be
treated independently for velocity and magnetic distur-
bances. The velocity spectral condition consists in ensuring
that (Vv:Vv)+2 Re(P'v,v.) remains positive for all velocity
fields v.

In order to satisfy the spectral constraint at large Reynolds
numbers, it is convenient to choose a background velocity

PHYSICAL REVIEW E 79, 066304 (2009)
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FIG. 2. Bound on dissipation obtained from Eq. (17) for the
velocity spectral condition (“plus” signs) and from Eq. (28) for the
magnetic spectral condition, for different wall conductances e
=1073, 107, 1077 and 0 plotted here for P,,=107>.

profile which is uniform in most of the fluid, with a linear
profile on each side, so as to recover correct boundary con-
ditions (see Fig. 2). The thickness & of these linear parts
(virtual boundary layers) is a free parameter. The “produc-
tion term” 2 Re(®'v,v.) is confined to these regions where it
can hopefully be balanced by viscous “dissipation” (Vv:Vv)
for a sufficiently small thickness 6.

This problem is solved as follows [10,13]. Using the con-
dition v=0 at the lower wall, the velocity at another position
z in the fluid can be bounded as follows using the Schwartz
relationship:

z v Z z v 2
U*:f ~d7' = \/f dz’f {—fJ dz’
—l+e Jz —l+e —l+e Jz
1-e 2
— du,
S\'Z‘Fl—eﬂf —f dz’. (12)
—l+e Jz

Combining with the corresponding equation for v, and using
the Young relationship leads to

1 e fov\2 (ov.\?
UXUZSE(1+1—6) (9_2' + (9_2' dz
—l+e

1 1-e
= 5(z+ 1- e)f Vv:Vvdz. (13)

l+e

Integrating v, v.®’ over the lower boundary layer yields

—1+e+6 S l—e
J v, P'dz= —J Vv:Vvdz. (14)

—l+e —l+e

Averaging over the x and the y directions and taking into
account the upper boundary layer leads to

(P'vw,) = §<VVZVV>. (15)

The velocity spectral condition is then satisfied as soon as
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S=<Re’. (16)

In terms of energy dissipation (11), assuming magnetic ef-
fects to be absent, this background profile with sufficiently
small boundary layers (16) provides an upper bound,

D =2 Re. (17)

VII. MAGNETIC SPECTRAL CONDITION

In the previous section, it has been possible to find a
condition on ¢ fulfilling the spectral requirement for velocity
perturbations. The corresponding task for magnetic perturba-
tions cannot be exactly similar as the property v=0 on the
walls has to be changed into physically sound magnetic
boundary conditions. We are considering that the magnetic
field inside the fluid and boundary domains should match a
potential field outside decaying to zero at infinity (or possi-
bly to a nonzero constant if a nonzero mean electric current
density is allowed in the electrically conducting domain).

We cannot easily find a simple expression for the bound-
ary condition for B, or B, in the physical space; however, we
obtain below a boundary condition for the (x,y) average
product B,B,. This will then been used to bound (®’B,B.) in
terms of (j?).

Let us denote the horizontal average over the (x,y) plane
with an overbar,

flz)= limi2 S, y,2)dxdy. (18)
L—=L"Jo Jo

Outside the domain, the curl of the magnetic field is zero, so
is the product of its y component with B, averaged over x
and y,

B.(d.B,— d.B,) =0. (19)

Using integration by part, divergence-free condition for B,
another integration by parts, and the z component of VXB
=0 leads to

Bz(asz - asz) = &szBz - Bxasz’

=0,B.B,=0. (20)

As the product B,B, is vanishing at infinite z, we conclude
that BB, is zero at the boundary of the conducting domain,
i.e., when z= * 1. Strictly speaking, this is enough to see that
it will be possible to bound (B,B.) in terms of the mean
square of the gradient of B using Poincaré’s theorem and
then in terms of the mean joule dissipation. A convenient
way of obtaining such a bound is to repeat the calculations
leading to Eq. (20) while retaining a nonzero electric current
density for -1 =z=1. This leads to

PHYSICAL REVIEW E 79, 066304 (2009)

d,B\B,=j,B,—j.B,=(j X B),, (21)

which is the expression of the x component of Lorentz forces
in terms of the magnetic stress tensor, averaged on constant z
planes. The product B, B, can be evaluated inside the electri-
cally conducting domain using the boundary condition
B.B.=0atz=*1,

z
B.B.(z) = d.B.B.dz',
-1

_ j GxB. 22)
-1

which can be bounded as follows:

BB = \/ J dz'\/ f TR (@)
41 -1

As shown in Appendix B, the x and y averaged square mag-
netic field in the electrically conducting domain is bounded
as follows:

B(2) = 2%). (24)
Hence, Eq. (23) can be written as
IB.B.(2)] = 2z + 1(3?). (25)

The magnetic boundary condition is rather loose compared
to the velocity boundary condition which leads here to a
bound proportional to the square root of z+ 1 for the product
B B, rather than a linear dependence for the velocity product
U,

Using Eq. (25) it is now possible to bound (B,B.®’),

—1+e+6 1 1-e
[(B.B.®")| = 3 f |B,B.(7)|dz + 5 f |B,B.(2)|dz,
1

—l+e —e—0

—

2\’12 e+d

= _<jz>f \’;du s
5 e

12y
=Sl 77, 26)

The magnetic spectral condition (j*)—2R,(®'B.B,)=0 is
satisfied as soon as

8 \ER .

35 [(e+0)°?-e?]=1. (27)

This relationship is then used to express Jin terms of viscous
dissipation for the background flow and hence to determine
an upper bound for global dissipation. This bound is plotted
in Fig. 2 for various values of the wall thickness e. The
limiting case of vanishing wall thickness (or rather of an
electrically insulating wall) can be easily derived from Egq.
(27) and corresponds to
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2 1/2
8V2R,,0
\Tm =1, (28)

and since the dissipation of the background profile is 2/ 5, we
have

256R?,
D=—"-"

5 (29)

One must take the higher upper bound derived from the
velocity and magnetic spectral conditions in Fig. 2 as both
conditions must be satisfied. It is straightforward from Egs.
(17) and (27) that the magnetic spectral condition will take
over the velocity spectral condition when the magnetic Rey-
nolds number is exceeding 9/(128P,,) =0.07P;". It can also
be derived from Eq. (27) that the critical magnetic Reynolds
number at which our upper bound estimate diverges toward
infinity is R, =1/(4v2e).

VIII. NUMERICAL DETERMINATION OF UPPER
BOUNDS

The velocity and magnetic spectral conditions appearing
in Eq. (11) are tackled numerically in this section. The rea-
son for this is not to achieve a better (i.e., lower) upper
bound, although this is the case. The main reason is to check
that our analysis in Secs. VI and VII provides results that are
of the correct magnitude and not gross overestimates of dis-
sipation upper bounds. For a given background profile, the
numerical analysis provides Reynolds and magnetic Rey-
nolds numbers such that the spectral conditions are satisfied
for all admissible velocity and magnetic fluctuations, and this
cannot be improved as one particular velocity disturbance
and one particular magnetic disturbance make the spectral
conditions just zero.

The method is sketched here: the spectral condition can
be treated as a problem of energy stability for the back-
ground flow [13]. This is changed into an eigenvalue prob-
lem and the game consists in finding a Reynolds or magnetic
Reynolds number such that the maximum eigenvalue is zero.
The velocity and magnetic fluctuations are Fourier trans-
formed in the x and the y directions, while they are expanded
using Chebyshev collocation polynomials in the z direction.
The optimal magnetic disturbance is always found in the
limit of zero wave numbers k, and k,, whereas the optimal
velocity disturbance is found for k,=0 and k,, finite and in-
creasing with the Reynolds number [see Fig. 4].

For this numerical analysis, the background function is no
longer piecewise linear. In order to avoid numerical difficul-
ties due to discontinuities in the velocity gradient, a hyper-
bolic sine function class is chosen ®=sinh(z5). In the limit
of large dissipation, the background velocity is zero every-
where except in thin boundary layers where the velocity pro-
file is an exponential function. Similarly to what has been
done in Secs. VI and VII, the background functions contain a
single free parameter, i.e., the typical thickness & of the
boundary layers. Due to the new profile of the background
function, the associated dissipation takes a different form
that can be derived analytically as

PHYSICAL REVIEW E 79, 066304 (2009)
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FIG. 3. Numerical magnetic upper bound for energy dissipation
for different wall thicknesses.

1 - e +sinh(255¢)

2 smn((5))
For a given choice of 6, hence dissipation, a lower bound of
Reynolds and magnetic Reynolds number is sought. This is
repeated for various values of ¢ and the resulting curve can
be read as an upper bound of dissipation for each value of
magnetic Reynolds or Reynolds number (see Figs. 3 and 4,
respectively). Both spectral conditions can be plotted on the
same figure once a magnetic Prandtl number is specified. It is
clear that this numerical procedure leads to improved upper

bounds—by a factor of 10 approximately—compared to
those obtained analytically, while similar trends are obtained.

(30)

IX. DISCUSSION

For the simple Couette flow configuration under investi-
gation, and for electrically insulating boundaries, it has been
found that a classical “hydrodynamical” upper bound for dis-
sipation holds when R,, is smaller than around P,_nl: the di-
mensional upper bound of dissipation per unit mass is of
order U3/H. For larger magnetic Reynolds numbers al-

103 T
x Dissipation bound
©Optimal wavenumber k,
B .
[} x
Na) x
g e
= x
= x
¢

;102* : o o : : xS Qrong
g * ¢
= x & 3
: e
2 x ¢
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2 x o
= % LGl
% x o
A 1ot * o°

100 | 5SS i

X 0
x .
X <
* o
X x [
w0
@000 0 ¢ ©
109 i i
10! 10? Re 10° 10*

FIG. 4. Numerical upper bound for energy dissipation from the
velocity spectral condition and associated spanwise wave number k,
of marginal perturbation.
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TABLE 1. Extra dissipation due to dynamo action slightly above
threshold in experimental dynamos.

Riga [14] Karlsruhe [15] Cadarache [16]

% above critical R,, 6-7 6.7 30

% extra dissipation 10 42 15-20

though, another scaling is followed and the bound on dissi-
pation becomes proportional to u?>c?vU*. This new bound is
higher than the hydrodynamical bound and is independent of
the half distance H between the plates.

When the boundary plates have the same electrical con-
ductivity as the fluid and a finite thickness e, the resulting
upper bound is changed dramatically. The upper bound cor-
responding to the magnetic part of the spectral condition
increases suddenly and diverges to infinity for a value of the
magnetic Reynolds number depending on the thickness of
the walls. This critical magnetic Reynolds number scales as
e~"2. This value can be reached much before the change in
regime between hydrodynamical and (insulating) “magnetic”
branches of upper bound estimates (R,,~ P;").

It should not be too surprising that dissipation can be
unbounded at some finite magnetic Reynolds number. Such a
situation can be easily simulated with a Bullard dynamo
model. This is a solid-rotation dynamo with no possible feed-
back of the magnetic field on the structure of the flow. Hence
magnetic energy (and dissipation) grows without limit above
the threshold of linear instability. As soon as electrical con-
ductivity is restricted to the fluid (e=0), this behavior is no
longer possible. For any finite magnetic Reynolds number,
energy dissipation is certainly finite. Yet the scaling law for
this dissipation is distinctly above the hydrodynamical a pri-
ori estimate.

Whether one is inclined to believe that upper bounds of
dissipation are generally relevant to turbulence or not, there
is one firm and strong result from the present work which is
the extended validity of the Kolmogorov scaling up to R,
~P;Zl. It might have been a reasonable guess to predict a
distinct increase in the dissipation as soon as R, exceeds a
critical threshold of order unity. This analysis shows that this
is not possible with electrically insulating boundaries. This
certainly has implications on the design of future Couette-
type dynamo experimental setups, depending on whether a
small or large dissipation is sought. Although there is no
mathematical statement on how dissipation is divided be-
tween mechanical and electrical phenomena, it might be a
better choice to have electrically conducting boundaries,
should one want to increase the ratio of Joule to viscous
dissipation.

It is appropriate to discuss here how energy dissipation
was affected by dynamo action in those three experimental
setups where a self-sustained liquid dynamo was observed.
They are the Riga (Latvia) [14], the Karlsruhe (Germany)
[15], and the Cadarache (France) [16] dynamos. From these
references, a table can be shown (Table I), where the esti-
mated extra dissipation when dynamo action is present is
given (in percentage) for a certain magnetic Reynolds num-
ber (expressed in percentage above the threshold). The

PHYSICAL REVIEW E 79, 066304 (2009)

Karlsruhe dynamo experiment can be clearly distinguished
by the large amount of extra dissipation compared to the
other two. This experiment is also the one where differential
velocity is forced deep inside the setup. For the Riga and the
Cadarache dynamos, a turbine or propellers are set in rota-
tion near the outer boundary of the setup. There can only be
a gross comparison to the pure Couette flow configuration
presented here, but the case of thick electrically conducting
boundaries is also putting shear velocities well inside the
electrically conducting domain and results in a huge increase
in the dissipation bound. Conversely, it cannot be ruled out
that Riga and the Cadarache dynamos are still obeying the
same classical hydrodynamical law of dissipation, similarly
to the Couette flow with electrically insulating walls. The
authors of the dynamo experiments themselves specify that
the extra dissipation is obtained by difference of the actual
dissipation and the extrapolated curve of dissipation below
threshold. Even though it has been used to estimate Ohmic
dissipation by some authors, it should be stressed here that
there is no theoretical reason why this extra dissipation
should be the Ohmic contribution to dissipation. For in-
stance, in the present work, we use the fact that there is an
exact cancellation between the work of Lorentz forces and
the electromotive work, but we have no access to either of
these terms.

We have concentrated mainly on the low magnetic Prandtl
number case, because our primary interest lies in the earth’s
core dynamics and in the relevant liquid metal experiments.
Nevertheless the results we have obtained are equally valid
for large magnetic Prandtl numbers. It is however anticipated
that our dissipation bound will be a gross overestimate at low
values of the hydrodynamic Reynolds number. In that case,
the flow is the simple uniform shear flow between the mov-
ing walls and such a flow is not going to sustain dynamo
action easily. This perspective should not be ruled out as
strong Lorentz forces might change the flow in such a way
that it could drive a dynamo; however, this transition—if it
exists—will be severely subcritical.

Saturation can somehow be addressed within this work.
The total energy dissipation is an upper bound for Joule dis-
sipation, which can be used through Eq. (B1) to obtain an
upper bound of the magnetic energy in a saturated regime of
dynamo action. This bound cannot give realistic estimates
near dynamo threshold, as dissipation is still dominated by
the viscous contribution. At large magnetic Reynolds num-
bers, this bound is much larger than equipartition between
kinetic and magnetic energies.

In the derivation of velocity and magnetic spectral condi-
tions, there are strong similarities. The only difference is due
to boundary conditions for velocity disturbances and mag-
netic field disturbances. This mere difference in the boundary
conditions leads to fundamentally different upper bounds for
dissipation. Magnetic boundary conditions are sometimes not
well treated in general textbooks (see, for instance, the en-
ergy stability of hydromagnetic flows in the otherwise excel-
lent book by Joseph [17], Vol. II). It is confirmed again in the
present work that one should pay great attention to the rel-
evant physical boundary conditions.
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X. PERSPECTIVES

It is certainly useful to derive such upper bounds for dis-
sipation in the field of magnetofluid dynamics and more par-
ticularly regarding dynamos. When complex situations are
considered (magnetic field, global rotation, etc.) there is no
reliable heuristic approach that can provide good estimates
for dissipation. Ordinary hydrodynamic turbulence can be
roughly tackled by Kolmogorov’s theory but it is not safe to
extend it to other types of turbulence. When the “Doering-
Constantin-Hopf” background profile method can provide an
upper bound, this is a solid reliable result. The bound can be
rather constraining, for instance, in the case of a Couette flow
with electrically insulating boundaries, at low P,,: it is not an
obvious result that dissipation must remain similar to hydro-
dynamic dissipation up until Rm~P:n1. There are actually a
lot of other configurations for which the method can be ap-
plied.

Upper bounds for dissipation can be calculated for experi-
mental setups involving liquid metal flows. In Grenoble,
LGIT laboratory (Laboratoire de Géophysique Interne et
Tectonophysique), we have the DTS (Derviche Tourneur So-
dium) setup involving 40 1 of sodium in a spherical Couette
flow within an imposed magnetic field [18-20]. Upper
bounds for dissipation would provide some information
about the importance of size scaling of the experimental
setup. This is crucial when planning a larger setup that might
sustain dynamo action.

Thermal convection can also be taken into account to de-
rive dissipation bounds. This is the driving force for the flow
of liquid iron in the earth’s core. Upper bounds of dissipation
may prove useful in terms of the thermal budget of earth
throughout its history. Although the configuration of the core
of the earth is not similar to the simple Couette flow consid-
ered here, it could be very relevant to examine the role of a
thin electrically conducting layer at the bottom of the mantle,
as it could make a large change in the upper bound for dis-
sipation.
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APPENDIX A: MAGNETIC BOUNDARY CONDITIONS
AND ASSOCIATED POYNTING FLUX

Outside our electrically conducting domain —-H<z<H
(i.e., the fluid layer and the electrically conducting part of the
plates), it is assumed that there exist no other electrically
conducting domains and no regions with magnetic proper-
ties: let us just think of it as an empty space. Coherent with
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the classical magnetostatic approximation used in the electri-
cally conducting domain to derive the induction equation (2),
the displacement current is also neglected outside, so that the
magnetic field satisfies the following Maxwell equations:

V.-B=0, V XB=0, (A1)

from which it follows that the magnetic field is harmonic.
The magnetic field can be written as a Fourier integral,

Bzf f Bk, ky 2,0tk i dk,, (A2
and the harmonicity of B implies that each component
(k, and k, fixed) must satisfy

d*B

- _ p
P =—k°B,

(A3)
where k2=k§+k3. As a consequence B must decay exponen-
tially away from the fluid layer on a typical distance 1/k.
There is one exception when there is a significant magnetic
contribution near k=0. However, we shall exclude that pos-
sibility on physical grounds: in that case, the exponential
decay length increases without limit and there would be an
infinite amount of magnetic energy stored outside the fluid.
That would take an infinitely long time to settle and is thus
incoherent with our assumption of the existence of a station-
ary flow solution.

Faraday’s equation (another equation from the set of Max-
well equations) is used to determine the electric field,

JB
VXE=-—,

P (A4)

showing that it must also decay exponentially. Hence, the
Poynting flux density E X B/u decays exponentially and is
thus as close to zero as one wishes some distance away from
the fluid layer. From the assumption of statistical stationarity,
there can be no accumulation of magnetic energy; hence, this
Poynting flux E X B/u must vanish when averaged along x
and y, at any position z outside the electrically conducting
domain. This reasoning is valid for each wave number and
the total Poynting flux is the sum of individual wave number
components; hence, this proves that the averaged Poynting
flux must be zero at any position z and in particular at the
boundaries z=H and z=—H (or z= =1 in dimensionless co-
ordinates). Let us insist that this result is true when the Poyn-
ting flux is averaged on a plane of constant z (not pointwise)
and when it is also averaged in time, assuming stationary
turbulence.

It should be noted that the above reasoning fails in two
circumstances. One is when there are other electrically con-
ducting domains. In that case, magnetic energy can be dissi-
pated or generated in each domain and there can be a net
exchange of energy between the fluid layer and the other
domains. The other possibility is that energy is radiated away
from the fluid layer and goes away infinitely far. This is only
possible when the displacement current is taken into account
in Ampere’s equation (Al). Then a significant fraction of
energy can be radiated away only when the time 7 and length
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[ scales of the magnetic field are such that // 7 is comparable
to the speed of light [21]. This is a necessary condition for
our system to work as an antenna, and we shall not consider
this limiting case.

APPENDIX B: BOUND ON MAGNETIC ENERGY FOR A
GIVEN AMOUNT OF JOULE DISSIPATION

We show here that magnetic energy in the conducting
domain is bounded on each constant-z plane in terms of the
integral volume Joule dissipation. In our dimensionless
terms, the following relationship holds for any value of z:

BX(z) = 2(». (B1)

The magnetic field B is decomposed in poloidal-toroidal
contributions,

B=Vg Xe +V X (VpXe)+by(z)e, +by(2e,.
(B2)

The assumption of spatial statistical invariance along x and y
directions allows us to write the poloidal and toroidal contri-
butions of B in terms of a Fourier integral,

[p.q]= f f [P,Q](ky.ky,z,1)e ™+ * M dk dk,.  (B3)

Each Fourier component can be considered individually, as
magnetic energy and Ohmic dissipation will be just the sum
of energy and dissipation of each contribution. It is enough
to prove Eq. (B1) for all contributions. The contribution
bo(2)e,+bgy(z)e, will be dealt with at the end of this appen-
dix. Poloidal and toroidal contributions lead to

- dq—p
B=|dq-d.p (B4)
Vip,
Vp—diq
j=VXB= —o”szp—&izq (B5)
Vig.

Hence, x and y averaged magnetic energy and Ohmic dissi-
pation can be written as

— K2 K2 K
B = Z10P + TP+ [P

2
5 1P (B6)

S K S K
P@=7-eP+ PP+ 0.0+ Tl (B7)

Integration by parts leads to the following expression for the
global dissipation using the condition that the poloidal and
toroidal components must decay far away from the fluid
layer,
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r_ © o k2
jdz= J fdz= f S 1P

-1 —00 —0

k6 °°k2 k4
—|PPd 9,0 + —|0l*dz.
tppazs [ Slaor+iora:

—00

@)=

2+ kYo.P?

(B8)
The toroidal scalar function Q must vanish at z= = 1. Hence,
0(z) = d,0dz. (B9)

-1

Hence by Cauchy-Schwartz,

Z 4 1
|Q|25f dzf |&ZQ|2dz§2f
-1 -1 -1

The treatment of the poloidal is slightly more involved as the
boundary conditions available are less straightforward:
d,P £ P=0 at z= = 1. They can be used as follows:

2kP = (kP - d.P) + (kP + 3.P)

2dz.  (B10)

7,0

z 1
=j kazp—aﬁzpdz'—f ko.P+ a.,Pdz’, (B11)
—~1 z

from which the modulus of P can be bounded using the
triangle and Cauchy-Schwartz inequalities,

1 1
2k|P|5f k|o.P|+ | Pldz’ = w/zj K*|a,P|*dz’
-1 -1

1
+ ZJ |19§ZP
-1

2dZ’.

(B12)

Hence,
1 1
k2|P|2Sk2f |r7zP|2dZ’+f |2.P2dz’ . (B13)
—1 _1

A similar treatment is made on J,P,
29,P=— (kP —d.P) + (kP + d.P), (B14)

leading to a similar result

1
|0,P|* = sz
-1

All three terms in Eq. (B6) can be bounded using Eqgs. (B10),
(B13), and (B15) and then compared to the contributions of
the Ohmic dissipation in Eq. (B8), leading to the expected
result

J,P

1
2dz’+f |7PPdz'.  (B15)
-1

B2(z) = 2(%).

Importantly, this result is independent of k, so that it will
equally apply to a sum of contributions of different wave
numbers k, and k,, hence proving the expected result for the
fields B and j.

The horizontally independent contributions by, (z)e,
+bg,(z)e, must now be considered. Their associated Ohmic
dissipation can be written as

(B16)
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o

If the global electrical current flux in the x and the y direc-
tions is not zero, then this is an unphysical situation as mag-
netic energy in the space above and below the fluid would be
infinite, and such a situation would take an infinitely long
time to be established. If it is zero, then b, and b, vanish on

2
dz. (B17)

2
db
+ ‘ Oy
dz

by
dz

PHYSICAL REVIEW E 79, 066304 (2009)

z==*1, and one can derive a bound for W using the
Cauchy-Schwartz inequality,
2 1
=2 J ‘ by
-1 dz

* db,
o *(2) = f —dz
1 dz
A similar inequality holds for by, so comparing Eqs. (B17)
and (B18) is also compatible with the inequality to prove.

2
dz. (B18)
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