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Abstract 

Many tribological properties and wear mechanisms occurring on the micro-and nanoscale are 

strongly controlled by the so-called real contact area (Ar) which is a small fraction of the 

nominal or apparent contact area (Aa). The determination of Ar is often based on either (i) a 

geometrical approach describing the real geometry of contacting surfaces or (ii) a mechanical 

approach involving contact mechanics and physical-mechanical properties. In addition some 

experimental methods have also been attempted but they generally do not take into account 

the presence of third body at the interface—i.e. the wear debris trapped within the contact. In 

this paper we propose an experimental approach to estimate the dynamic real contact area 

from the operating parameters (Fn, v, T) and the tribological responses (μ, Ft) in presence of 

third body. A scanning thermal microscope (SThM) is used for determining both the thermal 

conductivity of the third body and the relationship between the contact temperature and the 

thermal power really dissipated at the micro-asperity level. These results are combined with a 

thermal model of the macro-tribocontact for computing the real contact area and the real 

contact pressure. Validation of these results is carried out using a classical Greenwood 

Williamson model and finite element models built from the real AFM maps. 

Keywords: Scanning thermal microscopy; Friction; Third body; Greenwood–Williamson 

approach 

1. Introduction 

Many tribological properties—such as friction and wear—greatly depend on the so-called real 

area of contact which is known to be only a small fraction of the apparent area of contact[1], 

[2], [3], [4] and [5]. In the absence of good measurement methods of the real contact area, the 

contact area is generally calculated using various models, built from different basic contact 

geometries, according to suitable hypotheses about the contact [6], [7], [8] and [9]. Thus, 

when the surfaces are assumed smooth—i.e. when the real contact area is the same as the 

apparent contact area—the hertzian's model[10] and the Mindlin's model[11] are respectively 

used in the case of the elastic contact when the shearing force within the contact is or is not 

negligible [12] and [13]. The JKR[14] and DMT[15] approaches are more suitable when the 



adhesive forces are no longer negligible. However, practical surfaces are generally non-

smooth because they always possess some degree of roughness [16] and [17]. Hence a real 

area of contact occurs between the asperities of surfaces in contact [3], [4], [5], [8] and [18] 

which is responsible of some tribological phenomena like elemental wear processes [19], 

[20], [21] and [22] or thermal-induced effects [23], [24], [25], [26] and [27]. From these 

observations, theories [3], [4], [5], [28], [29], [30], [31] and [32] have been developed 

considering in the same time the topography (mean radius curvature of the asperity summits 

and standard deviation of the summit heights [3] and [28], surface roughness power spectra 

[9], [16] and [31], fractal model [30] and [33]), the deformation constants (Young's modulus, 

hardness, yield stress…), the contact forces (load, friction and internal adhesive force), and 

the deformation regime of the asperities (i.e. elastic [3], [5] and [34], elasto-plastic [35], [36], 

[37] and [38], or fully plastic [39] and [40]). However, these theories are often difficult to 

apply in practice. First, they clearly depend on the deformation regime usually unknown at the 

scale of the real contact area. Second, some of the topographical parameters are rather 

subjective and difficult to extract from the surface roughness (e.g. mean radius curvature of 

the asperity summits). Besides, in practice, a third body—i.e. the wear debris trapped within 

the contact—modifies continuously the power dissipated by friction through a dynamic real 

contact area [41] , [42] and [43]. Thus, in addition to the above theories, experimental 

methods have also been attempted using electrical resistance [44] and [45], optical methods 

and interferometry [46], adhesion and separation of sticky surfaces, phase contrast, total 

reflectance [47], or acoustic transmission [8]. 

The aim of this paper is to propose an experimental procedure to estimate the real contact area 

from the operating parameters (Fn, v, T) and the tribological responses—i.e. the power 

dissipated by friction—in presence of third body. A scanning thermal microscope (SThM) 

[48], [49], [50], [51], [52] and [53] is used for determining both the thermal conductivity of 

the third body [54], [55], [56], [57], [58], [59] and [60] and the relationship between the 

contact temperature and the thermal power dissipated at the micro-asperity level within the 

interface [53], [61], [62] and [63]. These results are combined with a surface conjunction 

temperature theory[64]—commonly used for computing the mean surface temperature and 

the flash temperature values—in order to compute the real contact area in function of both the 

tribological parameters and the heat transfer regime involved during the tests. Validation of 

these results is carried out using both (i) the classical Greenwood Williamson model [3], [18] 

and [31] and (ii) an ABAQUS finite element model built from the real AFM maps [65] in 

order to take into account the presence of third body within the contact. 

2. Theoretical background and modelling 

It is well known that the dissipated power by friction—i.e. μ.Fn.v—at the frictional interface is 

balanced almost completely by heat conduction away from the interface [66] and [67], either 

into the contacting solids or by radiation or convection to the surroundings [68] (Fig. 1a and 

b). Generally only a small fraction of frictional energy—less than 5% [69]—is consumed or 

stored in the material as microstructural changes and defects (dislocations, phase 

transformations [27] propagating subsurface cracks, wear particles…) [66] and [68]. 



 

 

Fig. 1. : (a) Schematic cross section of the friction surface; (b) illustration of the energy 

dissipation in a tribological system by heat, wear and change of material [68]; (c) structure of 

sheet nacre. 

Since the works of Blok [70] and [71], Jaeger [72] and Archard [73], the surface conjunction 

temperature theory is commonly used for computing the mean surface temperature Tfmean—

corresponding to the average temperature across a frictionally heated smooth surface—and 

the localized flash temperature Tfmax—corresponding to the maximum friction-induced 

temperature of the tips of interacting asperities—in function of both the tribological 

parameters (μ, Fn, v), the thermal and mechanical properties of materials (the thermal 

conductivity K and diffusivity χ, the hardness H or the yield stress σy…), the dimension of the 

contact and, the heat transfer regime involved during the tribological tests. This theory 

generally expresses the mean/max surface temperature as a function of the real contact area. 

In a mutual way, an estimate of the latter could be therefore obtained by measuring the 

contact temperature Tf. Thus, 

(1) Ar=f(μ,Fn,v,K,χ,Tf) 

with f an algebraic equation which varies on the whole range of surface velocities. 

The Peclet number L—a non-dimensional measure of the speed at which the heat source 

moves across the surface—is then introduced as a criterion allowing the differentiation 

between various speed regimes: 

(2)  
 

where v is the velocity [m s
−1

], b is the contact dimension [m] (e.g. the half width of the 

contact square for square contacts) and χ=K/ρσ, the thermal diffusivity [m
2
 s

−1
]. K is the 

thermal conductivity [W m
−1

 K
−1

], ρ the density [kg m
−3

] and, σ the specific heat [J kg
−1

 K
−1

]. 

The various expressions of f as a function of L were compiled by Stachowiak and Batchelor 

[64]. Of course more complicated and accurate models have emerged from these pioneers’ 



works but they only bring some refinements and are often non reversible [64]. In (1), μ, Fn, 

and v are provided by the tribological tests while K and Tf can be accurately assessed using a 

SThM which is a scanning probe microscope where the AFM tip is replaced by a 

thermoresistance controlling the thermal power injected within the contact on the microscale. 

The SThM generally provides various types of results: 

•  The curves (Fig. 2a and b): the μDTA (micro-differential thermal analysis) curve 

(Fig 2a) displays the power level necessary to keep the heating rate constant. The 

power is measured relatively to a reference probe after calibration [74] and [75] . 

This curve reveals the relationship between the contact temperature and the 

dissipated power. The μTMA (micro-thermomechanical analysis) curve (Fig 2b) 

simultaneously displays the change in the vertical displacement of the cantilever as a 

function of the contact temperature. This response reveals the thermal expansion 

effects, the melting point or the thermal-induced failures. 
 

• The maps (Fig 3a–c): the scanning thermal microscope is also an AFM [62] and [63]. Thus, 

in addition to the classical topographic views (Fig 3a), the SThM can simultaneously draw 

a thermal contrast map (Fig 3b) revealing the variation of the local thermal conductivity. 

Hence, this latter displays the power level necessary to keep the surface temperature 

constant. Thus, as in the roughness analysis for the topographical maps, statistical thermal 

parameters—like the thermal power distribution curve can be plotted from these latter 

maps (Fig 3c). After an accurate calibration, we will use this approach for determining the 

relationship between the contact temperature and the power dissipated on the microscale. 

 

Fig. 2. : SThM curves: (a) μDTA plot: dissipated power vs. contact temperature and (b) 

μTMA plot: cantilever displacement vs. contact temperature. 



 

Fig. 3. : SThM maps at 300 °C: (a) the topographic view (height contrast) and (b) the thermal 

contrast map revealing the variation of the local thermal conductivity; (c) the corresponding 

thermal power distribution curve given the mean value and the standard deviation. 

The relationship between the real tribocontact and the SThM tip is schematised in the Fig. 4: 

the macro-scale tribocontact can be modelled by many micro-asperities at the micro-scale 

level and connected to the surface roughness (Fig 4a). The real contact area appears to be the 

sum of the micro-contact areas. Hence, the SThM probe properly simulates the thermal 

dissipation at the local micro-asperity [27] and [48]. Let us see the various components of the 

thermal dissipation of the SThM probe as reported by [76], [77] , [78] and [79] and displayed 

on the Fig. 4b: the initial power Pel injected into the thermoresistance is divided in three 

components: the conduction within the wire Qw, the convection in air Qconv (about 6% Pel) and 

the heat transfer to the sample Qs. This latter can be also decomposed in the: 

•  conduction in air Q1=Qcond/air (≅2.5×10
−6

 WK
−1

); 

•  heat transfer through the water bridge Q2=Qmeniscus (≅2×10
−5

 WK
−1

); 



•  solid–solid conduction Q3=Qsol/sol (depending on K); 

•  radiation Qrad (negligible). 

 

 

 

Fig. 4. : Relationship between the real tribocontact and SThM tip: (a) the tribocontact has 

many micro-asperities connected to the surface roughness; (b) each asperity is like the SThM 

tip where the various dissipative components can be identified. 

Thus, it clearly appears that the dissipative components (Qconv, Q1, Q2, Q3) reported for the 

SThM tip will be also present on the macro-scale distributed on each micro-asperity [45] and 

[80]. Hence, it is not necessary to dissociate each component of Qs: we assume Qs=Pel−Qconv 

where Qconv can be assessed for each temperature when the tip is in the air (Section 3.4). 

The thermal macrocontact model is described in Fig 5 as a simplification of the Vick et al.'s 

model [23], [24] and [25] in order to demonstrate the feasibility of our approach. Thus we 

suppose that the macrocontact is constituted from small square areas Ari (Fig. 5b and c). The 

sum of these latter is equal to the real contact area Ar (Fig. 5d). Our goal is to extract the value 

of Ar by combining the SThM approach and relation (1). Thus, it should be possible to use the 

above surface conjunction temperature theory with the real contact area Ar instead of the 

nominal contact area Aa as it is usually done (Fig 5e). In order to accurately estimate the 

expected real contact area Ar, we can assume in first approximation that each junction is in a 

state of incipient plastic flow. Thus with H=7.8 GPa for our materials (see 

Section 3.1). This area corresponds to a square (Fig 5d) of about 30 μm×30 μm which is in the 

same order of magnitude than a SThM image size (Fig 3b). Thus, thermal results of the SThM 

tests should be significant compared to the thermal phenomena observed on the scale of the 

macrocontact. Of course, in our approach the crucial point is the calibration of the SThM [54], 

[55], [56], [74] and [75] . It will be detailed in Section 3. 



 

 

Fig. 5. : Model of the thermal macro-contact. 

 

In summary: 

•  Since most of the frictional energy is dissipated as heat, the thermal dissipated power can be 

determined from the tribological tests by: 

(3)Pthermal≈0.95Pfriction≈0.95·μFnv 

•  The relationship between (i) the thermal dissipated power and the mean/max surface 

temperature and (ii) the thermal properties of the third body can be assessed using a SThM 

from the thermal maps established for each temperature. 

•  The relationship between the real contact area (Ar) and the mean/max surfacetemperature 

Tf can be computed using relation (1) with the suitable expression of f determined as a 

functional of the Peclet number L. 

3. Experimental details 

3.1. Samples 

Classical metallic samples are not really suitable for this application because they generate 

plastic flows in addition to the formation of third body—both simultaneously modifying the 

real contact area. Besides, their high thermal conductivities generate severe distortions of the 

contact temperature through a time-dependent heat flow. In our case, we need to use 

refractory and fragile materials in order to create a third body easily quantifiable with very 

low thermal diffusivities. Samples are made of sheet nacre extracted from giant oyster 

Pinctada maxima currently used for bioprosthetic applications [22] and [27]. This is a natural 

nanocomposite which has a multiscale structure including a mineral phase of calcium 

carbonate (97 wt%) and two organic matrices (3 wt%) [81]. The mineral phase is constituted 



by an arrangement of CaCO3 biocrystal nanograins (40 nm in size) drowned in an 

―intracrystalline‖ organic matrix (4 nm thick) in order to form a microsized flat organomineral 

aragonite platelet. These platelets are themselves surrounded by an ―intercrystalline‖ organic 

matrix (40 nm thick) building up a very tough material (E: 54.42±3.27 GPa, ν: 0.25±0.03 and 

H: 7.82±0.95 GPa [82]). Samples are polished more or less parallel to the aragonite platelets 

(size: 5 μm, thickness: 400 nm, Ra: 14.5±0.6 nm) (Fig. 1c). 

Thermal behaviour of sheet nacre was recently studied by Bourrat et al. [83]. They 

demonstrated that this material displays some characteristic thermal points allowing us to 

adjust the relationship between the dissipated thermal power and the surface temperature. In 

particular, they have shown that:  

•  The organic matrices begin their degradation process around 250 °C. This “melting process” 

generates sensor jumps on the μTMA curves (Fig 2b); 

•  A phase transformation from aragonite to calcite occurs just above 470°C. This phase 

transformation can be observed by using X-ray diffraction or cathodoluminescence [27]. 

According to [80] and [84] , density ρ, thermal conductivity K and specific heat σ of nacre are 

respectively 1850 kg m
−3

, 3–6 W m
−1

 K
−1

 and 1050±150 J kg
−1

 K
−1

. K is not very accurate because its 

value strongly varies with the orientation of the aragonite platelets [83]. Hence, we will determine its 

value (and the one of the third body) with the SThM using a specific procedure detailed in Section 3.4. 

3.2. Tribological tests 

The experimental device is a pin-on-disc tribotester manufactured by CSM Instruments 

(Peseux, Switzerland) [22], [27] and [82]. Tests are carried out at ambient air and room 

temperature in dry conditions by repeated friction of a 3.5 mm square shaped pin of nacre 

against the surface of a polished disc of nacre (∅44 mm) (Fig 1a). The normal load (Fn) varies 

from 1 to 15 N (i.e. a mean contact pressure lying between 0.1 and 1.2 MPa). The sliding 

speed and length are respectively 10 mm s
−1

 and 100 m. 

Note that the SThM measurements described below allowing the assessment of the real 

contact area are not made in-situ on the tribometer. When the steady state of the friction 

coefficient is observed the sample is removed and placed beneath the SThM in order to 

evaluate the thermal properties of the third body generated during the test. Thus, in our case, 

the real contact area actually evaluated is the one which was involved when the test was 

stopped—i.e. for 100 m of sliding. However, the evolutions of the ―dynamic‖ real contact 

area could be easily determined using discontinuous tribological tests. 

3.3. Atomic force microscopy 

Topography of the friction track is assessed using an AFM Dimension 3000 connected to a 

Nanoscope IIIa electronic controller (Veeco Digital Instruments, Santa Barbara USA) [22] 

and [81]. Its spatial and vertical resolutions are lower than 1 nm and the field depth is in-

between 100 nm and 100 μm. Maps were achieved at high resolution (512×512 pixels) using 

an intermittent contact mode (so-called TappingMode™). The silicon nitride probe displays a 

tip rounding lower than 10 nm. The cantilever work frequency, the stiffness and amplitude are 

respectively: 270 kHz, 42 N m
−1

 and 25 nm. Depending on the size of the images (between 

0.25 and 25 μm
2
) the scanning rates varies from 1 to 2.4 μm s

−1
. 



AFM views of both the sample and the third body after 100 m of sliding will be used for the 

validation of the real contact area computation using the ABAQUS finite element code. Image 

analysis and topographical calculations are made using the SPM software Gwyddion 

(http://gwyddion.net) and Scilab 5 (http://scilabsoft.inria.fr). 

3.4. Scanning thermal microscopy 

The local thermal properties of the samples are assessed with a SThM (TA Instruments μTA 

2990 with a TA Instruments controller TA 5300, New Castle, DE) which is an analytical 

system that combines the high resolution visualization and positioning methods of scanning 

probe microscopy with the technology of thermal analysis [e.g. 48]. The standard AFM probe 

is replaced by a thermal probe made from a Wollaston wire (5 μm diameter platinum-10% 

rhodium wire enclosed in a silver sheath) which allows the acquisition of the surface contact 

area temperature, and simultaneously acts as a highly localized heater [48], [49], [50], [51], 

[52] and [53]. The vertical deflection of the assembly is monitored by a light pointing 

technique. The spring constant is 10 N m
−1

. The constant current setpoint and the z-setpoint 

are respectively 1 mA and 50 V. The probe rate is 100 μm s
−1

. This latter is sufficiently weak 

so that the heat transfer regime stays in the steady state conduction as in the tribological tests 

[52] and [64]. The spatial resolution and the thermal sensitivity are respectively about 100 nm 

and 1 °C [52]:  

 

•  Calibration of SThM—connecting the dissipated power with the surface temperature—is 

made using three reference polymeric samples: PAI TORLON (Tg=285 °C), PEI ULTEM1000 

(Tg=215 °C), PPS (Tg=94.4 °C, Tf=281 °C) [27] and [74] . 

•  Thermal conductivities of the samples (nacre and third body) are determined using the 

procedure proposed by Ruiz et al. [54] suitable when the sample's conductivity is weak 

enough. This approach is based to the difference of dissipated flows when the tip is or is 

not in contact with the sample: Thus Qair is the heat flow rate into the tip when the tip is in 

the air (i.e. corresponding to our “zero point”), and Qs=Pel−Qair is the heat flow going into 

the sample when the tip is in contact. Qs is evaluated for various reference samples using 

the same tip and operating conditions (same topography and ). 

The error bars are estimated at about 2–3% [54]. 

In Fig 6a, Qs=Pel−Qair is plotted as a function of κs for various materials whose thermal 

conductivities are accurately known [84]. A linear least-squares fit can be plotted to deduce 

the thermal conductivity of the unknown samples knowing their respective Qs obtained by the 

SThM mean. The enlargement of the Fig. 6b gives respectively 3.17±0.1 W m
−1

 K
−1

 for sheet 

nacre and 2.9±0.09 W m
−1

 K
−1

 for the third body. Note that the conductivity of the third body 

is very close to the one of the sheet nacre because it is formed by the same elemental 

biocrystals of CaCO3[22] and [82]. The difference is attributed to a worse organisation of 

nanocrystals in the third body as compared to the one of sheet nacre (aragonite flat platelet). 



 

Fig. 6.  : SThM calibration for determining the samples thermal conductivity (a) 

determination of the slope given Qs=f(κs) for various reference materials at ΔT=75 °C; (b) 

assessment of the conductivity of the sheet nacre (3.17 Wm
−1

 K
−1

) and third body (2.907 W 

m
−1

K
−1

). 

4. Results and discussion 

4.1. Tribological behaviour 

Fig. 7a shows the variations of the dissipated power by friction as a function of the sliding 

length for various normal loads computed from the evolution of the friction force—i.e. 

Pfriction=Ftv[68]. These curves reveal the existence of a given run-in period probably 

associated with the geometric adaptation of the surfaces. Note that the dissipated power varies 

from 6.2 to 58 mW. Fig. 7b reports the corresponding real coefficient of friction determined 

after the run-in period by the slope Ft=f(Fn): 0.44±0.02. Thus, despite the structural 

complexity of this couple of materials, the quite straight line reveals that their friction 

behaviour seems to follow a classical Amontons–Coulomb's law. This latter is often explained 

by a linear relationship between the normal load (Fn) and the real contact area (Ar) [1], [2], 

[8], [9] and [66]. Since 95% of the friction dissipated power is lost by the thermal way [e.g. 

69]—the thermal power dissipated at the real contact area level is easily extracted from Fig 7a 

using relation (3). 



 

Fig. 7. : (a) Variations of the dissipated power by friction vs. sliding length for various normal 

loads; (b) determination of the corresponding coefficient of friction. 

 

Figure 8 shows typical optical (a) and topographical (b) views of the friction track after 100 m of 

sliding. The track is partially covered by a third body whose elemental components have the size of 

the initial aragonite platelets components [22]. Although this third body was already studied in details 

[22], [27] and [82], it is important to note that the contact is probably made exclusively on this latter. 

This would explain, on the one hand, the run-in period connected to the set up of a tribolayer within 

the contact, and on the other hand, the perfect Amontons–Coulomb's behaviour observed after the 

tribolayer was built. Hence, the thermal power generated during the friction tests would be mainly 

dissipated through the third body as shown in Fig. 9 displaying the friction track as observed in 

cathodoluminescence. This technique is particularly sensitive to any modification of the crystal lattice. 

Thus, for the calcium carbonate, the aragonite structure (orthorhombic lattice) emits in the blue/green 

whereas the calcite (rhombohedric lattice) emits in the yellow. Hence, Fig. 9 reveals that the third 

body is mainly constituted by calcite in contrast to the uncovered parts of the friction track. Referring 

to the work of Bourrat et al. [83], the temperature of the aragonite-calcite phase transformation is 

generally close to 470 °C. Thus within our tribocontact, these high temperatures can be briefly reached 

at the level of the microscopic asperities because the thermal conductivities of our samples are very 

low. Consequently, knowing the thermal power dissipated during the tribological tests, SThM should 

allow us to determine the temperature levels which can be reached at the interface 

 



 

Fig. 8. : Typical (a) optical and (b) topographical view of the same zone of the friction track. 

 



 

Fig. 9. : Typical cathodoluminescence view of the friction track. Aragonite appears in green 

(dark zone) whereas calcite appears in yellow (bright zone). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

4.2. Thermal behaviour of the third body after 100 m of sliding 

SThM is used to link the surface temperature record with the thermal power dissipated at the 

micro-asperity level. During the imaging process the tip is in direct contact with surfaces. 

Changes in thermal conductivity across the surface result in a different heat flow in-between 

the tip and the sample. Hence, changes in this property can be acquired by measuring the 

power level which is necessary to maintain the tip-temperature at a constant value (Fig. 3b). 

Fig. 10 reports the evolution of the power level as a function of the contact temperature. The 

power's value is the average calculated from the thermal power distribution histogram (Fig 

3c) extracted from each thermal map (Fig. 3b). This value corresponds to an average on 

128×128=16 384 pixels. Error bars refer to the corresponding standard deviations. A linear 

relationship—with a good correlation coefficient—is clearly observed. Hence a linear fit 

allows us to connect the thermal power level which is necessary to maintain the mean surface 

temperature at a constant value. Note that this relationship is no longer linear when the 

temperature is less than 100 °C (see the μDTA curve in Fig 2a)—i.e. when the dissipated 

power is less than 5 mW. For these temperature levels the meniscus effect due to the adsorbed 

water on the sample is no longer negligible. Since the lowest thermal power dissipated during 

the friction tests is about 5.8 mW (corresponding to 2N in the Fig 7a), it is possible to refine 

the fit by considering only the values of temperature higher than 100 °C in order to avoid the 

meniscus effect. Finally the relationship given the surface temperature as a function of the 

thermal power dissipated during the tribological tests 

is:(4)Tf(∘C)=9.1286·Pthermal(mW)+58.521According to the relations (3) and (4), Tf varies 

linearly with friction force as experimentally observed by Blau [66] for various metal–metal 



contacts by using embedded thermocouples in the block specimen. In addition the 

combination of the relations (3) and (4) is in agreement with our previous results on the 

thermal-induced wear of sheet nacre [27], namely: 

•  that the minimum dissipated power by friction which is needed to degrade the organic 

matrix is about 24.5 mW corresponding to a loading of 6N; 

•  that the aragonite-calcite phase transformation can occur within the contact when the load 

rises above 11N as shown in the Fig. 9. 

 

 

Fig. 10. : Variations of the dissipated power vs. the contact temperature as measured by 

SThM. 

4.3. Determination of the real contact area after 100 m of sliding 

As mentioned previously we use the simplest model described in the surface conjunction 

temperature theory—i.e. the square contact (Fig 5e). However, it is possible to use a more 

complicated thermal model [86], [23] and [24]. All the algebraic equations developed for each 

surface velocity and contact geometries are available in [64]. Due to the sliding velocity and 

the pin-on-disc configuration of our tribological tests, one surface (the disc) moves relatively 

fast with respect to the other (the pin) and a slowly moving heat source model is assumed—

i.e. 10 mm s
−1

 and L≅5. Hence the pin contact temperature stays constant in contrast to the 

one of the disc which undergoes a thermal cycling. Under the pin, the classical assumptions 

are [64]: 

•  Thermal properties of the contacting bodies are independent of the temperature. 

However, using the above calibration procedure (Section 3.4) the conductivity could be 



determined for various ΔT. 

•  The single area of contact is regarded as a plane source of heat which is given by the SThM 

power maps (see Fig 3b). 

•  frictional heat is uniformly generated at the area of contact (Fig 3b and c). 

•  all heat produced is transmitted into the contacting solids via the third body. 

The set of equations—giving respectively the average and the maximum flash temperature for 

the square contact (when b is the half width of the contact and L≅5) is reported below in 

function of the power dissipated by friction[64]:  

(5)  

(6)  

(7) Ar=4b
2
K  

and χ are respectively the thermal conductivity and the thermal diffusivity of the sample. The 

constants C1=4.8 and C2=7.9 are extracted for L≅5 from a specific diagram available in [64]. 

Hence Tfmax is more than 1.6 times Tfmean. Combining the relations (5), (6) and (7) with (4), the 

respective real contact areas—computed with the assumption that the SThM thermal measure 

is either the mean flash temperature(5) or the maximum flash temperature(6)—can be 

determined from the knowledge of Pfriction extracted from Fig. 7a. These contact area can be 

then compared with the one provided by the classical Greenwood Williamson model (GW). 

We just point out that the latter requires the knowledge of the involved deformation regime—

determined from the AFM topography and the mechanical properties of the samples—thanks 

to the plastic index Ψ[3]. Thus, in our case:  

(8)  

where R is the mean radius curvature of the asperity summits (3.96 μm), σ is the standard 

deviation of summit heights (11.67 nm) and E*, the reduced young modulus (65 GPa). Since 

the plastic index reveals a prominent elastic behaviour (ψ<0.6) the GW real contact area is 

then computed with the relation given by [1] and [3]: 

 (9)  

Fig. 11 compares the evolution of the normalised real contact area Ar/Aa as a function of the 

normal load for the various models. As expected the elastic GW model follows a classical 

linear relationship with respect to the normal load in contrast to the thermal models. Although 

the GW model seems to keep away enough from the thermal ones this discrepancy is not 

really critical if we look at the one observed between the thermal models which is only due to 

the difference between Tfmax and Tfmean. In any case, the normalised real contact areas display 

the same order of magnitude—i.e. less than 0.12%. 



 

Fig. 11. : Variations of the normalised real contact area vs. normal load as respectively 

computed with the thermal model and the Greenwood Williamson elastic model (Ψ=0.45). 

In spite of this, the GW model is known to be quite sensitive to the profilometric assessment 

and, in addition, it does not take into account the presence of third body in contrast to the 

thermal approach which integrates its effect via the power dissipated by friction. In order to 

avoid these drawbacks, our thermal model is also confronted to a set of finite element models. 

The meshes of those models are built from real AFM maps assessed respectively before 

sliding (1st body, size 2 μm×2 μm) and after 100 m of sliding in presence of third body (size 1 

μm×1 μm). 

4.4. Validation of the procedure with a finite element code 

Basically, an AFM topographic map (Fig 12a) is an array of height data which can be 

converted to a finite element mesh suitable for numerical simulations (Fig 12b). For this 

purpose a specific routine was developed from the DynELA FEM library created in C++ 

language by Pantalé [87]. In order to limit the number of nodes and elements of the mesh, the 

original resolution of the AFM maps is decreased from 512×512 to 128×128 pixels. From an 

AFM map the C++ routine generates a meshed surface constituted by 64516 C3D8 elements 

(127×127×4). The opposite surface is generated from the same AFM image after a 90° 

rotation and a mirroring operation. Therefore the final numerical model contains 129032 

C3D8 elements and 163840 nodes. Then, the two meshed surfaces are brought into contact—

with an increasing normal load—by using the ABAQUS FEM Code [88] as schematised in 

the Fig 12c. The mechanical properties used in the simulations are extracted from [82]. 

Boundary conditions have also been applied on top and bottom surfaces of the model. All 

nodes located on bottom surface have a prescribed displacement of zero, while a vertical 

displacement with an increment of 0.5 nm have been prescribed for all nodes located on the 

top surface. The real contact area is computed for each loading increment from the number of 

nodes actually in contact. With this finite element approach, it is also possible to compare the 

real contact areas in presence or absence of third body using respectively AFM maps of the 

virgin surface (Fig. 13a) and AFM maps of the friction track observed after 100 m of sliding 



(Fig. 13b). In this latter case, the mechanical properties of the third body are evaluated using 

an inverse method combining nanoindentation and numerical simulations [89]. 

 

Fig. 12. : Description of the mesh construction from an AFM map: an original AFM view (a) 

is transformed in a FEM mesh (b) using a specific C++ routine; The meshed surfaces are 

brought into contact with an increasing normal load F;(c) the apparent contact is Aa=XY and 

the true real contact area is computed from the number of nodes actually in contact Ar=∑Ari 

(extracted from [85]). 



 

Fig. 13. : von Mises contourplot revealing the growth of the real contact area due to an 

increasing normal load (a) in absence of third body (1st body before sliding) and (b) in 

presence of third body (after 100 m of sliding). 

Fig. 14 plots the evolution of the normalised real contact area as a function of the normal load for 

respectively (i) the thermal models, (ii) the elastic GW model and, (iii) the FE models in presence or 

not of third body. As shown for the GW model, the FE models also follow a linear relationships vs. 

normal load even in presence of third body (r=0.987). This is in good agreement with respectively the 

results reported by Myshkin et al. using AFM maps [12] and the perfect Amontons–Coulomb's 



behaviour observed in the Section 4.1. Note that the slope of the GW model is noticeably similar 

(<1%) to the one of the FEM model computed in absence of third body (FEM 1st body) and really 

greater than the one in presence of the third body (FEM 3rd body). This confirms that the GW model 

is probably too sensitive to the topography to be really suitable in presence of third body which 

continuously changes the topography of the friction track. Although non linear, our thermal models are 

nearly always included in-between the two finite element models. By comparing the real contact areas 

obtained respectively using (5) and (6), we find that the best choice is the one obtained when we 

suppose that the interface temperature is the maximum flash temperature Tfmax. (i.e. the maximum 

friction-induced temperature on the tips of interacting asperities materials). Indeed this latter is very 

close to the FEM model which takes into account the presence of third body. Hence, the thermal 

model seems to be accurate enough for easily estimating the real contact area in presence of third 

body. Indeed this thermal approach correctly integrates the influence of the third body through the 

frictional dissipated power. Of course more complex thermal models should be better for modelling 

the linear evolution of the real contact area with the normal load. 

 

Fig. 14. : Variations of the normalised real contact area vs. normal load as computed with the 

Greenwood Williamson elastic model (Ψ<0.45), the thermal models and the FE models in 

presence and absence of third body. 

 



 

Fig. 15. : Variations of the real contact pressure vs. normal load as computed with the thermal 

models and the FE model in presence and absence of third body. 

5. Conclusion 

In this paper we have described an experimental procedure enabling to estimate the real 

contact area from the operating parameters (Fn, v, T) and the tribological responses in 

presence of third body. A scanning thermal microscope is used for determining (i) the thermal 

conductivity of both the sample and the third body and, (ii) the relation between the contact 

temperature and the thermal power dissipated within the interface at the micro-asperity level. 

These results have been combined with a thermal model commonly used for computing the 

mean/max surface temperature values—in order to evaluate the real contact area as a 

function of both the tribological parameters and the heat transfer regime involved during the 

tests. Results are confronted with both the classical elastic Greenwood Williamson model and 

ABAQUS finite element models built from the real AFM maps in order to take into account 

the presence of third body. Results have shown that: 

•  SThM is a suitable tool for accurately determining the conductivity of complex third 

body and the surface temperature with respect to the dissipated power. 

•  the real contact area computed with the thermal method can be really close to the 

one provided by the FE method in the presence of third body if we suppose that the 

interface temperature is the maximum flash temperature Tfmax—corresponding to the 

maximum friction-induced temperature of the tips of interacting asperities. Besides, 

the evolutions of the real contact area can be easily determined for various sliding 

lengths using discontinuous tribological tests. Thus, this approach provides a very 

simple method enabling to estimate the dynamic real contact area and the 

corresponding real contact pressure under tribological solicitations. 

•  The knowledge of the real contact pressure improves our understanding of the 

elemental wear mechanisms on the nanoscale. Hence, this experimental approach 

could be used for studying the wear nanomechanims involving refractory materials 

in MEMS design (Si3N4, SiC, Al2O3…). 
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