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[1] We use numerical modeling with a full-system Stokes solver to elucidate the
effects of nonlinear rheology and strain-induced anisotropy on ice flow at ice divides.
We find that anisotropic rheology profoundly affects the shape of both isochrone
layering and surface topography. Anisotropic effects cause the formation of a downward
curving fold, i.e., a syncline, in isochrones in the lower central area beneath the ice
divide. When the resulting syncline is superimposed on the well-known Raymond
anticline, a double-peaked Raymond bump is formed. Furthermore, to each side of the
Raymond bump, flanking synclines are formed. In addition, anisotropic effects are found
to give rise to a subtle concavity in the surface profile to both sides of the summit. The
lower center syncline, the flanking synclines, and the near-summit surface concavity
have all previously been observed in nature, but hitherto no explanation for the genesis
of these features has been given. We compare modeling results with radiograms
collected from Fuchs Ice Piedmont and Kealey Ice Rise, Antarctica. Good overall
agreement is found. In particular, we are able to reproduce all observed qualitative
features of surface geometry and internal layering by including, and only by including,
the effects of induced nonlinear rheological anisotropy on flow. Rheological anisotropy
has the potential to profoundly affect the age distribution with depth, and caution must be
exercised when estimating age of ice from ice cores with an isotropic model. The
occurrence of linear features parallel to the ridge of ice divides, often seen in satellite
imagery, is indicative of long-term stability rather than signs of ongoing ice divide
migration as previously suggested. Such ice divides are ideal locations for extracting ice
cores.

Citation: Martı́n, C., G. H. Gudmundsson, H. D. Pritchard, and O. Gagliardini (2009), On the effects of anisotropic rheology on ice

flow, internal structure, and the age-depth relationship at ice divides, J. Geophys. Res., 114, F04001, doi:10.1029/2008JF001204.

1. Introduction

[2] The rheology of ice crystals is strongly anisotropic
and the orientation of crystal fabric of most ice of the polar
ice sheets has been known for some time to be nonrandom
[e.g., Paterson, 1994, pp. 99–102], yet in most flow
modeling of ice masses, ice is currently treated as an
isotropic material. There are flow situations where treating
ice as an isotropic rheological material may well be justi-
fied. For example, where ice fabric is fully evolved and does
not vary spatially over the region of interest, the effects of
anisotropy can be emulated, to some degree, by introducing
a suitable modified enhancement factor. In other situations,
ignoring anisotropy cannot be so easily justified. At ice
divides, for example, the ice fabric evolves from being

isotropic at the surface where the snow is deposited, to
being strongly anisotropic closer to the base [e.g., Alley et
al., 1995; Gow et al., 1997; Thorsteinsson et al., 1997].
Here we use flow modeling to investigate how flow at and
around ice divides, areas of key interest in glaciology, is
affected by anisotropy.
[3] Ice divides of large ice sheets and ice caps are

generally considered to be ideally suited as locations for
extracting ice cores to study past climate. This follows from
the expectation that horizontal velocity and horizontal shear
are both close to zero for a stationary ice divide. The ice
stratigraphy at an ice divide is therefore not expected to be
significantly distorted by horizontal shear. Furthermore, an
ice core extracted from a stationary ice divide will sample
ice along a flow line, and depositional age can be expected
to increase monotonically with depth.
[4] Being able to model accurately ice flow at ice divides

is important for several reasons. When more direct methods,
such as layer counting, cannot be used, dating of ice cores
must be done using flow models. Recognizing, and being
able to interpret correctly, signatures of nonstationary flow
from internal structures detected by deep-penetrating radars
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represents a further incentive for understanding flow at ice
divides. Flow modeling of ice divides is, however, a
challenging task. In these regions, commonly used zeroth-
order models of large-scale ice sheet flow cannot be used
[Hutter, 1983]. The flow regime at an ice divide changes
from being characterized by vertical compression and
concomitant horizontal extension at the divide, to that of
predominantly horizontal shear beneath the flanks. Conse-
quently, in general, all deviatoric stress components are of
importance and a higher-order model [e.g., Mangeney and
Califano, 1998], that considers longitudinal stresses, or a
full-system Stokes model must be used. In addition, isotro-
pic nonlinear rheology effects are known to significantly
modify flow at ice divides [Raymond, 1983].
[5] In one of the first numerical studies of ice divides,

Raymond [1983] showed that non-Newtonian effects give
rise to a mechanically stiff zone of ice underneath the ridges
of ice divides. This stiff zone of ice leads to the formation of
anticlines, i.e., an upward wrapping of isochrones. These
anticlines, now generally referred to as Raymond bumps,
were subsequently found in radargrams collected at ice
divides [e.g., Nereson et al., 1998b; Vaughan et al., 1999;
Conway et al., 1999]. In radargrams, a vertical series of
Raymond bumps are commonly seen, with one Raymond
bump on the top of another forming a Raymond stack. The
discovery of Raymond stacks gave an added impetus for
measuring and modeling isochronal layers at ice divides. Ice
divide migration causes a misalignment of the Raymond

bumps with depth. Measurement of isochrone geometry
with deep-penetrating radars coupled with ice flow model-
ing can, therefore, be used to infer past changes in ice divide
position [Nereson et al., 1998b; Martı́n et al., 2006, 2009].
[6] Recent numerical modeling work has shown that

anisotropy caused by nonrandom crystal fabric has the
potential to significantly modify the size and shape of the
Raymond bumps. In combination with a nonlinear flow law,
anisotropy can cause a two-fold increase in the amplitude of
the Raymond bumps [Pettit et al., 2007]. This suggests that
any quantitative modeling of Raymond stacks requires the
use of anisotropic flow laws.
[7] An indication that our understanding of the character-

istics of flow at ice divides is still not complete comes from
the fact that flow models have hitherto not been able to
reproduce a number of observed qualitative features of
radargrams and surface profiles from ice divides. One such
qualitative aspect of ice divide dynamics is the appearance
of linear features seen in satellite images of ice divides, to
one or both sides, of the ice divide ridge. Examples of this
feature are given in Figure 1 showing MODIS images of
Kealey Ice Rise and Fletcher Promontory, in the Ronne
Ice Shelf area, and Fuchs Piedmont, on Adelaide Island.
Goodwin and Vaughan [1995] showed that such features in
visible imagery are expressions of subtle concavity in the
surface profile. Hence, on some ice divides there is a region,
to one or both sides of the crest, where the surface profile is
concave-up. This surface concavity contrasts strongly with

Figure 1. MODIS Mosaic of Antarctica (MOA) image map [Haran et al., 2005] showing the Antarctic
Peninsula and the Ronne Ice Shelf area. The ice divide areas considered in this study are enlarged in the
insets: Fuchs Piedmont (Adelaide Island) and Kealey Ice Rise and Fletcher Promontory (Ronne Ice Shelf
area). The thick red lines are the profiles of the radargrams shown in Figure 2. Notice the concave
shoulders (dips) parallel to the ridge in Kealey Ice Rise divide (highlighted by blue arrows), in Fletcher
Promontory triple junction, and in Fuchs Piedmont ice divide.
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the general convex-up shape of an ice divide. The resulting
geometrical shape of the surface profile in the vicinity of the
ice divide is that of concave shoulders. Goodwin and
Vaughan [1995] did not offer an explanation for the genesis
of the concave shoulders, but concluded that they were not
compatible with known aspects of steady state ice divide
dynamics, and might therefore be caused by some transient
effects such as an ongoing ice divide migration.
[8] Another poorly understood feature of ice divide flow

is the occurrence of convex troughs, i.e., synclines, in
isochrones to both sides of the Raymond bumps. Examples
of such flanking synclines within the Raymond stack are
seen in all three radargrams shown in Figure 2 from Kealey
Ice Rise, Fletcher Promontory and Fuchs Piedmont (see
location map in Figure 1). Usually the flanking synclines
are most clearly seen over the depth range from about 1/3 to
2/3 of the total ice thickness. Parrenin and Hindmarsh
[2007] show that by assuming certain types of velocity
fields, synclines in isochronal layers on both sides of the
Raymond bumps can be formed. Parrenin and Hindmarsh
[2007] did not attempt to explain why the spatial variation
in the velocity field around ice divides is sometimes of the
type needed for the flanking synclines to be formed. Pettit et
al. [2007] give examples of numerically calculated iso-
chrones showing both the Raymond anticline and, to both
sides, two smaller synclines [Pettit et al., 2007, Figure 7].
Pettit et al. [2007] find that the flanking synclines are only
produced when effects of both anisotropy due to crystal

fabric and the effects of deviatoric stresses on effective
viscosity are included.
[9] A further interesting feature sometimes seen in radar-

grams from ice divides is the occurrence of a downward
curving fold (syncline) in the central lower part of the ice
divide region. Three examples of such synclines can be seen
in Figure 2. When the central lower part of the syncline is
superimposed on the larger central anticline, the resulting
geometrical structure is a double-peaked Raymond bump.
To date no explanation has been put forward for the
existence of double-peaked Raymond bumps. Double-
peaked Raymond bumps were first found independently
by R. C. A. Hindmarsh and G. H. Gudmundsson in radar-
grams from Fletcher Promontory and Kealey Ice Rise,
respectively, collected in Antarctic field season 2005–
2006. Subsequently, it has been discovered that they are
common features of radargrams from ice divides (R. Bing-
ham, personal communication, 2008).
[10] Figure 3 gives a graphical summary of the various

qualitative features seen in the three radargrams of Figure 2.
[11] This study focuses on the modeling of flow, internal

layering, and surface topography of ice divides. We aim to
identify and elucidate the mechanisms responsible for a
number of the distinctive and characteristic qualitative
features commonly found in radargrams from these areas.
In particular, we investigate the modifications in flow
around ice divides due to induced rheological anisotropy
of polycrystalline ice. We calculate the evolution of ice

Figure 2. Radargrams of (a) Fuchs Piedmont, (b) Fletcher Promontory, and (c) Kealey Ice Rise. The
radargrams were collected by H. Pritchard (Fuchs Piedmont), R. C. A. Hindmarsh (Fletcher Promontory),
and G. H. Gudmundsson (Kealey Ice Rise).
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fabric from an initial isotropic state at the surface using a
strain-induced fabric evolution model proposed by Gillet-
Chaulet et al. [2006]. The constitutive law used in this study
includes the effects of ice fabric and deviatoric stresses on
the effective (anisotropic) viscosity distribution. We find
that by including the effects of nonrandom ice fabric on
flow, we can successfully reproduce all qualitative features
of surface topography and internal layering listed above.
Our modeling approach is generic and not focused on one
particular ice divide, but rather tries to identify the general
aspect of ice divide flow.

2. Governing Equations and Numerical Model

2.1. Field Equations and Boundary Conditions

[12] We solve flow in an x-z plane orthogonal to the axis of
an ice divide. The z axis is aligned vertically. The ice surface
and bed are given by z = s(x, t) and z = b(x), respectively.
[13] The field and the boundary equations are

@xuþ @zw ¼ 0; b xð Þ � z � s x; tð Þ; ð1aÞ

@xsxx þ @zsxz ¼ 0

@xsxz þ @zszz ¼ rg

�
; b xð Þ � z � s x; tð Þ; ð1bÞ

@tsþ u@xs ¼ wþ a; z ¼ s x; tð Þ; ð1cÞ

s � n ¼ 0 z ¼ s x; tð Þ; ð1dÞ

u ¼ w ¼ 0; z ¼ b xð Þ: ð1eÞ

[14] Equation (1a) expresses the conservation of mass,
and equation (1b) the conservation of momentum. Here s is
the Cauchy stress tensor, r is the density of ice, g = g(0, 0,

�1) is the gravitational acceleration vector, and v = (u, v, w)
is the velocity vector. Equation (1c) is the free surface
kinematic condition, where a is accumulation rate of ice,
expressed as a volume rate per unit area. Equations (1d) and
(1e) are the boundary conditions at the surface and bed,
respectively.
[15] Along the vertical boundaries of the model, the

velocity variation with depth is assumed to follow the
theoretical profile for isotropic laminar flow [e.g., Van der
Veen, 1999, section 5.1]. Ice flux through the vertical
boundaries is prescribed to be equal to the total surface
accumulation, ensuring that the volume of ice within the
modeling domain does not change with time. Following
Hvidberg [1996] we use a numerical domain extending
20 times the divide thickness at each flank but restrict our
analysis to a region extending only 10 times the divide
thickness at each flank.
[16] Isochrones are lines connecting ice particles with

equal age, where age is calculated from

@tYþ u @xYþ w @zY ¼ 1; b xð Þ � z � s x; tð Þ; ð2aÞ

Y ¼ 0; z ¼ s x; tð Þ; ð2bÞ

where Y is the age.
[17] Although temperature can be expected to modify the

ice flow regime by affecting the ice viscosity, basal con-
ditions (melting and sliding) and ice recrystallization pro-
cesses, we limit the discussion here to the isothermal case.
The justification for doing so comes from a preliminary
study where the effects of temperature on ice flow, divide
geometry, and internal layering were estimated and found to
be of comparatively little importance. It is not difficult to
understand why the temperature plays a rather insignificant
role in modifying flow. The ice divides considered in this
study (Kealey Ice Rise, Fletcher Promontory and Fuchs
Piedmont) are thin (450–600 m) and with high accumula-

Figure 3. Generalized stratigraphy of an ice divide.
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tion rate (0.5–1.0 m/yr) (see Table 1). Estimating the
difference in surface and basal temperature using the Robin
solution [Robin, 1955] gives temperature differences of only
4.5�C, 7.4�C and 7.8�C for Kealey Ice Rise, Fletcher
Promontory and Fuchs Piedmont, respectively. Moreover,
basal temperatures are found to be well below the melting
point (�22.5�C, �19.6�C and �5.4�C). (Accumulation
rates are from Arthern et al. [2006] and surface temper-
atures are from Comiso [2000].) We will discuss further the
recrystallization processes in section 2.3 and the limitations
of the isothermal assumption in section 4.

2.2. Rheology

[18] Several anisotropic ice rheologies have been pro-
posed in the past [e.g., Lliboutry, 1993; Castelnau et al.,
1996; Mangeney et al., 1997; Thorsteinsson, 2001; Gödert,
2003; Gillet-Chaulet, 2007; Pettit et al., 2007; Castelnau et
al., 2008]. All these models differ in various details with
regards to the crystal model used (Schmid law, a basal slip
system model, transversely isotropic), the description of the
fabric (discrete or continuous through an orientation distri-
bution function or an orientation tensor) and in the homog-
enization procedure used (uniform strain rate, uniform
stress or intermediate self-consistent procedures). For a
detailed review of all these models, the reader can refer
to Gagliardini et al. [2009].
[19] To describe the ice fabric we use the orientation

tensors [e.g., Gödert, 2003; Gillet-Chaulet et al., 2006]. In
spherical coordinates these can be written as

a
2ð Þ
ij ¼ cicj

� �
¼ 1

2p

Zp=2

0

Z2p

0

f q;fð Þ cicj
� �

sin q dq df; ð3aÞ

a
4ð Þ
ijkl ¼ cicjckcl

� �
¼ 1

2p

Zp=2

0

Z2p

0

f q;fð Þ cicjckcl
� �

sin q dq df;

ð3bÞ

where f(q, f) is the probability distribution of finding the c
axes, represented with the normalized vector c, in the
interval ([q, q + df],[f, f + df]). The function f(q, f) is
known as the orientation distribution function (ODF).
[20] Here we assume that the monocrystal grain behaves

as a viscous transversely isotropic medium and that there is

a uniform stress distribution within the polycrystal (uniform
stress or static model) [e.g., Gödert, 2003; Thorsteinsson,
2001; Gagliardini and Meyssonnier, 1999]. And following
Gödert [2003] and Gillet-Chaulet et al. [2005], we write the
orthotropic rheology of the polycrystal as

D ¼ 1

2h0
bS þ l1 a

4ð Þ: S þ l2 S � a 2ð Þ þ a 2ð Þ � S
� ��

þl3 a 2ð Þ: S
� �

I
�
; ð4Þ

where D and S denote the strain rate and deviatoric stress
tensors, respectively (S = s � PI; P = 1

3
sii). The symbols �

and : denote the contracted product and the double
contracted product, respectively, and I is the identity matrix.
The three l symbols are defined as

l1 ¼ 2 b
g þ 2

4g � 1
� 1

	 

; l2 ¼ 1� bð Þ and l3 ¼ �

1

3
l1 þ 2l2ð Þ:

[21] The mechanical properties of the monocrystal can
then be described by the basal shear viscosity h0, and the
two relative viscosities b, the ratio of viscosity of the grain
for shear parallel to the basal plane to that in the basal plane,
and g, the ratio of the viscosity in compression or tension
along the c axis to that in the basal plane [e.g., Lliboutry,
1987; Meyssonnier and Philip, 1996]. The rheological
parameter b is known to be significantly smaller than unity,
and the parameter g to be close to unity [Gillet-Chaulet et
al., 2006]. Here we use the values b = 10�2 and g = 1. Our
numerical experiments, not reported here, show that results
are not sensitive to the exact values of the parameters b
and g.
[22] By similarity with Glen’s flow law, we propose a

nonlinear extension of the rheology described in equation (4)
where

h0 ¼
1

2
A�

1
n

1

2
tr D2
� �1�n

2n

	 

; ð5Þ

where A is the rate factor, n the rheological index and ‘tr()’
denotes trace. This nonlinear extension is similar to that
used by Pettit [2003].
[23] As discussed in section 2 we consider the ice to be

isothermal and the value of the rate factor A used in
equation (5) is assumed to be constant.

Table 1. Characteristic Time for Different Ice Divides and the Equivalent Time for the Different Stages Presented in

Figures 4–6

a
(m/yr)

H
(m)

tD
(kyr)

1/10 tD
(kyr)

tD
(kyr)

4 tD
(kyr)

10 tD
(kyr)

Fuchs Piedmont 0.98a 450 0.46 0.05 0.46 1.83 4.6
Kealey Ice Rise 0.44a 550 1.25 0.13 1.25 5.0 12.5
Fletcher Promontory 0.44a 600 1.36 0.14 1.36 5.44 13.6
Roosevelt Islandb 0.18 700 3.8 0.38 3.8 15.2 38
Siple Domec 0.1 1000 10 1 10 40 100
Summit Greenlandc 0.25 3000 12 1.2 12 48 120
Dome Cd 0.023 3309 144 14.4 144 576 1444

aArthern et al. [2006].
bConway et al. [1999].
cNereson and Waddington [2002].
dGillet-Chaulet [2007].

F04001 MARTÍN ET AL.: EFFECTS OF ANISOTROPY AT ICE DIVIDES

5 of 18

F04001



2.3. Fabric Evolution

[24] We assume that recrystallization processes do not
occur and that the ice fabric is induced by deformation. In
that case, following Gödert [2003] and Gillet-Chaulet et al.
[2006] the evolution of the second-order orientation tensor
a(2) can be written as

Da 2ð Þ

Dt
¼ Wa 2ð Þ � a 2ð ÞW � Ca 2ð Þ þ a 2ð ÞC

� �
þ 2a 4ð Þ: C; ð6Þ

where W is the spin tensor (the skew symmetric part of the
gradient tensor),

C ¼ 1� að ÞDþ a
1

2h0
S; ð7Þ

and a is the interaction parameter. The interaction parameter
a controls the relative weighting of the strain rate tensor (D)
and the deviatoric stress tensor (S) in the fabric evolution
equation (equation (6)).
[25] As a boundary condition we assume isotropic ice at

the surface, i.e.,

a 2ð Þ ¼ 1

3
I; ð8Þ

for z = s(x, t).
[26] Gödert [2003] argues that the interaction parameter

a is a monotonic function of the degree of alignment of the
c axes and should be taken as zero for completely aligned
c axes. Gillet-Chaulet et al. [2006], using an identical
evolutionary equation from that used here and a similar
model of ice anisotropy but assuming linear rheology, find
that using a = 0.06 allows accurate reproduction of fabric
evolution when compared with a VPSC model (viscoplastic
self-consistent model). Durand et al. [2007], using the same
model as Gillet-Chaulet et al. [2006], find a good accor-
dance with EPICA Dome C core data using a = 0.01.
[27] The sensitivity of our numerical results to the exact

value of a was tested in a series of runs. We found
numerical results to be effectively independent of the value
of a as long as a is chosen to be small (<0.1). For
simplicity, therefore, we only report here results of runs
using a = 0. In effect, the transient evolution of the second-
order orientation tensor used here therefore only depends on
the symmetric and skew symmetric part of the velocity
gradient tensor and the fourth-order orientation tensor (see
equation (6)).
[28] From ice core texture and microstructure measure-

ments, it is known that ice recrystallization is important in
the fabric development. The most significant recrystalliza-
tion processes that occur in ice divides are rotation recrys-
tallization and migration recrystallization. The effects of the
former manifest typically below a certain depth (e.g., below
200 m at Siple Dome [Diprinzio et al., 2005], bellow 400 m
at Byrd ice core [Alley et al., 1995] and below 650 m at
GRIP ice core [Thorsteinsson et al., 1997]) and is related
with the formation of (sub)grain boundaries due to hetero-
geneous loading, the latter occurs at the warm base of the
divide and is characterized by a very fast grain growth [e.g.,
Gagliardini et al., 2009]. As the ice divides considered in

this study are thin (450–600 m) and, as discussed in
section 2.1, the basal temperatures are expected to be below
the melting point, we can assume that the influence of
recrystallization processes in these divides is small com-
pared with the fabric development induced by deformation.
The influence of recrystallization is discussed in section 4.

2.4. Closure Approximation

[29] The evolution of the second-order orientation tensor
a(2) given by equation (6) depends on a(4), and for that reason
the system of equations is not yet closed. A common
approach of obtaining a closed system is to express the
components of the fourth-order orientation tensor as func-
tions of those of the second-order orientation tensor [e.g.,
Advani and Tucker, 1990]. We follow this approach and use
the invariant-based closure approximation (IBOF) proposed
by Gillet-Chaulet et al. [2006]. As shown by Chung and
Kwon [2002], the general form of the IBOF closure approx-
imation is

a
4ð Þ
ijkl ¼ b1 Sym dijdkl

� �
þ b2 Sym dija

2ð Þ
kl

� �
þ b3 Sym a

2ð Þ
ij a

2ð Þ
kl

� �

þ b4 Sym dija
2ð Þ
km a

2ð Þ
ml

� �
þ b5 Sym a

2ð Þ
ij a

2ð Þ
km a

2ð Þ
ml

� �

þ b6 Sym a
2ð Þ
im a

2ð Þ
mj a

2ð Þ
kn a

2ð Þ
nl

� �
;

ð9Þ

where ‘Sym’ denotes the symmetrical part of its argument
and bi are six functions of the second and third invariants of
a(2). Following Chung and Kwon [2002], Gillet-Chaulet et
al. [2006] assume that bi are polynomials of degree 5 in the
second and third invariant of a(2), and compute the resulting
coefficients so that a(4) given by equation (9) fits the fourth-
order orientation tensor given by the ODF proposed by
Gagliardini and Meyssonnier [1999].

2.5. Nondimensionalization

[30] Results are presented in nondimensionalized form
using the nondimensional procedure of Martı́n et al.
[2009], i.e.,

x; zð Þ ¼ H x̂; ẑð Þ;
u;wð Þ ¼ a û; ŵð Þ;

D ¼ a

H
D̂;

S;Pð Þ ¼ a

AH

� �1
n

Ŝ; P̂
� �

:

ð10Þ

Nondimensional variables are denoted by placing a caret-
shaped symbol on the top of their dimensional counterpart.
The time variable is nondimensionalized using the char-
acteristic time

tD ¼ H=a ð11Þ

of the divide, i.e.,

t ¼ tDt̂; ð12Þ

where H is the thickness at the ice divide and a the
accumulation rate.
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2.6. Numerical Scheme

[31] For a given fabric and a given surface, we calculate
the viscosity as described in Appendix C and solve the
Stokes system (equations (1a) and (1b)). Once the ice
velocity is known, we determine the evolution of the surface
and ice fabric according to equations (1c) and (6).
[32] We solve the Stokes system using finite element

methods, while semi-Lagrangian methods are used to solve
the equations for the free surface evolution, fabric evolution
and age. The numerical technique is described for isotropic
ice by Martı́n [2003] and Martı́n et al. [2003, 2006, 2009].
The modifications to that method needed for anisotropic ice
are described in Appendixes A and B.

3. Results

3.1. Ice Divide Development Toward a Steady State

[33] We aim to understand the development of ice flow
and crystal fabric in ice divides. To this end, we model the
evolution of an ice divide from the onset of divide flow
toward a steady state.
[34] Initial conditions are isotropic ice and a flat surface

over the whole model domain. A constant surface accumu-
lation rate is prescribed. Ice is allowed to flow out from the
left- and right-hand side margins of the domain at a rate that
equals the surface influx of ice. In nondimensional units,
both the initial thickness and the accumulation rate are equal
to unity.
[35] Results corresponding to different stages of the ice

divide development (t = {1/10, 1, 4, 10}tD) are shown in

Figures 4, 5, 6, and 7. In these runs the stress exponent was
set as n = 3. The value of the rate factor A used (see
equation (5)) corresponds to an ice temperature of �10�C.
However, the value of the rate factor does not significantly
affect the overall transient evolution of the ice divide, which
is determined by tD. The rate factor has little effect on
internal layering during the transient stage, and no effect on
the steady state layering.
[36] Figure 4 shows isochrone positions as functions of

time. For t = 0 (not shown) the initial isochrones are aligned
horizontally. With time, ice flow causes the oldest ice to be
increasingly strongly located directly under the ridge of the
ice divide. The Raymond bump is already visible for t = tD/
10 (see Figure 4) as a narrowly defined anticline. Figure 4
shows that the Raymond bumps start to grow at depth equal
to about half ice thickness.
[37] With time, the amplitude of the Raymond bumps

increases markedly. At t = tD the overall geometrical shape
of the isochrones is no longer uniformly that of an anticline
(see Figure 4). Close to the bed, the isochrones are concave
up, while closer to the surface they are concave down. As a
consequence, flanking synclines are formed close to the bed
to both sides of the Raymond bumps.
[38] At t = 4tD the flanking synclines are seen over a

greater range of depths and their amplitudes have grown. A
slight downward curving (i.e., concave up) fold located at
the center of some of the Raymond bumps also becomes
visible in Figure 4.
[39] At t = 10tD the quasi steady state has been reached.

As shown in Figure 4, in the lower parts of the ice column

Figure 4. The modeled ice stratigraphy (isochrones) at different stages of the divide development.
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Figure 5. Contours of (top) a33
(2) and (bottom) d at different stages of the divide development. Here a33

(2)

is the maximum eigenvalue of the orientation tensor, varying from 1/3 for isotropic ice to 1 for single
maximum fabrics. Here d is the angle in the divide plane between the reference and the orthotropic frame.

Figure 6. Contours of steady state (top) horizontal velocity û and (bottom) vertical velocity ŵ. The
velocity fields shown have been nondimensionalized, using (û, ŵ) = [a](u, w), where a is the specific
surface mass balance and u and w are the horizontal and vertical velocity components, respectively.
Parameters used are the same as for Figure 4.
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the Raymond bumps are now double peaked, while further
toward the surface the bumps are single peaked. In the
middle part of the ice column, pronounced flanking syn-
clines are seen.
[40] The evolution of the ice fabric is shown in Figure 5.

Figure 5 (top) shows contour lines of the largest eigenvalue
of the second-order orientation tensor (a33

(2)). This eigenvalue
goes from 1/3, for isotropic ice, to 1 for a single-maximum
fabric. As Figure 5 (top) shows, the fabric is at t = tD/10
mostly isotropic. This is a simple consequence of the initial
condition used in the run, where at t = 0 the ice was
prescribed as isotropic. With the onset of ice flow the fabric
starts to evolve toward a more anisotropic state. At first, the
most strongly anisotropic ice is found some distance away
from the ice divide, close to the bed. With time, as the
situation approaches a steady state, the most strongly
anisotropic ice is concentrated directly below the divide
(see Figure 5).
[41] In Figure 5 (top) showing a33

(2), a strongly localized
zone of less developed fabric is found close to the bed and
directly underneath the summit (x = 0) of the divide for t �
tD. With time the size of this zone decreases, and as steady
state is reached the zone collapses to a point and disappears.
Hence, in steady state the value of a33

(2) increases monoton-
ically with depth, with the most anisotropic ice concentrated
close to the bed directly underneath the ice divide.
[42] Figure 5 (bottom) shows the evolution of the angle

(d) between the reference and the orthotropic frame in the
x-z plane. The orthotropic frame is defined as the local
orthogonal coordinate system spanned by the eigenvectors
of the (symmetric) second-order orientation tensor. For t �

tD the angle d is close to zero in all the domain, meaning that
the c axis of the fabric is aligned in the vertical.
[43] The velocity field at quasi steady state is depicted in

Figure 6. Horizontal and vertical velocities are shown for
the time step t = 10tD. Note that the velocity has been
nondimensionalized by the accumulation rate and, conse-
quently, the vertical velocity at the surface tends to be close
to unity. A conspicuous feature of the vertical velocity field
in Figure 6 (bottom) is the sharp and strongly localized
reduction in velocity in the area below the ridge of the ice
divide. This zone is seen for all time steps and, in Figure 6,
gives rise to pronounced convex-up shaped contour lines.
Note that the variation in vertical velocity with depth at
x = 0, differs significantly from that only a few ice
thicknesses away. As compared to the situation just outside
of the divide, the variation in vertical velocities with depth
at the summit is considerably more concentrated toward
the surface.
[44] The horizontal strain rates and vertical shear strain

rates (D̂xx and D̂xz), are shown in Figure 7 (top) and Figure 7
(bottom), respectively. Note that because of the incompres-
sibility of ice, D̂xx = �D̂zz and the upper panel, therefore,
can be considered to depict the vertical strain rates as well,
albeit with an opposite sign. The largest rates of vertical
compression are found close to the surface of the summit
(x = 0), with (absolute) values decreasing with depth.
Interestingly, for the lowest about 2/3 of the ice column,
maximal vertical strain rates are found off the vertical x = 0
line, rather than directly below the summit.
[45] Figure 8 shows, the eigenvalues of the orientation

tensor a(2) as a function of depth below the ice divide

Figure 7. (top) Contours of horizontal strain rates D̂xx. (bottom) Contours of vertical shear rates D̂xz.
The strain rates shown are nondimensional strain rates in the units of a/H, where a is the specific surface
mass balance and H is the mean ice thickness.
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(Figure 8, left), and the corresponding Woodcock K value
(Figure 8, right) [Woodcock, 1977] defined as

K ¼
log a

2ð Þ
33 =a

2ð Þ
22

� �

log a
2ð Þ
22 =a

2ð Þ
11

� � ð13Þ

for t = 4tD (dashed lines) and t = 10tD (solid lines). As
explained above, t = 10tD corresponds closely to a steady
state situation.
[46] The Woodcock K value can be used to distinguish

single maximum (c axis aligned) and girdle fabrics (c axis
clustered around a vertical plane) [Wang et al., 2002].
Values of K between zero and one indicate a girdle fabric
and those larger than one, a single maximum fabric.
[47] Figure 8 shows how the fabric varies from being

isotropic at the surface, to a vertical girdle fabric in the upper
part of the divide, to a strong single-maximum fabric toward
the base. Just below the divide position d = 0 (see Figure 5)
and a11

(2) = axx
(2), a22

(2) = ayy
(2) and a33

(2) = azz
(2). As Figure 8 shows,

within the single-maximum zone the c axes are aligned in the
vertical, while in the girdle fabric zone the c axes cluster
around the yz plane; that is, they are in the vertical plane
along the axis of the divide.
[48] The fabric depicted in Figure 8 can be compared to

fabric of ice cores such as the EPICA Dronning Maud Land
ice core [Eisen et al., 2007, Figure 3], the NorthGRIP ice
core from North Greenland [Wang et al., 2002, Figure 4],
and the Siple Dome core from West Antarctica [Diprinzio et

al., 2005, Figure 3]. As our modeling approach is generic
and not focused on any particular ice divide we do not
attempt any exact quantitative comparison with these ice
cores. However, it should be noted that in all those ice cores
the fabric changes from isotropic to girdle to single maxi-
mum with increasing depth, in general agreement with our
model.

3.2. Sensitivity Experiments

[49] We now investigate the sensitivity of the results
presented in section 3.1 to changes in model parameters
and initial conditions.
3.2.1. Sensitivity to Initial Conditions
[50] In all the model runs shown above, the ice fabric was

initially isotropic. We tested the sensitivity of the results to
different initial ice fabric by calculating ice divide evolution
starting with both random fabric and a single maximum
fabric. The resulting development of the fabric is shown in
Figure 9. For comparison, results for the isotropic case are
also shown. In all cases the resulting steady state fabric is
identical. From the time sequences shown in Figure 9, it is
evident that the small differences seen for t = 10tD between
the three cases, i.e., between isotropic (Figure 9, top),
random (Figure 9, middle) and single maximum (Figure 9,
bottom), are of transient nature.
3.2.2. Sensitivity to Stress Exponent
[51] The value of the stress exponent has a decisive effect

on the resulting ice stratigraphy and ice fabric. This can be
seen by comparing Figure 10 (top) with Figure 4 showing
ice stratigraphy for n = 1 and n = 3, respectively. In Figures 10

Figure 8. The eigenvalues of the orientation tensor a(2) and the K Woodcock value versus depth at the
ice divide position at different stages of its evolution: t = 4tD (dashed lines) and t = 10tD (solid lines).
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Figure 9. Sensitivity of fabric evolution to initial conditions. Contours of the maximum eigenvalue of
the orientation tensor (a33

(2)) at different stages of the divide development (t = {1/10, 1, 4, 10} tD) assuming
three different fabric initial conditions: (top) isotropic ice, (middle) random fabric, and (bottom) single
maximum fabric.

Figure 10. (top) The modeled ice stratigraphy (isochrones) and (bottom) the ice fabric (the maximum
eigenvalue of the orientation tensor a33

(2)) at different stages of the divide development assuming linear
rheology (n = 1 in equation (5)).
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and 4 the same anisotropic model has been used. The fabric
evolution for n = 1 is shown in Figure 10 (bottom). Figure 10
can be compared with Figure 5 for n = 3.
[52] For linear viscous media no Raymond bump is

formed, hence anisotropy alone cannot give rise to a
Raymond bump. These results agree with Pettit et al.
[2007] who found that nonrandom fabric has little effect
on the internal layering in a linear medium. Nonlinear
viscosity appears to be an essential requirement for the
formation of Raymond bumps.
[53] The steady state ice fabric for n = 1 (Figure 10,

bottom) is sharply different from the one obtained for n = 3
(see Figure 5). Hence, in our numerical model, fabric
evolution is strongly affected by the deviatoric state of
stress.

3.3. Sensitivity of Isochrone Positions to Fabric

[54] The sensitivity of the position of isochrones to fabric
was estimated by repeating the calculations described above
using an isotropic rheology. In Figure 11 (left) the resulting
isochrones are shown. Note, that in Figure 11 (left), the
vertical coordinate of isochrones is defined as the distance
away from the bed normalized with the local thickness,
rather than as the distance from bed normalized with mean
ice thickness. Using locally scaled vertical coordinates, i.e.,
scaling the distance from bed to the isochrones by the local

depth, the effect of varying ice depth on isochrone positions
is eliminated. As a consequence the slope of isochrones
approaches zero with increasing distance away from the
divide.
[55] In Figure 11 (right) the bump amplitude versus

elevation distribution (BAED) is shown. The bump ampli-
tude is defined as the difference between the (locally scaled)
vertical coordinate of a given isochrone at x = 0 and its
(locally scaled) vertical coordinate far away from the divide.
[56] To allow a direct comparison of the two models, the

rate factors of the anisotropic and the isotropic models,
denoted as A and Ag, respectively (equation (5)), were
chosen so that the slope of the surfaces and the velocities
at the margins of the divide area (5 times the ice thickness
from the ice divide) were similar for both models.
[57] Figure 11 reveals a number of qualitative differences

between calculated isochrone positions for isotropic and
anisotropic ice. The nonlinear isotropic model (blue lines)
produces a stack of single-peaked Raymond bumps. The
nonlinear anisotropic model, on the other hand, produces
both single-peaked and double-peaked Raymond bumps.
The isotropic model produces no flanking synclines to the
sides of the Raymond bumps while such flanking synclines
are clearly visible in the steady state isochrones calculated
with the anisotropic model. Although not seen in Figure 11,
only the anisotropic model produces concave surface

Figure 11. Comparison of the isochrones of the isotropic model (blue) and the anisotropic model (red)
and the bump amplitude versus elevation distribution (BAED). (top) A divide where the fabric is not fully
developed (2 tD after the onset of divide flow) and (bottom) one in a nearly steady state configuration
(10 tD after the onset of divide flow) are represented.
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shoulders. In addition to these significant qualitative differ-
ences, the calculated bump amplitude versus elevation
distribution (BAED) differs significantly between the two
models (see Figure 11). Maximum steady state bump
amplitudes are about twice as large for anisotropic ice as
compared to those for isotropic ice.

4. Discussion

[58] The novel feature of our model calculations is the
inclusion of induced fabric development in combination
with nonlinear rheology. In contrast to Pettit et al. [2007],
our fabric is not constrained by measurements, but allowed
to change with time as determined by the fabric evolution
equation (equation (6)). The strength of the fabric, as
defined by the largest eigenvalue of the second-order
orientation tensor (a33

(2)), varies spatially in a complicated
fashion (see Figure 5). In tune with the generic modeling
approach used here, we have not attempted a direct com-
parison with measured fabric from any particular ice divide.
However, the overall resulting steady state orientation of the
c axis shares features commonly observed where tensile
stresses dominate, i.e., isotropic ice near the surface, a
vertical girdle fabric further below, and vertically aligned
single-maximum fabric close to the bed. In addition, we find
that the model is capable of producing a number of long-
observed but poorly understood features of the flow of ice
divides such as the double-peaked Raymond bumps, flank-
ing synclines, and concave shoulders (see Figure 3 for
definition of terms).
[59] Like Pettit et al. [2007] we find that unless ice is

modeled as a nonlinear fluid, anisotropy does not affect
flow around ice divides significantly. When ice is modeled
as a nonlinear fluid we find, in further agreement with Pettit
et al. [2007], that the amplitudes of the Raymond bumps are
significantly larger for anisotropic ice than for isotropic ice.
The increase in the size of Raymond bumps can be close to
twofold. Hence, caution must be exercised in any quantita-
tive analysis of Raymond bumps that does not include the
effects of crystal fabric on the flow.
[60] Transient calculations show that Raymond bumps

evolve in a number of stages (see Figures 4–7), the
manifestation of double-peaked Raymond bumps and flank-
ing synclines being the last stage of that development. A
stack of single-peaked Raymond bumps can potentially be
an indication of a flow regime that is not fully developed. In
our model we find the timescale for the development of
Raymond stacks to be on the order of the characteristic
timescale tD = H/a, where a is the accumulation rate and H
the ice thickness. In Table 1 the characteristic timescale for a
number of ice divides is listed. As can be seen from Table 1,
the characteristic timescales vary widely. For example,
for the Fuchs Piedmont ice divide tD is on the order of
400 years, while tD for Dome C is around 144 000 years.
The large variability in the characteristic time of ice divides
may explain why Raymond bumps are sometimes not
found, sometimes only single peaked, and sometimes double
peaked. We find that given sufficient time, double-peaked
Raymond bumps will always form underneath ice divides.
[61] The occurrence of linear features in satellite imagery

parallel to the ridge of ice divides (see Figure 1) has often
been reported [e.g., Lucchitta et al., 1987; Goodwin and

Vaughan, 1995] but their causes have not been understood.
A simple inspection of available satellite imagery reveals
the existence of such double- and triple-ridge features in
imagery from a great number of Antarctic ice divides (e.g.,
Kealey Ice Rise, Fletcher Promontory, Korff Ice Rise,
Latady Island, Spaatz Island and Lyddan Ice Rise) while
many other divides with similar characteristics display no
such features. Goodwin and Vaughan [1995] showed the
origin for the double/triple-ridge features to be topographic
concavities, i.e., concave shoulders, running parallel to the
ridge to both sides. They suggested that concave shoulders
might indicate ongoing migration of the divide position.
Our modeling suggests, to the contrary, that concave
shoulders are caused by anisotropic ice fabric that has
evolved under stationary conditions for a time comparable
to, or larger than, the characteristic time. Hence, rather than
being indicative of change, they are signs of long-term
stability.
[62] The flanking synclines in isochrones, sometimes

found at the sides of the Raymond stack (see Figure 2),
have previously been described by Parrenin and Hindmarsh
[2007]. They show that the occurrence of flanking synclines
can be explained by assuming the velocity field to be of a
certain type. However, they do not answer the question as to
why the velocity field should be of the type needed to
produce the flanking synclines. In our model, these flanking
synclines are produced without the need to make any
specific assumption about the velocity field. Modeling
experiments suggest that flanking synclines are manifesta-
tions of the effects of crystal fabric on flow near an ice
divide.
[63] One of the most noticeable features of the internal

structure of ice divides detected with ice-penetrating radars
are the double-peaked Raymond bumps (see Figure 2).
Single-peaked Raymond bumps are a well-known conse-
quence of nonlinear ice rheology [Raymond, 1983]. The
lowest deviatoric stresses in the divide area are found near
the base of the divide. Due to the dependency of the
effective ice viscosity on the deviatoric stress tensor, the
ice therefore becomes significantly harder near the base as
compared to the surrounding areas. This region of ‘‘hard’’
ice acts as an impediment to flow, altering the trajectories
and forming the Raymond anticline in the ice stratigraphy.
The central syncline, on the other hand, does not require
nonlinear ice rheology. Figure 10 shows how a central
syncline is formed for anisotropic linear viscous media.
No such syncline is formed for an isotropic linear medium.
[64] In our model the fabric is induced by the flow, and

the flow is in turn affected by the fabric. The effects on this
coupling between flow and fabric on isochrones can be
difficult to predict as anisotropy can facilitate ice deforma-
tion in one direction and at the same time hamper defor-
mation in another direction. The development of single
maximum ice fabric centered on the vertical within the
lowermost 1/3rd of the ice column facilitates shear of ice
(@zu) off the axis of the ice divide. This effect can clearly be
seen in Figure 7 (bottom), by inspecting how the boundaries
of the area defined by jD̂xzj > 10 change as the fabric
evolves from random to a fully developed fabric. The fabric
development has profound effects on the distribution of
strain rate and velocity. As Figure 7 shows, for the lower
half of the ice column and over a horizontal distance of
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about 2–3 ice thicknesses away from the axis of the ice
divide (i.e., approximately jxj < 3, and z < 0.5), shear rates
decrease in magnitude with depth instead of increasing as
would otherwise be expected. A further consequence is that
within this region (absolute) vertical velocities reach a local
maximum as a function of horizontal distance at x = 0 (see
Figure 6, bottom), and a zone is formed where horizontal
velocity increases with depth rather than decreasing. The
maximum in (absolute) vertical velocity at x = 0 draws
the isochrones down and gives rise to the central syncline.
The ice fabric also facilitates horizontal extension (D̂xx off
the axis of the ice divide and some distance away from the
bed. This can seen in Figure 7 (top), showing the distribution
of horizontal strain rates. The effect is particularly pro-
nounced within the depth range from about 1/5 to 1/2 of
the ice thickness. As a consequence the isochrones are drawn
down in this area giving rise to the flanking synclines.
[65] A flow regime where horizontal velocities increase

with depth is referred to in glaciology as ‘‘extrusion flow’’.
Extrusion flow has previously only been shown to be a
theoretical possibility in the vicinity of undulating bed
[Gudmundsson, 1997a, 1997b].
[66] Stratigraphy of ice divides has previously mostly

been studied assuming isotropic behavior of ice [e.g.,
Hindmarsh, 1996; Nereson et al., 1998a, 1998b; Nereson
and Raymond, 2000, 2001; Nereson and Waddington, 2002;
Conway et al., 1999; Martı́n et al., 2006]. However,
anisotropic rheology gives rise to a number of new quali-
tative effects on flow (see, e.g., Figure 11). Furthermore, for
the induced anisotropic rheology model used here, steady
state Raymond bump amplitudes are approximately twice as
large as an isotropic model would suggest. In any quanti-
tative study of an ice divide stratigraphy, the use of an
isotropic model may therefore be misguided. While we
caution against the use of isotropic models for flow sit-
uations where anisotropy can be expected to be of impor-
tance, our results do suggest that anisotropy primarily
affects flow in the later stages of ice divide development.
[67] In accordance with previous studies [e.g., Mangeney

et al., 1997; Pettit et al., 2007] we find ice fabric develop-
ment to have the potential to affect significantly the age
distribution of ice around ice divides. Clearly visible in
Figure 11 is the effect of ice fabric on the age versus depth
distribution. As Figure 11 shows, the depositional age of the
ice increases initially considerably faster with depth in the
anisotropic case (red) than in the isotropic case (blue). Close
to the bed the situation is reversed and there it is the
depositional age of the isotropic ice that increases faster
with depth. This suggests that results of ice core dating from
ice divides using both isotropic and anisotropic models will
differ significantly. Since we find that only our anisotropic
model is capable of producing a number of observed
qualitative aspects of flow at ice divides that have not been
explained hitherto using isotropic models, we stress that
caution must be exercised in using isotropic flow models for
dating ice cores.
[68] In the field examples we have shown in this study:

Fuchs Piedmont, Fletcher Promontory and Kealey Ice Rise
(Figure 1), the influence of temperature and recrystalliza-
tion, as discussed in sections 2.1 and 2.3, is expected to be
small. Nevertheless, the question of how they may influence

the ice flow and fabric development remains open. If the
temperature at the base remains well below the melting point
the effects are presumably rather limited [e.g., Hvidberg,
1996; Martı́n et al., 2006], but potentially significant if the
base of the divide is at melting point and basal sliding is
important [e.g., Pettit et al., 2003; Martı́n et al., 2009].
[69] We have not considered the effects of recrystalliza-

tion on ice fabric. There are three main dynamic recrystal-
lization regimes for polar ice: (1) normal grain growth
which has no direct effect on fabric, except modifying the
size of the grains; (2) rotation recrystallization which, for a
vertical compression, is expected to counteract the normal
grain growth and slow down the fabric development; and
(3) migration recrystallization which produces grains orien-
tated favorably to the state of stress [e.g., Gagliardini et al.,
2009]. The consequences of ice softening due to migration
recrystallization are unclear, but might lead to a reduction in
the amplitude of the Raymond antisyncline. Including
recrystallization processes would most likely give rise to a
less developed fabric.
[70] Other effects that are known to affect the ice flow in

the ice divide area and reduce the Raymond effect are the
along-ridge flow [Martı́n et al., 2009] and the divide
migration [e.g., Nereson et al., 1998b; Martı́n et al., 2009].
[71] Our model results indicate that some of the charac-

teristic features of the radargrams from Fuchs Piedmont,
Fletcher Promontory and Kealey Ice Rise shown in Figure 2,
double peaked Raymond bump, flanking synclines, and
concave shoulders parallel to the ice ridge (Figure 1), are
consequences of a long-term development of the ice fabric
relative to the characteristic timescale of the divide. Hence,
divides exhibiting these features are ideal locations for
extracting ice cores. Such ice divides can easily be identified
by the concave shoulders visible in most satellite imagery as
linear features running parallel to the main ridge.

5. Summary

[72] A number of observed aspects of internal layering of
ice divides appear to be manifestations of the effects of ice
fabric on flow. We reach this conclusion by modeling
anisotropic ice flow using a full Stokes model, where fabric
is described in terms of time-dependent second- and fourth-
order orientation tensors. The fabric development is based
on a strain-induced evolutionary equation. The anisotropic
ice viscosity is, in addition, nonlinear, i.e., dependent on the
state of stress.
[73] The calculated fabric distribution is realistic, with

isotropic ice close to the surface, vertical girdle fabric
further below, and vertically oriented single-maximum
fabric toward the bed. Our confidence in the model is
strengthened by the fact that the model produces a number
of observed qualitative features in internal layering and
surface topography that have hitherto been unexplained.
These features include: concave surface undulations to both
sides of the ice divide, synclines in internal layering to both
sides of the well-known Raymond bumps, and double-
peaked Raymond bumps in the vicinity of the bed. None
of these feature can be explained using the standard power
law ice rheology currently commonly used in glaciology.
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Caution must be exercised in any quantitative modeling of
ice divides that ignores the effect of fabric on flow.

Appendix A: Galerkin Approximation of the
Stokes System for an Orthotropic Material
Under Plane Strain

[74] Assuming plane strain conditions (Dyy =Dxy =Dyz = 0)
we find that for the rheology described by equation (4), the
flow law can be written in the form
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where hijkl (i, j, k, l = {x, y, z}) is the viscosity tensor in the
reference frame (x, y, z). In Appendix C, we show how the
viscosity tensor can be expressed in terms of rheological
parameters and the two orientation tensors.
[75] The Galerkin approximation with velocity pressure

mixed formulation of the Stokes system (equations (1a) and
(1b)) [e.g., Quarteroni and Valli, 1994, chapter 9] leads to
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where Ni and Ni
p are the shape functions and Ui, Wi and Pi

are the nodal values of velocity and pressure, respectively,
and
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Here W and G represent the numerical domain and its
boundary. The numerical scheme uses quadrilateral elements
with isoparametric mapping and 2 � 2 Gaussian integration.
Within each element, the velocities vary bilinearly and the
pressure is constant. Details are discussed by Martı́n [2003]
and Martı́n et al. [2003].

Appendix B: Semi-Lagrangian Discretization of
the Fabric Evolution

[76] The fabric evolution equation is solved by means of
a two-dimensional semi-Lagrangian method using a two–
time level scheme [Staniforth and Côté, 1991]. The semi-
Lagrangian approximation can be written as
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where the subscripts ‘‘+’’, ‘‘1
2
’’ and ‘‘0’’ denote evaluation at

arrival point (x, t + Dt), the midpoint (x, t + Dt
2
) and the

departure point (x, t), respectively. aD is the distance the
fluid particle is displaced in time Dt,

aD ¼ Dtu* x�aD

2
; t þDt

2

	 


u* x; t þDt

2

	 

¼ 3

2
u x; tð Þ � 1

2
u x; t �Dtð Þ:

ðB2Þ

[77] This equation is solved iteratively. a(2), a(4), W and
D are evaluated between mesh points, using a bicubic spatial
interpolation.

Appendix C: Inversion of the Orthotropic
Rheology

[78] The orthotropic ice flow law employed in this paper
(equation (4)) expresses the strain rate tensor as a function of
the stress tensor. However, the Galerkin approximation of
the Stokes system, described in Appendix A (equation (A1)),
requires the inversion of the rheology, i.e., the stress tensor to
be expressed in terms of the strain rate tensor.
[79] For simplicity, we invert the flow law in the local

orthotropic frame (e1, e2, e3); that is, the coordinate system
where the second-order orientation tensor (a(2)) is diagonal.
Once the inversion of the rheology is performed, we
transform the viscosity from the local orthotropic frame to
the reference frame.
[80] It can be seen in expression (6) that if we assume

plane strain in the y direction Daxy
(2)/Dt = Dayz

(2)/Dt = 0 the
only evolving nondiagonal component of a(2) is axz

(2). Hence,
we can express the transformation between the reference
frame (x, y, z) and the local orthotropic frame (e1, e2, e3) as a
rotation in the plane XZ of angle d and we can assume that
the direction y is coincident with e2.
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[81] It follows that in the orthotropic frame, the rheology
(equation (4)) can be expressed as

D11

D22

D33

D12

D13

D23

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ y0

y1111 y1122 y1133 0 0 0

y1122 y2222 y2233 0 0 0

y1133 y2233 y3333 0 0 0

0 0 0 y1212 0 0

0 0 0 0 y1313 0

0 0 0 0 0 y2323

0
BBBBBBBBB@

1
CCCCCCCCCA

S11

S22

S33

S12

S13

S23

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ðC1Þ

where y is known as the fluidity tensor with components,

y0 ¼ 1

2h0

y1111 ¼ 1

9
4a1 þ a2 þ a3 þ 8a4 þ 2a5 þ 2a6ð Þ � yt

y2222 ¼ 1

9
a1 þ 4a2 þ a3 þ 2a4 þ 8a5 þ 2a6ð Þ � yt

y3333 ¼ 1

9
a1 þ a2 þ 4a3 þ 2a4 þ 2a5 þ 8a6ð Þ � yt

y1122 ¼ 1

9
�2a1 � 2a2 þ a3 � 4a4 � 4a5 þ 2a6ð Þ

y1133 ¼ 1

9
�2a1 þ a2 � 2a3 � 4a4 þ 2a5 � 4a6ð Þ

y2233 ¼ 1

9
a1 � 2a2 � 2a3 þ 2a4 � 4a5 � 4a6ð Þ

y1122 ¼ a4 þ a5

y1123 ¼ a4 þ a6

y2233 ¼ a5 þ a6:

And

a1 ¼ l1 a
2ð Þ
11 � 4a

4ð Þ
1122 � 4a

4ð Þ
1133 þ 3a

4ð Þ
2233

� �

a2 ¼ l1 a
2ð Þ
22 � 4a

4ð Þ
2233 � 4a

4ð Þ
1122 þ 3a

4ð Þ
1133

� �

a3 ¼ l1 a
2ð Þ
33 � 4a

4ð Þ
1133 � 4a

4ð Þ
2233 þ 3a

4ð Þ
1122

� �

a4 ¼ 1

2
b þ l1 a

4ð Þ
1122 þ a

4ð Þ
1133 � a

4ð Þ
2233

� �
þ l2a

2ð Þ
11

a5 ¼ 1

2
b þ l1 a

4ð Þ
2233 þ a

4ð Þ
1122 � a

4ð Þ
1133

� �
þ l2a

2ð Þ
22

a6 ¼ 1

2
b þ l1 a

4ð Þ
1133 þ a

4ð Þ
2233 � a

4ð Þ
1122

� �
þ l2a

2ð Þ
33 ;

where l1 = 2
� gþ2
4g�1b � 1

�
, l2 = (1 � b) and yt is an arbitrary

constant. Some algebraic manipulation is needed to ensure
that in equation (C1) the trace of both deviatoric stress and
strain rate tensors is null. If yt is null the fluidity matrix has
no inverse.
[82] When we assume plane strain along the e2 direction

D21 = D22 = D23 = 0 and equation (C1) can be inverted as

S11

S22

S33

S13

0
BB@

1
CCA ¼ 2h0

h1111 0 0

h2211 �h2211 0

0 h3333 0

0 0 h1313

0
BB@

1
CCA

D11

D33

D13

0
@

1
A; ðC2Þ

where

h1111 ¼ 1

3

y1111 þ 3y1133 þ 2y3333

y1111y3333 � y2
1133

h3333 ¼ 1

3

2y1111 þ 3y1133 þ y3333

y1111y3333 � y2
1133

h2211 ¼ 1

6

y1111 � y3333

y1111y3333 � y2
1133

h1313 ¼ 1

y1313

:

[83] The components of the viscosity tensor h in the
reference frame, can now be calculated from the viscosity
tensor in the local orthotropic frame through a simple
rotation by the angle d in the XZ plane.

hxxxx ¼ cos4 d h1111 þ 4 sin2 d cos2 d h1313 þ sin4 d h3333

hzzzz ¼ sin4 d h1111 þ 4 sin2 d cos2 d h1313 þ cos4 d h3333

hxzxz ¼ cos2 d sin2 d h1111 þ h3333ð Þ þ 1

2
1þ cos 4dð Þ h1313

hxxzz ¼ cos2 d sin2 d h1111 � 4 h1313 þ h3333ð Þ

hzzxx ¼ cos2 d sin2 d h1111 � 4 h1313 þ h3333ð Þ

hxxxz ¼ 1

2
sin 2d cos2 d h1111 � 2 cos 2d h1313 � sin2 d h3333

� �

hxzxx ¼ 1

2
sin 2d cos2 d h1111 � 2 cos 2d h1313 � sin2 d h3333

� �

hzzxz ¼ 1

2
sin 2d sin2 d h1111 þ 2 cos 2d h1313 � cos2 d h3333

� �

hxzzz ¼ 1

2
sin 2d sin2 d h1111 þ 2 cos 2d h1313 � cos2 d h3333

� �

hyyxx ¼ cos2 d h2211

hyyzz ¼ sin2 d h2211

hyyxz ¼ 1

2
sin 2d h2211: ðC3Þ

ðC3Þ
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thesis, Escuela Tec. Super. de Ing. de Telecomun., Univ. Politec. de
Madrid, Madrid, Spain.

Martı́n, C., F. Navarro, J. Otero, M. L. Cuadrado, and M. I. Corcuera
(2003), Three-dimensional modelling of the dynamics of Johnsons
Glacier (Livingston Island, Antarctica), Ann. Glaciol., 39, 1–8.

Martı́n, C., R. C. A. Hindmarsh, and F. J. Navarro (2006), Dating ice flow
change near the flow divide at Roosevelt Island, Antarctica, by using a
thermomechanical model to predict radar stratigraphy, J. Geophys. Res.,
111, F01011, doi:10.1029/2005JF000326.

Martı́n, C., R. C. A. Hindmarsh, and F. J. Navarro (2009), On the effects
of divide migration, along-ridge flow, and basal sliding on isochrones
near an ice divide, J. Geophys. Res., 114, F02006, doi:10.1029/
2008JF001025.

Meyssonnier, J., and A. Philip (1996), A model for the tangent viscous
behaviour of anisotropic polar ice, Ann. Glaciol., 23, 253–261.

Nereson, N. A., and C. F. Raymond (2000), The accumulation pattern
across Siple Dome, West Antarctica, inferred from radar-detected internal
layers, J. Glaciol., 46(152), 75–87.

Nereson, N. A., and C. F. Raymond (2001), The elevation history of ice
streams and the spatial accumulation pattern along the Siple Coast West
Antarctica inferred from ground-based radar data from three inter-ice-
stream ridges, J. Glaciol., 47(157), 303–313.

Nereson, N. A., and E. D. Waddington (2002), Isochrones and isotherms
beneath migrating ice divides, J. Glaciol., 48(160), 95–108.

Nereson, N. A., R. C. A. Hindmarsh, and C. F. Raymond (1998a), Sensi-
tivity of the divide position at Siple Dome, West Antarctica, to boundary
forcing, Ann. Glaciol., 27, 207–214.

Nereson, N. A., C. F. Raymond, E. D. Waddington, and R. W. Jacobel
(1998b), Migration of the Siple Dome ice divide, West Antarctica,
J. Glaciol., 44(148), 643–652.

Parrenin, F., and R. C. A. Hindmarsh (2007), Influence of a non-uniform
velocity field on isochrone geometry along a steady flowline of an ice
sheet, J. Glaciol., 53(183), 612–622.

Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., Pergamon,
Oxford, U. K.

Pettit, E. (2003), Unique dynamic behaviors of ice divides: Siple Dome and
the rheological properties of ice, Ph.D. thesis, Univ. of Washington,
Seattle.

Pettit, E. C., H. P. Jacobson, and E. D. Waddington (2003), Effect of basal
sliding on isochrones and flow near an ice divide, Ann. Glaciol., 37,
370–376.

Pettit, E. C., T. Thorsteinsson, H. P. Jacobson, and E. D. Waddington
(2007), The role of crystal fabric in flow near an ice divide, J. Glaciol.,
53(181), 277–288.

Quarteroni, A., and A. Valli (1994), Numerical Approximation of Partial
Differential Equations, 1st ed., Springer, Berlin.

Raymond, C. F. (1983), Deformation in the vicinity of ice divides,
J. Glaciol., 29(103), 357–373.

Robin, G. de Q. (1955), Ice movement and temperature distribution in
glaciers and ice sheets, J. Glaciol., 2(18), 523–532.
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