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ABSTRACT 

In a context of climate change peatlands may switch from a sink to a source of carbon (C). 

The induced positive feedbacks are closely linked to C dynamics, and thus to the fate of 

organic matter (OM) in the underlying peat. Our aims were to determine how moisture 

conditions in a Sphagnum-dominated peatland affect the dynamics of diagenetic sensitive OM 

which is thought to be the most reactive to warming effects. The approach was based on the 

identification of combined bulk and molecular bioindicators of OM sources and decay of peat 

profiles (up to 50 cm in depth) from two moisture conditions of the Le Forbonnet peatland 

(Jura Mountains, France). The (xylose+arabinose)/(galactose+rhamnose+mannose) ratio 

derived from the analysis of neutral monosaccharides was used to obtain indications on the 

botanical origin of the peat and tended to indicate a greater contribution of Cyperaceae in the 

deepest parts of the peat. Most bioindicators showed that OM decay increased with depth and 

was higher in the driest conditions. In these conditions, decay was shown by a loss of 

diagenetic sensitive oxygen-rich OM, probably leached by water table fluctuations. Decay 

intensity was also shown by the high ribose and lyxose contents at the peat surface, where 

microscopic observations also revealed relatively large quantities of fungal hyphae. The 

sugars could have arisen from microbial synthesis, primarily protozoan and fungal activity. 

These results suggest that water level changes preferentially impact biochemical changes in 

diagenetic sensitive OM, believed to be sensitive to drought events. 

 

ABBREVATIONS 

 

AOM: Amorphous organic matter 

Ar: Arabinose 

C: Carbon 

Ga: Galactose 

HC: Hydrocarbons 

HI: Hydrogen index 

Ma: Mannose 

OI: Oxygen index 

OM: Organic matter 



PPI: Pyrophosphate index 

Rh: Rhamnose 

TOC: Total organic content 

Xy: Xylose 

 

 



INTRODUCTION 

 

Peatlands act as carbon (C) sinks as a result of cool and anoxic conditions favourable to 

reduced rates of decay (Clymo 1983; Moore & Knowles 1990). Northern hemisphere 

peatlands contain 1/3 of the world’s soil C stock (Gorham 1991) in an area accounting for 

only 3-5% of total terrestrial surface (Maltby & Immirzi 1993). Sphagnum-dominated 

peatlands are primarily situated in northern and subarctic zones where climate changes are 

expected to be strongly marked (Gore 1983; Bridgham et al. 2001; Houghton et al. 2001). 

These changes would impact C sequestration and change peatlands into a net source of C 

(Waddington & Roulet 1996; Bubier et al. 1999; Dorrepaal et al. 2009) providing positive 

feedback (Kirschbaüm 1995). C sequestration in peatlands is closely linked with spatial 

variability in their habitats due to different wetness conditions (Belyea & Malmer 2004). The 

high C pool in peatlands is mainly due to high water levels and consequent anoxia. As such, 

the sequestered organic matter (OM) in peatlands is labile, i.e. made of biochemically 

unstable organic compounds, and sensitive to changes in environnemental conditions. Many 

studies have shown the impact of wetness conditions on gas exchanges (e.g., Waddington & 

Roulet 1996; Christensen et al. 2000; Heikkinen et al. 2002; Strack et al. 2006, Bortoluzzi et 

al. 2006), primary production (e.g., Pedersen 1975; Gerdol 1995; Gunnarsson 2005) or C 

losses due to microbial respiration and leaching of water-soluble compounds (e.g., Johnson & 

Damman 1991; Hogg et al. 1994; Belyea 1996). However, only a few studies have dealt with 

the in situ dynamics of peat decomposition and have described the fate of labile OM in early 

decay phases, particularly in ombrotrophic peatlands. In these ecosystems, the fate of OM has 

been studied primarily by using molecular indicators, e.g. carbohydrates, as they have been 

identified as a major OM pool in the studied peats (Comont et al. 2006; Jia et al. 2008; 

Laggoun-Défarge et al. 2008). The amounts and the distributions of carbohydrates in peats, 

soils and sediments have been used to identify specific signatures of phyto-inheritance and in 

situ microbial synthesis (Hamilton & Hedges 1988; Moers et al. 1990). Thus, Comont et al. 

(2006) combined bulk and molecular indicators in a cut-over peatland to determine plant 

source indicators such as xylose and arabinose for Cyperaceae inputs, and galactose, 

rhamnose and mannose for moss inputs. Other sugars such as lyxose and allose were also 

quantified but their origins remained unclear. These authors also attributed ribose and fucose 

to a likely microbial synthesis whereas Jia et al. (2008) indicated that fucose could be a 

potential indicator of Sphagnum-derived OM. Bulk organic geochemical analyses also proved 

to be efficient in revealing both the botanical origin of the OM and the degradation processes 



that these precursors underwent, particularly in peat horizons. For example, light microscopy 

observations and counting have been successfully used on whole peats to describe the sources 

of plant-derived tissues as well as the status of decomposition in different horizons (Laggoun-

Defarge et al. 1999; Bourdon et al. 2000; Comont et al. 2006). Another bulk measure often 

used as a classification tool in peatlands is pyrophosphate index (PPI) (Kaila 1956; Clymo 

1983). PPI is a method allowing humified OM to be semi-quantitatively estimated (Gobat et 

al. 1986). Schnitzer (1967) showed that it partially reflected the amounts of humified 

compounds as it was correlated only with fulvic acids. Rock-Eval pyrolysis is a commonly 

used technique developed to diagnose oil-producing hydrocarbon source rocks by measuring 

the amounts of hydrocarbonaceous and oxygenated compounds cracked during the pyrolysis 

cycle and by determining the temperature of maximum hydrocarbon cracking (Espitalié et al., 

1985a, b; Lafargue et al., 1998). The technique was further adapted to assess the biochemical 

quality of soil OM (Di-Giovanni et al. 1998; Disnar et al. 2003; Sebag et al. 2006). Disnar et 

al (2003) showed that Rock-Eval parameters can reveal the chemical evolution of the OM 

during the process of humification. In the present study, two parameters (R400 and R330) 

were determined through decomposition of the pyrolysis S2 peak recorded during 

programmed pyrolysis in an inert atmosphere (N2). These parameters were particularly used 

to assess qualitative changes that affect OM, chiefly its thermolability, from two hydrological 

sites and with increasing humification in the peat profiles of the peatland. 

 

The aim of the present study was to assess how moisture conditions affect the dynamics of 

peat OM, especially the labile component as it is the most sensitive to changes in 

environmental conditions. We first determined the impact of botanical variability on 

biochemical OM signatures to be able to subsequently interpret their variations in terms of 

differential decay of OM. In addition to carbohydrate amounts and distribution, we used bulk 

organic geochemical analyses (PyroPhosphate Index, optical microscopy and Rock Eval 

pyrolysis) to determine the biochemical and morphological characteristics of peat profiles (50 

cm long) at sites at different hydrological conditions (WET and DRY) from Le Forbonnet 

peatland in the French Jura Mountains.  

 

MATERIAL AND METHODS 

 

Study site and sampling 

 



The Forbonnet peatland (46°49’35” N; 6°10’20” E, altitude 836 m a.s.l.) is an undisturbed 

ombrotrophic Sphagnum-dominated mire situated in eastern France, in the French Jura 

mountains, near Frasne (Doubs Department; Figure 1). The mean annual precipitation and 

temperature are 1300 to 1500 mm and 7-8°C respectively. The peatland is protected by the 

EU Habitat Directive of Natura 2000 and has been classified as a Regional Natural Reserve 

for more than 20 years. 

The moss cover dominated by Sphagnum fallax, S. magellanicum and S. warnstorfii is about 

85-95% while the cover of herbaceous plants is about 60%. Vascular plants are primarily 

represented by Eriophorum vaginatum, Scheuchzeria palustris, Andromeda polifolia, 

Vaccinium oxycoccos and Carex limosa. Among shrubs, Calluna vulgaris is also found 

(Bailly 2005). Two sites in the peatland were selected in relation to their hydrology and 

functional groups of plants: (i) a transitional poor fen site named “WET” characterised by the 

lack of S. magellanicum and small quantities of E. vaginatum, (ii) an open bog site named 

“DRY” with mixed vegetation (Sphagnum fallax, S. magellanicum, E. vaginatum and 

Vaccinium oxycoccus) (Buttler, unpublished data). Existing data do not allow us to assess the 

annual mean water table level at these two sites. The distinction between these sites was 

therefore based on vegetation composition as it is largely determined by water level (Wheeler 

and Proctor, 2000; Økland et al., 2001). S. fallax which is considered as a hollow and lawn 

species dominates the WET site, whereas S. magellanicum which is particularly characteristic 

of hummocks is present only in the DRY site (Pedersen 1975; Gerdol 1995; Francez 2000). In 

addition, the so-called DRY site is characterised by the abundance of E. vaginatum species 

and associated hummocks where the water level is lower than in hollows (Johnson & 

Damman 1991).  

Three replicates of 13 cm diameter peat cores were extracted in June 2008 from each of the 

two sites for a total of 6 cores (D1, D2, D4 in the DRY site and W7, W11, W12 in the WET 

site). The fifty cm long cores were cut into 2.5 cm slices that were subsampled for various 

analyses. One subsample was dried and grinded and then stored at 4° until used for chemical 

analyses. Another subsample was kept wet for micromorphological analysis. Cores D1 and 

W12, located at the extremity of the DRY and WET sites respectively, were exhaustively 

analysed. In contrast in cores D2, D4, W7 and W11 the analyses were focused on the three 

successive upper levels (2.5 to 10 cm depth) and only selected samples at depth. Sugar 

analyses were performed only on two cores, D1 and W12 with a similar sampling as for D2, 

D4, W7 and W11. 

 



Methods 

TOC analysis 

Carbon analysis was determined by combustion of dried and crushed samples at 1100°C, 

using a CNS-2000 LECO apparatus. Because of the absence of carbonates, total carbon was 

assumed to be Total Organic Carbon (TOC).  

 

Micro-morphological analysis 

Light microscopy observations enabled organic components (plant organ-derived tissues, 

amorphous material, microbial secretions and micro-organisms) to be identified and 

quantified. Wet bulk peat samples were mounted as smear slides and examined at 20 and 50X 

magnifications. The surfaces covered by the primary organic micro-remains were estimated 

with a reticulated eyepiece. A total of 3000 to 5000 items per sample were counted to 

calculate relative frequencies with an estimated error of about 10% (Noël 2001).  

 

Rock-Eval pyrolysis 

These analyses were carried out on ca. 30 mg of powdered dry peat with a Rock-Eval® 

"Turbo" 6 pyrolyser (Vinci Technologies). The full description of the method can be found in 

Espitalié et al. (1985a, b) and Lafargue et al. (1998). Briefly, the samples first undergo 

programmed pyrolysis (under N2) from 200 to 650°C at a rate of 30°C min-1, then the residue 

of pyrolysis is oxidized under air in a second oven. The amounts of hydrocarbons released at 

the start and during the pyrolysis phase [S1 and S2, respectively; in mg hydrocarbons (HC) g-

1] are quantified thanks to a flame ionisation detector; the CO and the CO2 released during the 

pyrolysis and oxidation phases (S3CO/S3CO2 and S4CO/S4CO2, respectively) are quantified 

by online infrared detectors. The Rock-Eval parameters used for this study are the following: 

(i) Total Organic Carbon (TOC, wt %) accounts for the quantity of organic carbon present in 

the sample and is calculated by weighed addition of the amounts of all the effluents of 

pyrolysis and oxidation (S1, S2, S3CO…; see above); (ii) the Hydrogen Index (HI, in mg 

HC.g-1 TOC) is the amount of hydrocarbon products released during pyrolysis (S2), 

normalized to TOC; (iii) the Oxygen Index (OI RE6, in mg O2.g-1 TOC) is similarly 

calculated from the amounts of CO2 and CO released during pyrolysis (S3CO2 and S3CO), 

normalized to TOC. In addition, we also used the R400 parameter which represents the part of 

the S2 signal produced below 400°C (Disnar et al., 2003; Figure 2) and we similarly 

introduced the R330 parameter which corresponds to the part of the S2 signal produced below 

330°C (Figure 2). According to previous work (Disnar et al., 2003; Sebag et al., 2006) R330 



and R400 should roughly express the proportions of the most thermolabile compounds and of 

the biopolymers (namely cellulose and lignin; Disnar et al. 2008), 

 

Figure 2 

 

Pyrophosphate index 

The pyrophosphate index was determined by the Kaila method (1956) and calculated 

following Gobat et al. (1986). Humic compounds were extracted from peat (0.5g) with 0.025 

M sodium pyrophosphate overnight. The mixtures were filtered (Whatman, 2V) and the 

filtrates were diluted to 250 ml with deionised water. The absorbance of the solution was 

measured at 550 nm with a Hitachi U1100 spectrophotometer. The pyrophosphate index was 

obtained by multiplying the measured absorbance by 100. 

 

Carbohydrate analysis 

The detailed method has been described elsewhere (Comont et al., 2006). The analysis is 

carried out in two independent steps to release hemicellulosic and total (i.e. hemicellulosic 

and cellulosic) sugars, respectively. Both steps comprise polysaccharide hydrolysis with 

dilute acid solution, but only after previous soaking with concentrated acid for total sugar 

analysis. Thus, the operating procedure for total sugar analysis can be summarized as follows: 

1 ml of 24 N H2SO4 was added to 20 to 30 mg of dry peat in a Pyrex ® tube. After 16 h at 

room temperature, the samples were diluted to 1.2 M H2SO4. The tubes were closed tightly 

under vacuum and heated at 100°C for 4 h. After cooling, deoxy-6-glucose (0.4 mg.ml-1 in 

water) was added as internal standard (Wicks et al., 1991). The samples were subsequently 

neutralised with CaCO3. The precipitate was removed by centrifugation and the supernatant 

was evaporated to dryness. The sugars were then dissolved in CH3OH and the solution was 

purified by centrifugation. After transferring the solution to another vessel, the solvent was 

evaporated under vacuum. The sugars were dissolved in pyridine containing 1wt% LiClO4 

and left 16h at 60°C for anomer equilibration (after Bethge et al. 1996), then they were 

silylated (Sylon BFT, Supelco) and analysed using a Perkin–Elmer gas chromatograph fitted 

with a 25 m × 0.25 mm i.d. CPSil5CB column (0.25 µm film thickness) and a flame 

ionization detector. The oven temperature was raised from 60 to 120°C at 30°C min-1, 

maintained there for 1 min, and raised to 240°C at 3°C.min-1 and finally at 20°C.min-1 to 

310°C, at which it was maintained for 10 min. The injector split was off at the start and turned 

on after 2 min. The injector was maintained at 240°C and the detector at 300°C. A mixture of 



ten monosaccharides (ribose, arabinose, xylose, rhamnose, fucose, glucose, mannose and 

galactose, lyxose and allose) was used as external standard for compound identification 

through peak retention times and for individual response coefficient determination. Replicate 

analyses gave an analytical precision between 10 to 15 %. 

 
RESULTS 

Carbon contents 

Total organic carbon contents are high (42.4 to 48.3%; Figure 3a) showing no significant 

dilution by inorganic inputs (Bourdon et al. 2000; Laggoun-Défarge et al. 2008). TOC 

contents systematically increased with increasing depth (42.5 to 48.2%). Overall, the TOC in 

the DRY situation was higher than WET TOC. It is to be noted that this difference was 

observed in the first 25 cm, where DRY TOC contents were in the range of 45.1 to 45.7%, 

compared to WET values of 42.5 to 43.5% (Figure 3a). Below 25 cm depth, the difference 

between DRY and WET is less marked (46.7 to 48.2% vs. 44.3 to 47.0% respectively).  

 

Figure 3 

 

Micro-morphological characteristics 

The observed organic micro-remains were present as (i) well-preserved tissues (11 to 89%; 

Figure 4a) and structureless tissues (7 to 56%) derived from vascular plants and mosses, (ii) 

mucilage (up to 30%; Figure 4b) partly derived from in situ microbial syntheses by bacteria, 

fungi and/or plant roots (Laggoun-Défarge et al. 1999). Three other minor components were 

also present as (i) amorphous OM (0 to 7%; Figure 4c), (ii) tangled masses of melanised 

fungal hyphae (0.2 to 3.6%; Figure 4d) often associated with decayed plants and amorphous 

OM and (iii) micro-organisms (0 to 1.4%) represented by algae, testate amoebae and diatoms. 

In both WET and DRY sites, the relative abundance of well-preserved tissues decreased with 

increasing depth (from 89 to 32% in WET and 66 to 11% in DRY, Figure 4a) while mucilage 

contents increased (from 1 to 19% in WET and 7 to 30% in DRY; Figure 4b). These features 

document typical diagenetic OM changes with increasing depth. These two major families of 

components exhibited contrasting proportions between WET and DRY sites, the well-

preserved tissues being more abundant in the WET site while mucilage was lower and even 

absent at the peat surface. 

The percentages of amorphous organic matter (AOM) remained relatively constant with depth 

(0 to 7%; Figure 4c). There was no marked difference between WET and DRY sites, except 



that AOM was absent in the most superficial levels in the WET condition. The relative 

abundance of mycelial hyphae varied irregularly with depth (Figure 4d) but in globally lower 

proportions in the WET than in the DRY conditions, especially in the first 15 cm (0.2 to 

0.8% vs. 1.2 to 3.6%).  

 

Figure 4 

 

Rock-Eval Pyrolysis parameters 

HI values were relatively high throughout the series, i.e. between 370 and 454 mg HC.g-1 

TOC (Figure 3c), as expected for a material believed to have arisen primarily from terrestrial 

plants (Espitalié et al. 1985a, b). Even so, the behaviour of this parameter differed between 

WET and DRY conditions. In the WET site, there was little HI change with depth (400 to 410 

mg HC.g-1 TOC) while in DRY it decreased from 427 to 386 HC.g-1 TOC at 25 cm, and then 

remained stable in the deepest levels. The behaviour of the OI also differed with depth. In the 

WET conditions, it decreased considerably from 263 to 186 mg O2.g-1 TOC (Figure 3d), 

whereas the decrease in DRY conditions was lower (193 to 169 mg O2.g-1 TOC) and occurred 

from a depth of 25 cm (Figure 3d). R400 and R330 ratios showed distinctive trends with 

depth in the DRY and WET sites, particularly in the ca. 30 cm uppermost peat. As for the OI 

parameter, depth-related changes in these ratios are more pronounced in the WET site, where 

R400 decreased from 0.71 to 0.62 (Figure 3e), and R330 from 0.37 to 0.28 (Figure 3f). 

However, in the DRY site, R400 was constant in the uppermost ca. 30 cm peat (ca. 0.64) and 

R330 increased only slightly (0.27 to 0.30). Below that depth, both R400 and R330 ratios 

decreased (0.64 to 0.59 and 0.32 to 0.25 respectively) and approached the same values as in 

the WET site. 

 

Pyrophosphate index 

The pyrophosphate index (PPI) was more or less constant in the first 30 cm at both WET and 

DRY sites (Figure 3b) but increased below that depth from 6.0 to 8.0 in the WET site and 

from 8.4 to 12.0 in the DRY one. The PPI in WET was lower than in DRY, the difference 

being evident especially in the first 30 cm (5.8 to 5.9 in WET vs. 8.3 to 9.3 in DRY).  

 

Carbohydrate contents and distributions 

Quantitative data on sugars and their monomers (Table 1, Figure 5) show that total sugar 

contents varied between the two conditions studied. In the WET conditions, total sugar 



contents decreased with depth (381.8 to 284.7 mg.g-1), while in DRY, they varied from 232.8 

to 395.4 mg.g-1 with no clear-cut trend along the profiles. Sugars comprise cellulose and 

hemicellulose monomers. Regardless of wetness conditions, cellulose sugars, largely 

dominated by glucose, changed concomitantly with total sugar contents (Figure 5), namely 

from 26.7 to 177.4 mg.g-1 and from 66.1 to 161.5 mg.g-1 in the WET and DRY sites, 

respectively (Table 1). Hemicellulose sugars varied little in the first ca. 30 cm of the analysed 

cores, their total concentration amounting to about 200 mg.g-1 in the first 30 cm, regardless of 

wetness conditions (Table 1). Below 30 cm depth, hemicellulose sugar contents tended to 

slightly decrease, especially in the DRY site (210.6 to 142.0 mg.g-1; Figure 5, Table 1). 

Changes in the levels of galactose, rhamnose and mannose paralleled those of total 

hemicellulose sugars (Figure 5). The WET and DRY sites could be differentiated by their 

arabinose contents and not by those of galactose, rhamnose and mannose. This distinction 

involved lower contents of arabinose at the WET than at the DRY site, particularly in the 

uppermost 25 cm peat layer (Table 1; Figure 5). Below 25 cm depth, the two sites could no 

longer be distinguished by these sugar contents (Figure 5). Xylose contents exhibited no 

particular different trends with depth and so could not be used to differentiate the WET from 

the DRY sites (Figure 5). 

 

Figure 5 

 

The ratio of (xylose + arabinose)/(galactose + rhamnose + mannose) increased with depth and 

was slightly lower in the WET than in the DRY site in superficial peat (Figure 5). The 

contents of hemicellulose glucose (Table 1), a ubiquitous monomer, decreased with depth, 

with no noticeable difference between the WET and DRY sites (Figure 5). 

The contents of fucose, allose, ribose, and lyxose were low (Table 1) especially when 

compared to the above-mentioned monomers. Fucose amounts varied little with depth except 

in the deepest layer where values reached their maximum (Figure 5). However, the contents 

of this compound were lower in the WET site than in the DRY one (Table 1). There were no 

depth-related changes of allose, lyxose and ribose. Ribose and lyxose enabled WET and DRY 

sites to be distinguished in the first 25-30 cm, since the amounts of these compounds were 

low in WET conditions whereas higher values were found at certain depths in the DRY 

situation (Table 1; Figure 5). Allose contents changed little with depth in both conditions 

(Figure 5), except at 2.5-5 cm and 30-32.5 cm in WET conditions where concentrations were 

2 to 3 times higher than in the DRY site. 



 

DISCUSSION  

 

Biochemical signatures of OM precursors  

 

One of the major difficulties with certain biochemical OM markers is that they are indicators 

of both plant sources and OM decay. To overcome this difficulty, it is advisable first to 

determine the impact of botanical variability on biochemical OM signatures to be able to 

subsequently interpret their variations in terms of differential decay of OM. 

The amounts of carbohydrates, and especially of hemicellulose sugars, are relatively high and 

almost constant in the first 25 or 30 cm in both DRY and WET situations, denoting high 

preservation of these biopolymers (Table 1). In a first approximation these compounds can 

therefore be considered as good botanical source indicators, provided that the original plants 

have distinctive hemicellulosic sugar compositions. Previous work has shown that 

Cyperaceae are rich in xylose (Wicks et al. 1991; Bourdon et al. 2000) as well as in arabinose 

(Moers et al. 1989, 1990; Comont et al. 2006). Conversely, galactose, mannose and rhamnose 

are adequate indicators of mosses, in particular Sphagnum spp. and Polytrichum spp. (Popper 

& Fry 2003; Comont et al. 2006). Accordingly, Comont et al. (2006) used the 

(Xy+Ar)/(Ga+Rh+Ma) ratio to reconstitute the respective parts played by these two major 

botanical sources in peat formation. The slight increase with depth in the 

(Xy+Ar)/(Ga+Rh+Ma) ratio in the profiles examined (Figure 5), indicates a greater 

contribution from vascular plants (i.e. Eriophorum spp) with increasing age. In fact, 

microscopic observations showed higher proportions of tissues from Cyperaceae, especially 

at profile depths where the contents of these sugars are the highest, namely at 25-27.5 cm and 

40-42.5 cm in the DRY situation and at 30-32.5 and 47.5 cm at the WET site (results not 

shown). These findings agree with and support the previous observations by Comont et al. 

(2006) reported above. Other possibilities that we discarded are that the changes in the 

considered ratio values with depth could rather reflect a preferential degradation of Sphagnum 

spp. and/or changes in environmental conditions. However, Sphagnum mosses are well-

known for their refractory character, this point being further discussed later, and moreover, 

peatland evolution involves a number of dynamic stages characterised by a specific water 

regime and specific plant communities. A fen is thus characterised by water supplied from the 

underlying water table and by the predominance of Cyperaceae spp. (Manneville et al. 1999; 

Payette & Rochefort 2001). Changes to a fen may occur up to the optimal stage of a bog. In 



the current state of understanding, the "Forbonnet" peatland is situated between a transitional 

fen and a raised bog with primarily an ombrotrophic supply with vegetation dominated by 

Sphagnum spp. communities. Changes in the (Xy+Ar)/(Ga+Rh+Ma) ratio with depth could 

thus reflect and document this typical change in environmental conditions. However, given 

the analytical errors (15%), the difference in the considered ratio value at both sites (DRY and 

WET) might not be really significant. It cannot therefore be assumed that there was a greater 

abundance of Cyperaceae in the DRY situation even if arabinose contents are significantly 

higher in the DRY than in the WET site (Figure 5). In turn, if the differences between both 

sites are not really discriminatory in terms of original plant input, they can be attributed with 

even greater confidence to OM decay and consequently to the impact of different 

environmental conditions between DRY and WET situations. 

 

OM decay in WET and DRY sites 

 

Micro-morphological observations show increasing transformation of plant tissues with depth 

(Figure 4). As already observed elsewhere (Bourdon et al., 2000) the decrease in the 

proportions of non-degraded plant tissues is counterbalanced by an increase in those of 

mucilage which is considered to be partly derived from in situ microbial syntheses (Laggoun-

Défarge et al. 1999). Although this depth-related trend is observed in both environmental 

conditions, OM degradation is lower in the WET than in the DRY site. This is evidenced by 

the overall higher proportions of well-preserved tissues and the lower percentages of mucilage 

in the WET site, and also by the presence of more abundant fungal hyphae in the DRY site, 

especially at 21, 36 and 44cm depth (Figure 4d). OM degradation is obviously faster in the 

upper 25 cm in the DRY site while it is much more progressive in the WET condition. 

However, except in the superficial levels where there is slightly more amorphous OM in the 

DRY than in the WET condition, this type of particulate material  (much more probably 

inherited from plant tissues than from other -e.g. microbial- sources; Laggoun-Défarge et al. 

1999), does not enable a distinction between the two sites in the investigated depth interval. 

Bourdon et al. (2000) reported the total loss of structure of ligno-cellulosic tissues of 

Cyperaceae with the concomitant formation of amorphous OM, preferentially in the 

superficial peat levels in a rather comparable way to what we observe here in the DRY 

situation. This and other results show that the destructuring of plant tissues depends on water 

table fluctuations: in DRY conditions, it occurs primarily in superficial peat while in WET 

conditions it affects tissues throughout the profiles analysed (Figure 4a). Furthermore and in 



contrast to the conclusions of Bourdon et al. (2000), our results show that the destructuring of 

plant tissues is not accompanied by an increase in AOM regardless of the environmental 

condition (Figure 4c). The amorphisation of inherited plant tissues is thus not a major 

discriminatory process of the early diagenesis affecting OM, even in the DRY condition in 

which degradation is greater especially when considering the relatively low proportions of 

well-preserved plant tissues all along the analysed peat section. 

TOC increases with depth particularly in the WET site (Figure 3a). In the absence of 

significant mineral matter contribution the downward TOC rise can only be explained by the 

progressive loss of other organic elements. As the HI remains relatively constant along the 

profiles, the major contributor to the TOC increase certainly arises from the loss of oxygen as 

expressed by decreasing OI values with increasing depth. OM decay would thus preferentially 

affect the most oxygenated compounds that would thus form the most diagenetic sensitive 

OM pool. The differences in TOC observed in the upper 25 cm between WET and DRY sites 

could thus be explained by a preferential loss of oxygen compounds in the DRY condition, 

presumably because of more pronounced fluctuations of the water table at this location. The 

greater loss of diagenetic sensitive OM in the DRY situation is also shown by the lower R400 

and R330 ratios in DRY compared to WET conditions (Figure 3d-e) particularly in the upper 

peat section (0-25 cm). Heat-vaporisable substances (R330) and the most thermolabile 

biopolymers (R400) are thus specifically affected during the earliest stages of diagenesis. 

There are few differences between both these parameters, most variations in the R400 signal 

being explained by changes in the proportions of compounds released below 330°C (and thus 

taken into account in the R330 parameter). Cellulose - which decomposes at around 350°C 

(Disnar & Trichet 1984; Disnar et al. 2003; Sebag et al. 2006) - is relatively unaffected by the 

early diagenesis processes in the WET condition in contrast to the DRY site where it 

undergoes more intense degradation. Nevertheless and in the present state of knowledge, it 

can be assumed that the most diagenetically sensitive OM fraction, released below 330°C, is 

made of biological macromolecules with low thermal and biological resistance, typical of 

fresh plant material (Disnar et al. 2003; Sebag et al., 2006). Consequently, a such organic 

component could be considered as a labile C pool. The progress of humification as expressed 

by the pyrophosphate index (PPI; Figure 3b) is the opposite of the behaviour of labile OM 

seen by R330. In addition to a clear distinction between both sites, the increase in the PPI with 

increasing depth shows greater humification at the DRY site.  

 

Carbohydrate dynamics in WET and DRY sites 



 

Recent peat OM is composed of more or less altered inherited biochemical compounds such 

as hemicellulose and cellulose, and additionally of products of in situ microbial syntheses, i.e. 

mainly exopolysaccharides. Depending on OM sources and degradation, the carbohydrate 

monomers exhibit distinctive composition patterns. In this work, we therefore used the 

abundance of individual monosaccharides to identify specific signatures of phyto-inheritance 

and to trace original plant contributions to the peat. In addition, relative changes in their 

proportions were investigated in order to assess in situ production by microbial syntheses. 

In full agreement with previous conclusions of Comont et al (2006), high total sugar contents 

(between 210 and 395 mg.g-1) show their overall preservation regardless of wetness situation. 

The slight decrease in total sugars with depth at the WET site reveals a constantly and slightly 

increasing degradation (Figure 5) consistently with results obtained with other bioindicators 

(see above). In the DRY conditions, this degradation is more chaotic: the substantial 

variations in cellulose sugars that are the structural sugars of plant tissues, explain most 

changes in total sugars that appear to be a prime target of botanical precursor degradation 

(Table 1). Accordingly, the latter degradation would seem to occur primarily by the loss of 

cellulose tissue structure. Again, this finding agrees with the results of Comont et al. (2006), 

although in our case, destructured cellulose does not apparently contribute to any enrichment 

in the hemicellulose carbohydrate pool, primarily hemicellulose glucose (Figure 5). 

Our results show the increase in the (Xy+Ar)/(Ga+Rh+Ma) ratio with depth, either because of 

changes in environmental conditions or by a preferential degradation of Sphagnum spp. The 

latter hypothesis is improbable since peat moss is considered to be inherently degradation-

resistant (Van Breemen 1995). In fact, aside from this intrinsic resistance, Sphagnum spp. 

induces local conditions unfavourable for the development of micro-organisms (Painter 

1991). In addition, many authors (Coulson & Butterfield 1978; Clymo & Hayward 1982; 

Chague-Goff & Fyfe 1996, Laggoun-Défarge et al 2008) have also shown that Sphagnum spp. 

is less degradable than Cyperaceae. Thus, as discussed above, increasing 

(Xy+Ar)/(Ga+Rh+Ma) ratio with depth could reflect typical changes in communities (from 

sedges in the bottom of the profile to Sphagnum spp in the top of the peat layer) induced by 

changes in environmental conditions. 

In addition to the monomers used as markers of botanical sources, four other sugars, namely 

ribose, fucose, allose and lyxose, were present, albeit in smaller proportions (Table 1). Ribose 

has previously been assumed to be a microbial marker in peat bogs (Comont et al. 2006). As a 

matter of fact ribose is a constituent of RNA and additionally of some molecules involved in 



metabolic activity. Comont et al. (2006) also assigned fucose to an enzymatic degradation 

product, but few studies have so far ascribed the presence of this sugar to microbial input. Jia 

et al. (2008) on the contrary showed that fucose is a constituent of peat moss, present at 

concentrations between 1.8 and 5.6 mg.g-1 depending on the Sphagnum precursor considered. 

In our work fucose varied within the same range of concentration (1.0 to 6.0 mg.g-1; Table 1), 

but independently of ribose variation. Therefore, its precise source remains unelucidated in 

the peat profiles studied. Ribose concentrations in the first 25 cm peat section analysed show 

that microbial activity is indeed higher in DRY conditions (Table 1) as assumed after the 

evidence of a greater degradation at this site (e.g. higher percentages of mycelial hyphae; 

Figure 4d). Allose and lyxose which are rarely investigated in peatlands were present in low 

and variable quantities in our samples (Figure 5; Table 1). Allose, whose origin remains 

unknown, was present in relatively high contents (ca. 5 mg.g-1) in only two peat levels of the 

WET site. According to Khoo et al. (1996) lyxose can be found in mycobacteria 

(actinomycetes). The analysis of phospholipid fatty acids (PLFAs) carried out on the same 

peat showed that PLFAs 18 :2ω6, common in many species of fungi, were detected only 

between 5 and 15 cm depth (Grasset, unpublished data) where lyxose concentrations were 

higher and microscopic observations revealed high proportions of fungal hyphae. Taken 

together, these results suggest that lyxose can be used as a marker of fungal activity. 

 

CONCLUSION 

 

Combined carbohydrate indicators and bulk organic matter (OM) analyses (Rock Eval 

pyrolysis, microscopy and pyrophosphate index) conducted on peat profiles of 50 cm depth 

from Le Forbonnet Sphagnum peatland allowed us to obtain information on changes in OM 

sources and their early diagenetic transformation in relation to different hydrological 

conditions. The main results are as summarised below: 

• Most bioindicators showed that OM decay increased with depth in both DRY and WET 

sites. 

• In comparison to DRY condition, OM degradation was lower in the WET site as evidenced 

by higher proportions of well-preserved tissues, and lower mucilage percentages and 

pyrophosphate index values. The progress of OM decay with depth was gradual in the 

WET condition while it appeared to be faster in the upper 25 cm peat layer of the DRY 

site probably as a consequence of more pronounced water table fluctuations in the latter 

site.  



• Rock Eval pyrolysis results showed that the most diagenetically sensitive OM fraction, 

released below 330°C, was made of biological macromolecules with low thermal and 

biological resistance, typical of fresh plant material OM. In addition, this OM fraction 

which was made of the most oxygenated compounds would preferentially be affected by 

decay processes. In the DRY site, decay was shown by a loss of this OM fraction which 

effectively appeared to be the most labile OM. 

• Carbohydrate dynamics in both DRY and WET sites allowed us to identify ribose and 

lyxose as markers of bacterial and/or fungal activities in peat bogs.  

Overall, our results suggest that water level changes preferentially impact biochemical 

changes of labile oxygenated-OM, believed to be the most sensitive to hydrological 

variations, particularly to drought events whose frequency may increase in the oncoming 

climate changes. It is therefore essential to biochemically characterise labile OM in order to 

provide suitable tools for accurate estimations of C losses in peatlands. 
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FIGURE CAPTIONS 

 

Figure 1. Location of the studied area within Le Forbonnet ombrotrophic bog (Jura 

Mountains, France). 

 

Figure 2. R330 and R400 parameters of Rock Eval pyrolysis. The whole pick (S2, expressed 

in mg of hydrocarbons per g of sample) corresponds to the quantity of hydrocarbons released 

during pyrolysis, The R400 ratio represents the part of the S2 signal produced below 400°C 

compared to the total S2 signal. The R330 ratio is the part of the S2 signal produced below 

330°C compared to the total S2 signal. 

 

Figure 3. Depth evolution of (a) Total Organic Carbon (TOC, %), (b) PyroPhosphate Index 

(PPI, arbitrary units), (c) Hydrogen Index (HI, mg HC.g-1TOC), (d) Oxygen Index (OI, mg 

O2.g-1TOC) and the two ratios calculated from Rock-Eval pyrolysis parameters (e) R400 and 

(f) R330 (see figure 2). 
Standard deviation n = 3 (WET: cores 7, 11 and 12; DRY: cores 1, 2 and 4). Without standard deviation n = 1 

(DRY: core 1; WET: core 12). 

 

Figure 4. Depth evolution of relative percentages of organic micro-remains of bulk peat using 

transmitted light microscopy: (a) Well-preserved tissues, (b) Mucilage, (c) Amorphous 

organic matter, (d) Fungal hyphae. 
Standard deviation n = 3 (WET: core 7, 11 and 12; DRY: core 1, 2 and 4). Without standard deviation n = 1 

(DRY: core 1; WET: core 12). 

  
 

Figure 5. Depth profiles of the amounts of total neutral, cellulose and hemicellulose sugars, 

and distribution of hemicellulose sugars (Hemicellulosic-glucose, xylose, arabinose, 

galactose, rhamnose, mannose, fucose, allose, ribose and lyxose) and the 

(Xy+Ar)/(Ga+Rh+Ma) ratio. All yields are expressed in mg.g-1 of dry peat. 



n = 1 (DRY: core 1; WET: core 12)  

 
 

 
 



 
 

 
 



 
 



 

TABLES 

 

Table 1. Depth changes of neutral sugar yields (mg.g-1 of sample) of bulk peat from WET and DRY conditions of Le Forbonnet peatland (DRY: 

core 1; WET: core 12) 
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WET 2,5-5   381,8 167,0 214,8 51,5 40,0 9,2 60,5 16,4 28,7 3,1 5,0 0,2 0,2 

 5-7,5   365,1 139,5 199,1 62,6 42,2 7,0 45,2 13,1 25,1 1,4 1,9 0,2 0,4 

 7,5-10   395,6 177,4 216,5 55,0 44,8 8,6 60,0 16,2 29,5 1,0 0,9 0,2 0,4 

 12,5-15   365,5 144,4 209,0 66,0 47,1 8,4 47,1 13,6 22,0 2,1 1,9 0,4 0,4 

 20-22,5   346,5 136,8 195,9 57,4 42,1 7,7 45,0 15,3 24,9 1,9 1,0 0,2 0,4 

 25-27,5   328,2 131,6 170,7 50,0 39,3 10,3 47,7 10,4 9,9 1,4 1,0 0,4 0,4 

 30-32,5   250,5 45,7 204,8 53,4 53,4 15,5 42,7 12,6 19,8 1,9 4,4 0,6 0,4 

 40-42,5   209,9 26,7 125,2 49,8 28,6 4,9 20,0 9,9 8,8 1,5 1,0 0,4 0,4 

 47,5-50   284,7 112,0 172,7 46,6 51,9 14,3 25,6 9,8 15,2 6,0 2,3 0,3 0,8 

               

DRY 2,5-5   319,7 123,7 196,0 57,6 41,4 14,1 47,5 13,1 17,3 3,0 1,0 0,5 0,5 

 5-7,5   340,9 129,9 211,0 60,4 45,6 15,4 46,2 14,4 22,6 3,1 1,9 0,5 0,9 

 7,5-10   329,1 114,1 215,0 71,2 45,9 14,4 43,2 13,5 20,8 2,7 1,8 0,9 0,5 

 12,5-15   395,4 161,5 233,9 72,2 54,6 18,3 47,5 13,7 21,3 3,5 2,0 0,5 0,4 

 20-22,5   262,8 66,1 196,7 64,9 41,9 12,6 36,6 13,5 19,9 4,2 2,1 0,4 0,6 

 25-27,5   310,7 100,1 210,6 53,3 57,0 15,0 45,8 15,0 19,6 1,9 1,9 0,8 0,4 

 30-32,5   370,1 154,7 215,4 55,2 50,7 12,9 49,8 15,9 26,4 3,0 0,9 0,4 0,2 

 40-42,5   275,7 118,0 157,6 38,2 46,1 16,7 29,4 7,8 14,6 2,9 1,0 0,4 0,5 



 47,5-50   232,8 90,8 142,0 41,0 31,8 11,8 23,7 7,6 18,5 5,0 1,8 0,5 0,5 
 
 


