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Abstract 

A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés 

nappe at Défilé du Lancône in Alpine Corsica. The fine-grained eclogitized pillow lava and inter-pillow matrix are 

extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive 

pillows and weakly foliated inter-pillow matrix consist of zoned idiomorphic Mg-poor (<0.8 wt% MgO) 

garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage 

glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in 

the massive pillows are Mn rich, and show a regular prograde growth-type zoning with a Mn-rich core. In the inter-

pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward 

the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several 

smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores 

of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within 

garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter-pillow 

matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter-pillow matrix 

contains cross-cutting omphacite-rich veinlets with zoned omphacite, Si-rich phengite (Si = 3.54 apfu), 

ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently 

without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter-pillow 

matrix and the cross-cutting veinlets indicate similar P–T conditions with maximum pressures of 1.9–2.6 GPa at 

temperatures of 335–420 °C. The inclusion suite found in garnet from the inter-pillow matrix apparently formed at 

pressures below 0.6–0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. 

Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold 

environment during exhumation, resulting in a hairpin-shaped P–T path. 

 

Introduction 

Lawsonite eclogite and blueschist are expected to be the dominant lithologies forming during subduction of 

oceanic crust and should therefore be fairly abundant within the Earth‟s crust and particularly common in 

exhumed subduction complexes. However, lawsonite eclogite is rare and has been described only from a few 



localities worldwide (e.g. McBirney et al., 1967; Watson & Morton, 1969; Krogh, 1982; Caron & Péquignot, 1986; 

Oh et al., 1991; Ghent et al., 1993, 2009; Shibakusa & Maekawa, 1997; Parkinson et al., 1998; Carswell et al., 

2003; Och et al., 2003; Usui et al., 2003, 2006; Altherr et al., 2004; Harlow et al., 2004; Mattinson et al., 2004; 

Tsujimori et al., 2005, 2006a,b; Davis & Whitney, 2006; Zhang & Meng, 2006; Zhang et al., 2007). Altherr et al. 

(2004) and Zack et al. (2004) discussed the paucity of known lawsonite eclogite complexes, which they related to 

the following two factors: (i) in „normal‟ subduction settings lawsonite eclogite enters the subduction factory and 

hence is usually not exhumed (Agard et al., 2002), and (ii) in accretionary wedges where the P–T path leaves the 

stability field of lawsonite eclogite due to heating, lawsonite eclogite is only preserved if the exhumation path is 

constrained to a narrow window where the terminal stability of lawsonite is not crossed. Whitney & Davis (2006) 

suggested, based on observations from Sivrihisar, Turkey, that pristine lawsonite eclogite pods may represent 

rocks that were not deformed during exhumation. Tsujimori et al. (2006c) have used changes in inclusion 

mineralogy within garnet to distinguish between two types of lawsonite eclogite: L-type and E-type. L-type 

lawsonite eclogite contains garnet porphyroblasts that grew only within the lawsonite stability field, whereas the E-

type lawsonite eclogite records maximum temperatures in the epidote stability field (Tsujimori et al., 2006c). 

This paper presents data on eclogitized pillow lava and inter-pillow matrix from a new lawsonite eclogite locality in 

Corsica – Défilé du Lancône – showing evidence of very cold subduction-related prograde metamorphism. 

Geological Setting 

The island of Corsica was isolated from the main European continent and from Italy during the opening of the 

Liguro-Provençal basin and the northern Tyrrhenian Sea, two back-arc basins of the central Mediterranean 

(Rehault et al., 1984; Sartori et al., 1987; Jolivet et al., 1998). Despite significant deformation during this 

Oligocene extensional episode (Jolivet et al., 1991), evidence for early Alpine evolution that started in the Late 

Cretaceous and ended in the Early Oligocene is well preserved (Mattauer et al., 1981; Durand Delga, 1984; 

Fournier et al., 1991; Caron, 1994; Brunet et al., 2000). The north-eastern part of Corsica (Figs 1 & 2) is mainly 

made up of “Schistes Lustrés”, which have undergone an Alpine HPLT metamorphism of glaucophane–lawsonite 

type (Caron & Péquignot, 1986). The Schistes Lustrés nappe complex consists of several thrust sheets folded 

and faulted in the late Cap Corse-Castagniccia antiform (Figs 1 & 2). Eclogite and blueschist occur within both the 

lower ophiolitic unit and within nappes originating from the Hercynian continental basement (Lahondere, 1988). 

The Schistes Lustrés nappe is thrust on a large sheet of metamorphosed continental basement, the Tenda 

massif, where intermediate pressure blueschist parageneses have been described (Tribuzio & Giacomini, 2002; 

Molli et al., 2006). All syn-high-pressure kinematic indicators show a top-to-the-west shear sense compatible with 

the underthrusting of the European basement below the oceanic nappes (Mattauer et al., 1981; Fournier et al., 

1991). The age of the HPLT metamorphism is controversial, but 40Ar/39Ar dating of phengite indicates c. 65 Ma for 

the eclogitic stage and a subsequent major blueschist event from ∼45 Ma until 37–35 Ma in the Cap Corse and 

Tenda massif (Brunet et al., 2000). Older ages, between 80 and 60 Ma, are associated with the eclogitic stage 

(Brunet et al., 2000). The overall history of HPLT metamorphism in Corsica is thus quite similar to that of the Alps 

both in terms of P–T conditions and timing (Agard et al., 2002). 
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The Balagne nappe is the uppermost tectonic unit of the metamorphic complex and also overlies the 

autochthonous Hercynian basement and its cover (Fig. 1). The nappe, which occurs as two klippen, comprises a 

large sheet of pillow lavas in the west (Balagne ophiolite) and a mélange correlated with the Ligurian domain 

south of St Florent. Both of these klippen lack HPLT metamorphic rocks. The Balagne nappe was emplaced 

during the Eocene as attested by the presence of olistoliths in the Eocene foreland basin occurring just below the 

basalts (Egal, 1992). 

Lawsonite eclogite has previously been described from Corsica in the Monte San Petrone Complex, further south 

in the Castagniccia antiform, within a meta-ophiolitic thrust-sheet consisting of serpentinized peridotite, Fe–Ti-rich 

and Mg–Cr-rich metagabbro, tholeiitic metabasalt and metasedimentary rocks including manganiferous metachert 

(Lardeaux et al., 1986). In the field, the Monte San Petrone eclogite occurs as lenses within a glaucophane schist 

matrix (Péquignot et al., 1984). The eclogite consists of almandine-rich garnet + omphacite + phengite + 

glaucophane+lawsonite+quartz+titanite + opaques (Caron et al., 1981; Caron & Péquignot, 1986; Lardeaux et al., 

1986), and a temperature of 400–450 °C at 1.0 GPa was estimated by Lardeaux et al. (1986). However, a 

recalculation of the garnet–clinopyroxene–phengite data of Caron & Péquignot (1986) using the garnet–

clinopyroxene thermometer (Ravna, 2000) and the garnet–clinopyroxene–phengite barometer (Ravna & Terry, 

2004) gives ∼390 °C at 2.05 GPa. 

In Défilé du Lancône (Fig. 1) blueschist of the Lower Ophiolitic unit outcrops (Fournier et al., 1991). This is the 

best-exposed section through the lower glaucophanite unit, which is composed of several sheets of massive 

basalt, pillow breccia and pillow lava. The main foliation is folded in a broad antiform, and a NE–SW-stretching 

lineation defined by the elongation of pillows and pillow fragments is observed throughout the section. Syn-high-

pressure kinematic indicators consistently indicate top-to-the-SW shear during the formation of the blueschist 

foliation that, until the discovery of the lawsonite eclogite, was thought to represent peak pressure conditions 

(Jolivet et al., 1991). At this locality, variably deformed pillow lava and hyaloclastite breccia consisting of 

glaucophane + epidote + titanite ± garnet ± lawsonite is common within a late foliation of 

chlorite + albite ± actinolite ± quartz (Fournier et al., 1991), who estimated a minimum P–T of 1.1 GPa and 400 °C 

for the glaucophane assemblage. 

Well-preserved pillow breccia and pillow lava, the latter locally with preserved drain-out cavities, occur along the 

riverbed in Défilé du Lancône, immediately downstream from the water reservoir (Fig. 3a). Massive green-

coloured fine-grained cores of the pillows are metamorphosed to low-temperature eclogite. The longest dimension 

of the eclogitized pillows ranges from 10 to 40 cm (Fig. 3a), and they consist of a green, very fine-grained 

massive rock with tiny euhedral garnet evenly distributed throughout. Locally, somewhat coarser grained, weakly 

foliated zones with aggregates of white mica form matrix material between pillows and pillow fragments. Seams of 

glaucophane-rich material are locally present, especially in the deformed pillows and meta-hyaloclastite, the latter 

occurring between the pillows and fragmented pillows and along pillow margins (Fig. 3b). 

 



Analytical Procedures 

Mineral analyses were performed by electron microprobe (Cameca SX-100) at Dionýz Štúr Institute of Geology in 

Bratislava. Analytical conditions for the EMPA were 15 kV accelerating voltage and 20 nA beam current, with a 

peak counting time of 20 s and a beam diameter of 2–10 μm. Raw counts were corrected using a PAP routine. 

Mineral standards (Si, Ca: wollastonite; Na: albite; K: orthoclase; Fe: fayalite, Mn: rhodonite), pure element oxides 

(TiO2, Al2O3, Cr2O3 and MgO) were used for calibration. Supplementary analyses were performed using a JEOL-

840 Scanning Electron Microscope with an EDAX unit at the Department of Medical Biology, University of 

Tromsø. The ZAF matrix correction and optimized SEC factors using various natural standards were used. 

Counting time was 200 s with an accelerating voltage of 20 kV and a sample current of 6 nA. Totals of anhydrous 

minerals are normalized to 100.0 wt%, amphibole to 98.0% and chlorite to 86.0 wt%. 

Garnet formulae are normalized to 12 oxygen and clinopyroxene to four cations, with Fe3+ calculated by charge 

balance (Droop, 1987). Phengite is normalized to 11 oxygen, chlorite to 28 oxygen, and lawsonite and titanite to 

eight and five oxygen respectively. Amphibole analyses were normalized according to the scheme recommended 

by the IMA (Leake et al., 1997), using the spreadsheet AMPH-CLASS (Esawi, 2004). Selected mineral analyses 

are given in Tables 1–3. 

 

Petrography and mineral chemistry 

The massive pillows generally consist of very fine-grained eclogite (Fig. 3). Of 10 samples, three representative 

samples were chosen for our investigation. Samples from massive pillows and the weakly foliated phengite-

bearing layers are described, and mineral analyses of principal minerals from three samples are presented. 

Samples COR-1 and COR-1′ are from a massive pillow fragment, whereas samples COR-4 are from the weakly 

foliated variety. Sample COR-1 is from the core and COR-1′ from the faint bluish margin of the same pillow 

fragment. 

Both the massive eclogite (Fig. 4a) and the foliated variety (Fig. 4b) have small idiomorphic garnet (5 modal %; up 

to 200 μm across) set in a matrix of omphacite (55–60 modal %; up to 70 × 200 μm across), lathlike lawsonite 

(20–30 modal %; up to 20 × 300 μm2 across), chlorite (7–15%) and titanite (3–5%). Calcite occurs in tiny veinlets. 

In the foliated inter-pillow matrix, cross-cutting veinlets consisting of omphacite (80%), phengite (15%) with minor 

glaucophane (<5%) and hematite is common (Fig. 4d–g). Locally, these veinlets also cross-cut fractured garnet 

(Fig. 4f), but there does not seem to be any resorption of garnet in contact with the veins. Garnet commonly 

contains numerous solid inclusions. Inclusions of lawsonite, chlorite, titanite and clinopyroxene are present in all 

samples (Fig. 4a–c). In addition, inclusions of albite, hornblende and quartz are found in garnet in the foliated 

rock. Glaucophane has been found as a secondary matrix phase in the marginal part of the massive pillow 

fragment (sample COR-1′) where it occurs together with albite against slightly resorbed garnet (Fig. 4g). In the 

massive eclogite, omphacite and lawsonite are randomly oriented (Fig. 4a). In foliated eclogite matrix omphacite 

and lawsonite show a weak preferred orientation. 
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Garnet 

Garnet is rich in almandine, grossular and spessartine, and low in pyrope (Table 1), similar to that described by 

Caron et al. (1981). It is chemically zoned, in sample COR-1 ranging from Gr29Sp27Alm42Py2 (core) to 

Gr33Sp15Alm49Py3 (rim). Garnet in sample COR-4 is more Ca- and Fe-rich and lower in Mn, ranging from 

Gr44Sp6Alm49Py2 (core) to Gr32Sp8Alm59Py2 (rim). Zoning profiles appear to be continuous in both samples 

(Fig. 5a,b), except for some irregularly zoned garnet from COR-4 (Fig. 4b). 

Clinopyroxene 

Clinopyroxene analyses are recalculated to four cations and six oxygen with estimation of Fe3+ by charge balance 

(Droop, 1987). Clinopyroxene in the studied samples shows a large compositional variation (Table 2; Fig. 6). 

Generally, clinopyroxene inclusions in garnet are less sodic than the matrix omphacite in all samples. Low-Na and 

Al–Ti-rich clinopyroxene (augite) with up to 4.6 wt% Al2O3 and 3.95 wt% TiO2 occurs as cores of inclusions in all 

samples, commonly mantled and rimmed by successively more jadeite-rich omphacite (Fig. 4c; Table 2). Matrix 

clinopyroxene is also zoned with augitic cores and increasing jadeite content toward the rim. Omphacite in the 

cross-cutting veinlets in sample COR-4 have distinctly lower Mg # (46.7–55.4) than those in the matrix (63.2–

70.8). They also show an opposite rimward zoning from Jd23Aeg21 (Mg# = 55) to Jd11Aeg14 (Mg# = 47). 

Other minerals 

Phengite in the cross-cutting veins of sample COR-4 is virtually unzoned, with a Si-content of 3.56 apfu based on 

11 oxygen and Mg# = 66 assuming all Fe as Fe2+ (Table 3). Lawsonite has Fe2O3 content in the range 0.50–

1.18%, inclusions in garnet having the lower values. Chlorite is present as inclusions in garnet and as a matrix 

phase, with Mg# ranging from 65 (inclusion in garnet) to 68 (matrix) in COR-1, and Mg# = 50 in COR-4. Titanite is 

relatively Al-poor (XAl = 0.04). Albite included in garnet in sample COR-4 and as a secondary matrix phase in 

sample COR-1′ is relatively pure (Ab97 and Ab100 respectively). Small inclusions of edenitic hornblende with 

CaB = 1.70, (Na + K)A = 0.51, Fe3+/(Fe3+ + Al) = 0.24 and Mg# = 60 were identified in the core of a garnet in sample 

COR-4. Blue amphibole occurring in the omphacite-rich veins in sample COR-4 has Fe3+/(Fe3+ + Al) = 0.21 and 

Mg# = 48, and is classified as ferroglaucophane. Secondary blue amphibole associated with albite in sample 

COR-1′ is glaucophane with Fe3+/(Fe3+ + Al) = 0.00 and Mg# = 62. 

 

Metamorphic evolution and conditions 

 

Pre-metamorphic relics (0) 

Ca–Al–Ti-rich cores (augite) of clinopyroxene inclusions in garnet and in the matrix most likely represent relict 

magmatic pyroxene crystallized from the basaltic precursor. Similar compositions are reported from relict 

magmatic cores of porphyroblastic Na-pyroxene in eclogitic metabasites from Sivrihisar in the Tavsanlı Zone, 

Turkey (Çetinkaplan et al., 2008). 

 

Pre-eclogitic metamorphic stages (I) 



The earliest metamorphic minerals recorded in the lawsonite eclogite from Défilé du Lancône are found as 

inclusions within garnet and as low-jadeite cores of matrix clinopyroxene. Inclusions of Ca-rich and TiO2-poor 

clinopyroxene, hornblende, chlorite, albite and titanite probably represent early (low-P) metamorphic phases. 

Overgrowths of successively more sodic pyroxene on Na-poor pyroxene indicate that the continuous reaction 

 (1) 

produced more omphacitic pyroxene by consumption of albite during increasing pressure. The observed zoning in 

matrix omphacite in the same sample supports this interpretation. The zoning patterns of garnet from the two 

different lithologies studied here, with cores strongly enriched in Mn (COR-1) or Ca (COR-4) are also consistent 

with initial growth at low P–T conditions. Thus, the observed inclusion suite of albite, quartz, hornblende and low- 

to high-Na clinopyroxene in garnet in sample COR-4 apparently represents different transient P–T conditions 

during early subduction. A true equilibrium assemblage among these phases is therefore difficult to suggest. The 

irregular zoning pattern observed in some garnet in sample COR-4 apparently indicates that they formed by 

coalescence and overgrowth of several smaller garnet during increasing P–T. 

A precise estimate of P–T for these early stages of subduction is not straight forward. Reaction (1) is likely to 

have proceeded during this time until albite was entirely consumed. The low modal content and Mn- and Ca-rich 

and Mg-poor composition of garnet points to very low temperatures. 

Lawsonite eclogite stage (II) 

The Fe–Mg distribution among garnet and omphacite is commonly used as a temperature monitor, and the 

garnet–clinopyroxene Fe–Mg exchange thermometer (Ravna, 2000) gives temperatures in the range of 350–

400 °C at a nominal pressure of 2.0 GPa, using rim compositions of garnet and matrix omphacite. 

The cross-cutting omphacite-rich veinlets with phengite, ferroglaucophane and hematite in sample COR-4 were 

obviously emplaced as a result of influx of Na-rich fluids along fractures after the growth of garnet (Fig. 4f), but at 

still high-P conditions as evidenced by high jadeite content of omphacite, stability of ferro-glaucophane and the 

high Si-content of phengite. The zoning of vein omphacite with decreasing jadeite content from core to rim 

suggests that the fluid influx continued at decreasing pressure conditions or, alternatively, at changing 

composition of the fluid. The significantly lower Mg number of the vein clinopyroxene compared with the matrix 

pyroxene clearly indicates different origins. 

Lawsonite blueschist stage (III) 

The assemblage glaucophane + albite, observed very locally in sample COR-1′, post-dates the lawsonite eclogite 

stage and constrains the metamorphic conditions to <450 °C and <1.5 GPa according to the metamorphic facies 

grid of Bousquet et al. (1997). 

Post-blueschist stages 

As no greenschist overprint was observed in the samples reference is made to Miller & Cartwright (2006) who 

presented data on greenschist facies metamorphism and almost monomineralic albite veins from the same 
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locality at Défilé du Lancône. They estimated that the greenschist assemblages formed at 510 °C and 0.6 GPa, 

whereas they concluded that the albite veins were formed at 478 ± 31 °C and 0.37 ± 0.14 GPa after the regional 

greenschist facies retrogression. 

P–T estimates from isochemical phase diagrams 

To further constrain the metamorphic evolution and P–T conditions for the Défilé du Lancône lawsonite eclogites 

isochemical P–T phase diagrams were constructed for three bulk compositions. The bulk compositions (Figs 7–9) 

were obtained by EDS area scans of the matrix of samples COR-1 and COR-4, respectively, as well as of the 

omphacite-rich veinlets in sample COR-4. 

For the first two compositions the system SiO2–TiO2–Al2O3–FeO–MgO–CaO–Na2O and for the veinlets the system 

SiO2–Al2O3–FeO–MgO–CaO–Na2O–K2O–O2, all with excess H2O were investigated. Clarke et al. (2006) pointed 

out that unusually high water contents are demanded by lawsonite assemblages. The program Theriak–Domino 

(de Capitani & Brown, 1987) with the Berman database JUN92.bs and the activity models therein were used. The 

modelling does not include Mn, which principally will be partitioned into garnet and thus increase the stability field 

of garnet to lower temperatures and pressures. 

For sample COR-1 the calculated stability field of the matrix assemblage garnet–omphacite–lawsonite–chlorite–

titanite within a wedge-shaped field occurs between ∼1.9 and 2.75 GPa at 350 °C with a maximum thermal 

stability of ∼470 °C at 2.3 GPa (Fig. 7). At lower pressures amphibole is stable, and at higher pressures ilmenite 

becomes an additional phase. Neither of these phases has been observed. Albite is stable in this composition 

only up to ∼0.6 GPa, garnet (Ca-rich) appears at pressures slightly below 0.5 GPa and lawsonite appears at 

∼1.1 GPa, all at 400 °C. 

Sample COR-4 has the same matrix assemblage, which is stable within a relatively large field ranging from 

∼340 °C and 1.3–2.6 GPa to a thermal maximum of 490–500 °C at 2.0–2.1 GPa (Fig. 8). In this composition 

garnet is stable over most of the diagram. Lawsonite appears at ∼1.1 GPa and albite disappears at ∼0.7 GPa at 

400 °C. The assemblage albite + Ca-clinopyroxene + hornblende + titanite, which is included in garnet cores, is 

stable together with garnet and paragonite (not observed) at pressures below ∼0.7 GPa at 400 °C. 

The omphacite-rich veinlets consisting of omphacite + phengite + glaucophane + hematite + quartz are stable 

between 1.05–2.4 GPa at 330 °C and 1.9–2.5 GPa, 410–420 °C (Fig. 9). The assemblage 

omphacite + phengite + glaucophane + hematite may also coexist with coesite at pressures above 2.4–2.5 GPa. 

Quartz/coesite has not been observed, but the estimated content of free silica in our calculations is less than 2%. 

To summarize, the results of the thermodynamic modelling of the three different bulk compositions indicate that 

the observed peak mineral assemblages were all stable within a wedge-shaped window ranging from ∼340 °C 

and 1.9–2.6 GPa to 415 °C and 2.2 GPa. 

 



Discussion 

The lawsonite eclogite from Défilé du Lancône shows evidence of extremely low temperatures, as exemplified by 

low modal content of garnet, typical low-T composition of garnet (low Mg, high Mn and Ca), large compositional 

variations of clinopyroxene and garnet. These features may also be indicative of rapid subduction. There is no 

evidence of breakdown of lawsonite during decompression, clearly indicating that the terminal stability limit of 

lawsonite was not crossed, and that the low P/T persisted during exhumation. 

The earliest observed phase occurring as inclusions in garnet and as cores of matrix clinopyroxene is Ti–Al-rich 

augite assumed to represent relicts of the magmatic stage. During the early stages of subduction Ca- and Mn-rich 

garnet, diopsidic clinopyroxene, Ca-amphibole, chlorite, albite, titanite and probably epidote and paragonite (not 

observed) became stable at pressures below ∼0.7 GPa, probably at temperatures of ∼350 °C. Continued 

subduction resulted in the consumption of the lower pressure assemblages, giving rise to the peak assemblage 

garnet–omphacite–lawsonite–chlorite–titanite, representing lawsonite eclogite facies. The thermodynamic 

modelling using Theriak–Domino constrains the peak P–T conditions to 340–415 °C and 1.9–2.6 GPa, which 

actually is in agreement with the garnet–clinopyroxene Fe–Mg thermometric estimates. These peak conditions 

are close to, and even enter, the coesite stability field and the so-called “forbidden zone” of Liou et al. (2000), 

which indicates a regime of rapid subduction. Rapid subduction and burial of the HPLT rocks in Corsica is further 

supported by the evidence of subduction-related seismic activity recorded by blueschist facies pseudotachylites 

found in both gabbro and spinel-peridotite in the Cima di Gratera area (see Fig. 1; Austrheim & Andersen, 2004; 

Andersen & Austrheim, 2006). These rocks preserve evidence of high strength during subduction, another 

argument for the very cold geotherm (Andersen et al., 2008). 

It is, however, important to stress that the accuracy of the P–T estimates obtained here are hampered by large 

uncertainties. In the present samples the pyrope content of garnet is very low and far outside the range used for 

the calibration of the garnet–clinopyroxene Fe–Mg thermometer, and the obtained temperatures are at least 

200 °C lower that the lowermost temperature (600 °C) used for this calibration (Ravna, 2000). Thus, these 

temperature estimates obtained here should only be regarded as indicative of very low temperatures. Likewise, in 

the thermodynamic modelling Mn as a major component in garnet has been omitted, and the results are also 

strongly dependent on the quality of the thermodynamic data at such low temperatures. In addition, the observed 

incomplete reactions of even pre-metamorphic phases will probably have some influence on the effective bulk 

composition, and thus the final output. Nevertheless, the obtained results are not unrealistic. More important than 

the „absolute‟P–T conditions is the sequential metamorphic evolution which clearly demonstrates a cold regime 

during subduction as well as initial exhumation. If these rocks ever entered the area defined as the „forbidden 

zone‟, or were subjected to coesite stability conditions cannot be evaluated here. 

The prograde metamorphic evolution of the Défilé du Lancône lawsonite eclogite bears similarities to lawsonite 

eclogite described from the Motagua fault zone, Guatemala (Harlow et al., 2004; Tsujimori et al., 2005, 2006b), 

where the basalt–eclogite transformation may have occurred at temperatures as low as ∼300 °C in a cold 

subduction zone with the apparent direct formation of lawsonite eclogite without passing through the blueschist 



facies. These authors suggested that dehydration of chlorite + albite + lawsonite ± pumpellyite to form 

garnet + omphacite within the lawsonite field may be more effective than the glaucophane-forming reaction during 

subduction. In our samples, however, the thermodynamic modelling indicates that glaucophane was not a stable 

phase at any P–T conditions due to bulk compositional constraints. Glaucophane was only stabilized in the 

extreme Na-rich composition of the omphacite-rich veinlets of sample COR-4, and in the very local domains of 

retrograde glaucophane + albite. 

The preservation of lawsonite indicates that the low geothermal gradient prevailed during at least the initial stages 

of exhumation, following more or less the same path as during subduction, similar to the path proposed by 

Çetinkaplan et al. (2008) for the lawsonite eclogite in Sivrihisar, Tavşanlı Zone in Turkey. This suggests that 

material flowing up along the subduction channel was refrigerated by continued subduction of cold material. The 

estimated peak pressures of 1.9–2.6 GPa are much higher than those recorded for the main lawsonite blueschist 

facies (top-to-the-south-west shear) event, which is well developed elsewhere in the area and most probably 

related to retrogression during exhumation. The main thrusting phase was thus contemporaneous with the 

upward motion of the HP units within the subduction complex. This shows that the Lancône ophiolitic material was 

not significantly deformed until after it reached its maximum depth and that the first deformation was associated 

with exhumation. Continued retrogression into greenschist facies conditions has been thoroughly studied 

(Fournier et al., 1991; Jolivet et al., 1998; Miller & Cartwright, 2006) and the suggested retrograde P–T paths from 

Fournier et al. (1991) and Jolivet et al. (1998) are shown in Fig. 10. The latter part of exhumation has been 

attributed to the post-orogenic extension that started at c. 33–32 Ma and led to the opening of the Liguro-

Provençal Basin and the Tyrrhenian Sea (Jolivet et al., 1991; Brunet et al., 2000). Miller & Cartwright (2006) 

suggested estimates of 510 °C at 0.6 GPa for the greenschist facies overprint, which requires a late thermal 

pulse. However, their estimate may be too high for greenschist facies. 

In the model presented here we assume, supported by the numerical modelling of P–T–depth conditions in 

subduction channels (Gerya et al., 2002; Yamato et al., 2007), that pressure can be converted to depth according 

to P ± 10% = ρgh (ρ, density; g, gravitational acceleration; h, burial depth). 

Finally, we propose a possible exhumation scenario (Fig. 10). The finding of very high pressure in Défilé du 

Lancône forces us to reconsider previously proposed schemes (Fournier et al., 1991), that did not have to 

accommodate such large depths of burial. Our reconstruction starts in the latest Cretaceous when Ligurian 

oceanic crust and perhaps also the leading edge of the European continental margin (the youngest oceanic 

sediments date to late Cretaceous) had entered the subduction zone, and an accretionary complex had already 

developed above it at the expense of Ligurian oceanic domain. At this time a piece of partly eclogitized oceanic 

crust detached from the subducting lithosphere at ∼80 km depth and began its exhumation path along the 

subduction channel. The main top-to-the-west deformation recorded in the eclogite dates from the Palaeocene 

and Eocene when it had reached the blueschist domain. From the Eocene onward the Adria plate to the east 

started subducting and a progressive reorganization of the subduction polarity ensued orogen-parallel extension 

and arc bending forced by slab tearing and toroidal flow at the junction between the Alps and Apennines 

(Vignaroli et al., 2008). This situation developed during the Eocene and culminated in the middle Eocene with the 

http://onlinelibrary.wiley.com/doi/10.1111/j.1525-1314.2010.00870.x/full#b26


emplacement of superficial parts of the accretionary complex onto the foreland basin to the west. Units 

undergoing exhumation continued their way up in the subduction channel and eventually reached the accretionary 

complex, the last units to be involved in thrusting being the Tenda massif and Corte slices. At 33 Ma the regime of 

subduction changed in the Mediterranean region as a whole and slab retreat started (Jolivet & Faccenna, 2000), 

leading to the reactivation of major thrusts as extensional shear zones and normal faults that completed the 

exhumation of the metamorphic domain. Finally, the extensional deformation migrated eastward and Corsica 

became more or less stable. 
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Fig. 1. Geological map of northern Corsica (see inset map for location) showing the main Alpine tectonic units and 

location of the new lawsonite eclogite locality in De‟file‟ du Lancoˆ ne (marked with star). Notice the location of 

subduction-related pseudotachylytes north of Patrimonio. 

 

 

 

 
Fig. 2. N–S (a) and E–W (b) cross-sections of northern Corsica (modified from Jolivet et al., 1998) showing the main 

tectonic units and the locations of blueschist to eclogite facies pseudotachylytes and the eclogite facies rocks in the 

area. Notice that the De‟file‟ du Lancoˆ ne lawsonite eclogite locality is positioned at a low structural level. 

 

 



 

 
 

Fig. 3. Eclogitized pillow lava along the riverbed of De‟file‟ du Lancoˆ ne. (a) A well-preserved pillow with internal drain-

out, convex upward cavity. Notice that the pillows have blue outer margins due to the superimposed blueschist facies 

metamorphism. (b) Details of a massive eclogitized pillow with a thin seam of glaucophanite. 

 



 
 

Fig. 4. (a) Massive lawsonite eclogite with euhedral garnet in a matrix of randomly oriented omphacite and lawsonite 

(light grey laths). Sample COR-1. (b) BSE image of euhedral garnet showing complex compositional variation due to 

reciprocal concentrations of Fe and Ca. Areas with dark grey colour have lower Fe ⁄ Ca ratio. Dark inclusions are 

mainly omphacite and lawsonite. Sample COR-4. (c) BSE image of euhedral garnet with numerous inclusions of augite, 

omphacite, albite, chlorite and quartz. Matrix consists of omphacite, lawsonite and minor titanite. Sample COR-4. (d) 

BSE image of euhedral garnet with inclusions of lawsonite and augite overgrown by omphacite. Matrix consists of 

omphacite, lawsonite and minor titanite. Sample COR-1. (e) Veinlets of omphacite + phengite + minor glaucophane 

cross-cutting the weakly foliated matrix of sample COR-4. (f) Details of omphacite-rich veinlet with phengite and 

glaucophane. Sample COR-4. (g) Omphacite-rich veinlet cross-cutting a fractured garnet. Sample COR-4. (f) 

Incipient retrogression with secondary glaucophane and albite and partly resorption of garnet. Sample COR-1￠. 

 

 



 
 

Fig. 5. Zoning profile across euhedral garnet in sample COR-1 (a) and COR-4 (b). The garnet from the latter sample did 

not show any evidence of coalescence of several smaller garnet as that shown in Fig. 4c. 

 

 

 
 

Fig. 6. Compositional variations of clinopyroxene from sample COR-4. Quad = quadrilateral components (Ca, Mg and 

Fe) in clinopyroxene. Stippled and solid arrows indicate compositional evolution of matrix and vein clinopyroxenes 

respectively. 

 



 
 

Fig. 7. Isochemical P–T phase diagram showing the stability fields for mineral assemblages in sample COR-1, calculated 

using Theriak–Domino. See text for discussion. Hatched area marks overlapping P–T conditions for peak assemblages 

in all three bulk compositions. Note that in the upper left corner are two small fields with two coexisting clinopyroxenes. A 

tentative P–T path of the De‟file‟ du Lancoˆ ne lawsonite eclogite based on textural observations and thermodynamic 

modelling is shown (solid hairpin arrow). Alternative retrograde P–T paths are taken from Fournier et al., 1991 (Fea) and 

Jolivet et al., 1998 (Jea). 

 



 
 
 

Fig. 8. Isochemical P–T phase diagram showing the stability fields for mineral assemblages in sample COR-4 matrix, 

calculated using Theriak–Domino. See text for discussion. Note that at 0.9–2.6 GPa and <340 _C two coexisting 

clinopyroxenes can be stable. 

 

 



 
 

Fig. 9. Isochemical P–T phase diagram showing the stability fields for mineral assemblages in omphacite-rich veins, 

sample COR-4, using Theriak–Domino. Contours for jadeite content of clinopyroxene are shown as stippled lines. See 

text for discussion. 

 



 
 

Fig. 10. Model of tectonic evolution of the Alpine LTHP metamorphic complexes Corsica (modified from Jolivet et al., 

1998), where the new P–T data from lawsonite eclogites in De‟file‟ du Lancoˆ ne have been incorporated. See text for 

discussion and details. 



 

Table 1.   Selected garnet analyses.  

  

Sample 

COR-1 COR-1′ COR-4 

Core Rim Core Rim Core Rim 

SiO2 37.83 37.94 37.71 38.22 38.11 37.53 

Al2O3 20.49 20.95 20.63 20.82 21.00 20.40 

TiO2 0.32 0.12 0.24 0.17 0.10 0.12 

Cr2O3 0.08 0.07 0.04 0.05 0.04 0.01 

FeO 19.15 22.53 20.38 22.48 22.72 26.59 

MnO 12.06 6.78 9.87 4.97 2.64 3.56 

MgO 0.60 0.80 0.56 0.72 0.40 0.51 

CaO 10.55 11.61 11.10 13.53 15.93 11.16 

  101.07 100.81 100.53 100.96 100.94 99.89 

12 oxygen 

Si 3.01 3.01 3.01 3.01 3.00 3.02 

Al 1.92 1.96 1.94 1.94 1.95 1.93 

Ti 0.02 0.01 0.01 0.01 0.01 0.01 



Table 1.   Selected garnet analyses.  

  

Sample 

COR-1 COR-1′ COR-4 

Core Rim Core Rim Core Rim 

Cr 0.01 0.00 0.00 0.00 0.00 0.00 

Fe 1.27 1.49 1.36 1.48 1.50 1.79 

Mn 0.81 0.46 0.67 0.33 0.18 0.24 

Mg 0.07 0.09 0.07 0.08 0.05 0.06 

Ca 0.90 0.99 0.95 1.14 1.34 0.96 

Cations 8.01 8.00 8.01 8.01 8.02 8.01 

XCa 0.29 0.33 0.31 0.38 0.44 0.32 

XMn 0.27 0.15 0.22 0.11 0.06 0.08 

XFe 0.42 0.49 0.45 0.49 0.49 0.59 

XMg 0.02 0.03 0.02 0.03 0.02 0.02 

Table 2.   Selected clinopyroxene analyses.  

  

COR-1 COR-1′ COR-4 

Incl Matrix Inc Matrix Incl Matrix Vein 

Core Mantle Rim Rim Core Rim Rim Core Mantle Rim Core Rim Core Mantle Rim 



Table 1.   Selected garnet analyses.  

  

Sample 

COR-1 COR-1′ COR-4 

Core Rim Core Rim Core Rim 

SiO2 48.71 55.09 55.28 55.34 48.59 56.24 55.99 46.10 51.39 54.85 50.08 55.46 53.78 53.25 52.62 

Al2O3 3.84 6.19 6.76 8.52 4.43 6.99 8.75 4.58 1.33 5.67 2.55 7.05 5.48 3.62 2.36 

TiO2 1.99 0.05 0.11 0.01 2.78 0.02 0.08 3.95 0.37 0.07 1.69 0.03 0.04 0.03 0.02 

Cr2O3 0.14 0.08 0.11 0.09 0.09 0.13 0.01 0.18 0.00 0.05 0.02 0.00 0.00 0.04 0.03 

FeO 12.29 8.51 8.44 7.69 11.44 7.86 7.26 14.50 13.86 11.92 13.73 10.45 14.60 16.29 17.01 

MnO 0.50 0.47 0.53 0.20 0.54 0.48 0.29 0.36 0.46 0.17 0.40 0.11 0.07 0.10 0.14 

MgO 11.85 9.02 8.71 7.68 12.53 8.73 8.01 9.34 9.04 7.33 11.48 6.83 5.44 5.79 6.17 

CaO 20.82 16.29 15.60 13.84 19.48 15.19 13.81 20.68 21.12 15.04 19.29 13.70 14.18 16.32 18.34 

Na2O 0.45 5.07 5.49 6.88 0.68 5.92 6.97 0.76 2.29 5.76 0.84 6.79 6.17 4.62 3.40 

  100.59 100.77 101.02 100.25 100.56 101.57 100.17 100.44 99.86 100.86 100.09 100.42 99.77 100.05 100.08 

4 cations, 6 oxygen 

 Si 1.83 1.99 1.99 1.98 1.82 2.00 1.98 1.76 1.94 2.00 1.90 2.00 2.00 2.00 2.00 

 Al 0.17 0.26 0.29 0.36 0.20 0.29 0.37 0.21 0.06 0.24 0.11 0.30 0.24 0.16 0.11 

 Ti 0.06 0.00 0.00 0.00 0.08 0.00 0.00 0.11 0.01 0.00 0.05 0.00 0.00 0.00 0.00 



Table 1.   Selected garnet analyses.  

  

Sample 

COR-1 COR-1′ COR-4 

Core Rim Core Rim Core Rim 

 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Fe3+ 0.08 0.11 0.11 0.15 0.06 0.11 0.14 0.09 0.20 0.17 0.06 0.16 0.21 0.17 0.14 

 Fe2+ 0.30 0.15 0.14 0.08 0.30 0.13 0.07 0.37 0.24 0.20 0.38 0.15 0.24 0.34 0.40 

 Mn 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

 Mg 0.66 0.49 0.47 0.41 0.70 0.46 0.42 0.53 0.51 0.40 0.65 0.37 0.30 0.32 0.35 

 Ca 0.84 0.63 0.60 0.53 0.78 0.58 0.52 0.85 0.86 0.59 0.78 0.53 0.56 0.66 0.75 

 Na 0.03 0.35 0.38 0.48 0.05 0.41 0.48 0.06 0.17 0.41 0.06 0.48 0.44 0.34 0.25 

 ∑Cat 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

 Mg# 68.7 76.3 76.8 83.8 69.9 78.4 85.4 58.8 68.2 67.1 63.2 70.8 55.4 48.5 46.7 

 Jd 0 25 27 33 0 30 34 0 0 24 0 31 23 17 11 

 Ac 8 11 11 15 6 11 14 9 20 17 6 16 21 17 14 

 Ca-px 92 65 62 52 94 59 52 91 80 59 94 52 55 66 75 

Table 3.   Selected analyses of lawsonite, chlorite, phengite, amphibole, albite and titanite.  

  Sample 



COR-1 COR-1′ COR-4 

Lws Lws Chl Chl Ttn Lws Glc Ab HblEDS AbEDS Lws ChlEDS Phn Fe-Glc 

In Matrix In Matrix Matrix In Sec Sec In In Matrix Matrix Vein Vein 

 

 


