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Abstract 

The quantity and the source of organic matter preserved in the Recent turbiditic channel-

levees systems around 4000 m-depth off the Congo River were determined using bulk 

geochemical approaches (Rock-Eval, elemental and isotopic analyses) as well as molecular 

and optical analyses on selected samples. These mud-rich sediments contain high amount of 

organic matter (3% Corg on average), the origin of which is a mixture of terrestrial higher-

plant debris and deeply oxidized phytoplanktonic material. Although the relative contribution 

of continental source versus marine source of the organic matter cannot be precisely 

quantified, the continental fraction appears significant (at least 70-80%) especially for such 

depths and distances from the coast. The organic matter distribution appears very 

homogeneous at different scales, from the single turbiditic event to the entire levee, and 

changes in accumulation rates have a little impact on the quantity and quality of preserved 

organic matter. 



 

With a petroleum potential around 4.5 kg HC per t rock, the fine-grained turbiditic sediments 

in the Congo deep-sea system could be regarded as an analog of gas-prone source rocks for 

the deep offshore of the Atlantic margins. Finally, the Congo deep-sea turbiditic system is a 

major conveyor of organic carbon to the deep ocean. Further studies are needed to evaluate 

the efficiency of such systems for the storage of continental organic matter into the deep 

ocean in relation to sea level and climatic changes. 
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1. Introduction  

 

With deep-water exploration for petroleum purposes becoming more intensive and 

successful, it is important to have a better knowledge of the depositional processes of source 

rocks, reservoirs and seals in the deep sea. Up to now, deep-water reservoirs have received 

most of the attention from the scientific community whereas the source rocks have been less 

studied. According to conventional views, deep water settings are unsuitable for source rock 

deposition because organic material is intensely degraded during settling through the water 

column. However several transport processes may lead to deposition of organic-rich 

sediments in the deep sea, which can now be regarded as areas favourable for hydrocarbon 

source rocks (Huc et al., 2001; Stow et al., 2001; Saller et al., 2006). Sediment mass transport 

processes such as turbidity currents provide one efficient way for accumulating both 

continental and marine organic-rich fine-grained sediments in the deep offshore. 

Clay rich fine-grained turbidites are particularly well developed as levees in the deep-

sea turbidite systems and are therefore also closely associated to sandy reservoirs that are 

turbiditic channels. These shaly facies usually act as seals in the petroleum system, but their 

potential as source rock is poorly known. Furthermore, these facies are widely distributed 

from the upper slope to the distal part of the deep sea turbidite systems, in the abyssal plains, 

and represent huge volumes of sediment in which organic matter can be preserved. The 

contribution of such facies to the global carbon budget is still poorly constrained. 

We attempt here to quantify the organic matter preserved in the channel-levees 

systems from the Congo mud-rich deep-sea turbidite system as well as to determine its origin 

(continental versus marine) in order to discuss the importance of such facies in terms of 

potential petroleum source rocks and their contribution for carbon storage. 

 

2. General setting and studied sites 

 

2.1 General setting 

The Zaire/Congo River drains the second largest catchment area of the world (3.7 106 

km², Fig. 1) and about 38% (42,800 m3/s or 1350 km3/year) of the yearly run-off from Africa 

occurs through this river (Kinga-Mouzeo, 1986; N’Kounkou and Probst, 1987). Although the 



 

Congo River shows a small variability in its flow (22,000 to 76,500 m3/s), floods are recorded 

in May and December. 

The Congo River delivers yearly ~55 106 t of suspended sediment (Wetzel, 1993). This 

is 15 to 17 times lower than the Amazon River, which has a drainage basin only 2 times 

higher and a fluid discharge of 130,000 m3/s. This difference is attributed to the flat 

morphology of the catchment area of the Congo River and to the presence of several lakes 

through its course that trap an important part of the suspended material (N’Kounkou and 

Probst, 1987). 

Despite its relatively low sedimentary load, the Congo River contributes to 3.9% (13 106 t 

C/year) of the global annual supply of terrigenous organic carbon into the ocean (Martins and 

Probst, 1991). The dissolved organic carbon and particulate organic carbon near the mouth 

are 8.5 and 1.0 mg/L, respectively (Meybeck and Ragu, 1996; Coynel et al., 2005). 

Consequently, the particulate organic carbon/suspended material ratio delivered by the Congo 

River is high (1/20) compared to other major rivers with higher sedimentary loads, e.g. 1/50 

for the Amazon River. 

The freshwater outflow of the Congo River into the Atlantic Ocean is detectable by 

reduced salinity in a 5-10 m thick surface layer as far as 800 km offshore (van Bennekom and 

Berger, 1984). This freshwater outflow, rich in phosphate and nitrate, induces upwelling and 

two nearshore coastal cells are seasonally observed just south and north of the Congo mouth 

at 5 and 7° S (Fig. 1). They are considered to be produced by the piling up of eastward-

flowing equatorial undercurrents as they arrive at the continental margin off Congo and 

Gabon (Voituriez and Herbland, 1981; Servain et al., 1982). As a result of oceanic or river-

induced upwellings and the supply of nutrients by the Congo River, the primary productivity 

is high in the surface waters in that part of the Atlantic Ocean. Berger (1989) gives values of 

90-125 g C/m²/year for the area off the Congo mouth and slightly higher values, between 125 

and 180 g C/m²/year, for the oceanic upwelling area off Angola. 

The strong influence of the river sediment load on the adjacent continental margin is 

evident from the existence of the Congo mud-rich deep sea turbidite system. This edifice is 

one of the world’s largest active deep sea turbidite systems, with an area estimated of  

330,000 km2 (Savoye et al., 2000). Owing to the narrow (~50 km wide) continental shelf in 

front of the Congo mouth and the presence of a canyon that begins 30 km within the estuary 



 

of the river (Fig. 1 and Fig. 2), a large part of the sediment load, including organic matter, is 

transported directly into the deep-sea. 

The modern active canyon/channel system extends 760 km westward off the Congo-Angola 

margin (Fig. 2), but more than 80 inactive paleo-channels have been identified (Savoye et al., 

2000; Savoye et al., 2009). The canyon/channel deeply incises the continental shelf and slope, 

and is very meandering (Droz et al., 1996; Savoye et al., 2000; Fig. 2). The sinuosity of the 

modern channel decreases downslope from high to moderate (Babonneau et al., 2002). A 

transition zone starts at about 3300 m-depth and links the canyon area to the channel-levees 

system (Babonneau et al., 2002). The channel-levees system shows an east-west trend, but 

abrupt changes of the direction are observed locally (Savoye et al., 2000). The slope of the 

channel floor decreases from 1.5 to 0.2% down channel. The channel is over-incised, with an 

incision depth ranging from 200 m at 3000 m-depth to 100 m at 4300 m-depth (Savoye et al., 

2000). 

Evidence for the occurrence of turbidity currents in the canyon/channel includes 

submarine cable breaks between 500 and 2300 m-depth, which were attributed to turbidity 

currents initiated by Congo floods (Heezen et al., 1964). During long-term monitoring along 

the channel using a series of moorings with currentmeters and sediment traps, several 

turbiditic events were recorded between 2001 and 2004 (Khripounoff et al., 2003; 

Vangriesheim et al., 2009). The frequency of turbiditic events is estimated at about 60 per 

century (Heezen et al., 1964), but it is unclear where those turbidity currents start and what 

causes them. 

Turbidity currents are supposed to remain within the canyon/channel all the way down, but in 

the meander section the upper part of the thick turbidity currents overflows the channel flanks 

and built levees. Levees are evidenced by seismic surveys all along the present-day active 

channel. Levees are made up of overflow sedimentation of the turbidity currents on both sides 

of the channel with a relatively symmetrical morphology; the Coriolis force being negligible 

in this area given the proximity to the Equator. The lateral extent of levees decreases from 50 

to 10 km down slope (Savoye et al., 2000). The presence of sediment waves has also been 

reported on both right-hand and left-hand levees (Droz et al. 1996; Savoye et al., 2000; 

Migeon et al., 2004). The frequency of overbank depositional events at the lower channel-

levees system is estimated at 2 per century (Savoye et al., 2009). 



 

To the best of our knowledge, information about the nature of organic matter from the 

channel-levees systems is lacking. The main objective of the present paper is to provide 

insight into the nature and distribution of the organic matter at different scales in the modern 

channel-levees system. 

 

2.2 Studied areas 

Two areas were selected along the modern active channel in the lower part of the 

channel-levees system (Fig. 2). Both are composed of three cores that allow study of a 

transect from the channel to the external part of the levees. 

 

Transect KZAI 04-06 (Figs. 2 and 3) 

This transect is located at 712 km from the apex of the canyon, following the main 

active channel, and is between 4000 and 4150 m-depth. The cores are from an area where the 

channel is relatively straight, with a width around 1.6 km and a depth nearly 150 m (Gervais 

et al., 2001; Fig. 2). Lateral extension of the south levee, studied here, is around 7 km. Levees 

are symmetrical and show sediment waves with NW–SE orientation, i.e. approximately at 45° 

of the channel direction (Fig. 2; Gervais et al. 2001). One core (KZAI 06) was collected in the 

channel at 4150 m-depth, one core (KZAI-05) was collected on the proximal part of the levee 

at 4012 m-depth and one core (KZAI-04) has been collected on the distal part of the levee at 

4047 m-depth (Fig. 3). A seismic profile (Fig. 3) shows that core KZAI 05 is close to the crest 

of the south levee and that core KZAI 04 is 5 km apart where seismic facies are more 

continuous and bedded. It should be noted that 10 km upstream of the studied area the Congo 

channel forms a well-developed meander (Fig. 2) that may be a subordinate source of 

sediments in core KZAI 05, as suggested by the orientation of the field of sediment waves 

connected to this meander. 

Gervais et al. (2001) indicate that sediments from cores KZAI 04 (16.9 m long) and 

KZAI 05 (13.3 m long) are made of clayey and silty clayey sequences showing millimetric 

silt beds layered with millimetric to decimetric clay beds (Fig. 3). These small sequences are 

fining-up and correspond to Td and Te terms of the Bouma sequence or the fine-grained 

turbidites defined by Piper (1978). Turbiditic clay cannot easily be distinguished from 

hemipelagic clay. Most of the components of the sediment (quartz, micas, plant fragments, 

benthic foraminifers) have an allochthonous origin, whereas some diatoms and sponge 



 

spicules constitute a minor autochthonous component. Both cores show the same type of 

sequences, although core KZAI 04 (more distant from the channel compared to core KZAI 

05) shows a lower proportion of fine to medium sand fraction. This may reflect the lower 

sediment accumulation rate, which is about 0.79 m/ka for core KZAI 05 to 0.44 m/ka for 

KZAI 04 (Gervais et al., 2001). 

Sediments from core KZAI 06 (3.3 m long) are made of medium (250-500 µm) to fine (250-

125 µm) homogeneous sands, containing some mud clasts and large plant debris. The 20 cm 

at the top of this core includes silty clays with some sandy lenses (Gervais et al., 2001). 

 

Transect KZAI 13-15 

This transect is 855 km from the apex of the canyon at about 4350 to 4450 m-depth 

(Fig. 2). The studied levees are the left-hand flank of a meander (1 km of curvature) and show 

marked sediment waves. The relief is 90 m between the channel and the crest of the levee. 

Crests of proximal sediment wave mimic the curvature of the meander, and then become 

straighter down-levee (Fig. 2). 

Core KZAI 15 (1.9 m long) was collected in the channel and consists of very fine (100 µm) to 

very coarse (1–2 mm) sand beds with abundant scattered mud clasts (Fig. 3). Accumulation 

rates are very low, 0.25 m/ka according to Migeon et al. (2004), confirming that the channel is 

a zone of sediment bypassing and/or erosion rather than deposition. 

Cores KZAI 13 (17.9 m long) and KZAI 14 (17.3 m long) were collected respectively on the 

downstream and upstream flank of a sediment wave (Fig. 2). Core KZAI 13 is 0.2 km 

downstream from core KZAI 14, the latter being located at 1 km from the axis of the channel. 

Both are made of clayey and silty clayey sequences showing millimetric silt beds 

layered with millimetric to decimetric clay beds (Fig. 3). Accumulation rate is difficult to 

estimate because some inversions of the 14C ages are observed in both cores (Migeon et al., 

2004). Nevertheless, the average accumulation rate seems fluctuate from 6.5 m/ka in core 

KZAI 13 and 4.4 m/ka in core KZAI 14. Such values suggest that the mean accumulation rate 

of levees sharply increases from the area of transect KZAI 04-06 to this area, although the 

lithology of sediments does not change a lot (Dennielou and Jouanneau, in press; Savoye et 

al., 2009). 

 

3. Material and methods 



 

 

3.1 Samples 

Three hundred and sixteen (316) samples were collected from these six cores with 

spacing between samples varying from 2 to 20 cm (Tab. 1). Only the first 10 m of cores KZAI 

04, 05, 13 and 14 were sampled (Fig. 3). 

In the laboratory, the samples were washed with deionizated water to eliminate salt 

that could affect pyrolysis analyses. Indeed, salt generates an artefact at the end of the S2 peak 

of the Rock-Eval pyrolysis (see below), which is erroneously interpretated as a fraction of 

refractory organic matter coming from soils (Holtvoeth et al., 2005). Then, samples were 

dried in an oven at 50 °C for 24 hours before being pulverized in an agate mortar. 

 

3.2 Methods 

Grain-size of the bulk sediment was measured using a Coulter LS200 (93 channels 

from 0.4 µm to 2 mm). 

Carbonate content was measured using a Bernard calcimeter, with an analytical 

precision of ± 0.2% CaCO3. 

Pyrolytic analyses were carried out using both an Oil Show Analyser and a Rock-Eval 

6 Turbo device (Vinci Technologies), operating in free cycle mode which is devoted to 

Recent sediments (Espitalié et al., 1985; Lafargue et al., 1998; Béhar et al., 2001). This 

technique provides five fundamental parameters: S1 (representing free and adsorbed 

hydrocarbons released during 3 min at 180 °C, in mg/g); S2 (pyrolytic hydrocarbons generated 

from 180 to 650 °C, in mg/g); S3 (CO2 released during the pyrolysis phase of the analysis, in 

mg CO2/g); S4 (CO2 released during the oxidation phase of the analysis, in mg CO2/g); and 

Tmax (the temperature of maximum pyrolytic hydrocarbon yield, in °C). Hydrocarbons are 

detected by a flame ionization detector, and CO2 by a thermal conductivity detector or infra-

red detector. 

These fundamental parameters are used to obtain derived parameters that are: TOC (Total 

Organic Carbon, in wt %); Hydrogen Index (HI = S2/TOC × 100, in mg HC/g TOC); Oxygen 

Index (OI = S3/TOC × 100, in mg CO2/g TOC); and Petroleum Potential (PP = S1+S2, in mg 

HC/g or kg HC/ton of rock). The precision for the parameters is ± 0.1% for TOC, ± 1 °C for 

Tmax, ± 10 mg HC/g TOC for HI, ± 5 mg CO2/g TOC for OI, and ± 1 kg/t for PP. 



 

C/N and isotopic ratios were determined on 50 selected samples from cores KZAI 04, 

05 and 13. Samples were acidified with 1N HCl to remove inorganic carbon prior to carbon 

isotopic measurements. Total Organic Carbon (TOC) and Total Nitrogen (TN) were measured 

by high temperature combustion on a Carlo Erba NC 2500. The average standard deviation of 

each measurement, determined by replicate of the same sample is ± 5%  

Stable carbon and nitrogen isotope composition of the sedimentary organic matter was 

determined by on-line combustion in a Carlo Erba NC 2500 interfaced with a Isoprime 

isotope ratio mass-spectrometer. 13C/12C and 15N/14N are expressed by the conventional δ 

notation in ‰ relative to PDB and air, respectively. Analytical precision is ± 0.15 ‰ for 

δ13Corg and ± 0.2 ‰ for δ15N.  

Thermochemolysis was carried out on 9 samples from cores KZAI 04, 05, 13 and 15 

following the procedure described by Disnar et al. (2008). Briefly, about 25 mg of dried and 

crushed kerogens were introduced in SVL® screw-cap glass tubes with 50 µL of standard 

solution (heptylbenzoic acid 21 µg/100 µL MeOH) and 100 µL tetramethyl ammonium 

hydroxide solution (TMAH; 25 % in MeOH). The tubes were placed open in an oven at 75 °C 

for 3 to 5 hours to evaporate the excess methanol, then cooled and closed under vacuum. Then 

they were placed vertically in a sand-bath and heated at 220 °C during 20 min. After cooling 

in ambient air, 1.5 mL diethylether was introduced to extract the pyrolysis products. After 

evaporation of the ether, the extracts were diluted in 50 or 100 µL CH2Cl2 and analysed by 

GC-MS with a Thermo-Finnigan TRACE-Polaris GCQ gas chromatograph–mass 

spectrometer. The gas chromatograph was fitted with an Rtx™-5Sil MS capillary column (30 

m x 0.32 mm i.d., 0.25 µm film thickness) with 5 m of guard column. The GC operating 

conditions were as follows: temperature hold at 40 °C for 1 min, then increase from 40 to 120 

°C at 30 °C/min, 120 to 300 °C at 3 °C/min with final isothermal hold at 300 °C for 30 min. 

The samples were injected splitless, with the injector temperature set at 280 °C. Helium was 

the carrier gas. The mass spectrometer was operated in the electron ionization (EI) mode at 70 

eV ionization energy and scanned from 50 to 650 Daltons. Compounds were tentatively 

identified by comparison with library (NIST) mass spectra and relative retention times. 

Forty-five samples were selected and prepared for palynofacies analysis, which is the 

microscopical study of all the particulate organic matter present in sediment. Neither 

oxidation nor ultrasonic probe was carried out during processing as all the particles were of 



 

interest in this study and may selectively be destroyed by such procedures. The residue was 

directly mounted on glass microscope slides. 

The classification of palynofacies has always been rather subjective (Tyson, 1995), 

and for this study, the following particles were identified: 

– Phytoclasts: comprise all opaque and translucent land-plant debris. Different 

subgroups can be observed within this fraction and they were distinguished during 

the counting. 

– Sporomorphs: comprise the land-derived pollen grains and spores. 

– Fungal debris: comprise all the filamentous segmented particles and sclerotes. 

– Marine algae: comprise the dinoflagellate cysts and other organic walled algae. 

– Amorphous organic matter (AOM): comprise all particulate organic components 

that appear structureless at the scale of light microscopy. 

 

4. Results 

 

4.1 Organic matter distribution and characteristics in the clayey-silty facies of the levees 

Grain-size determinations indicate that most of the sediment is made of clayey and 

silty fractions (up to 80 to 90%) with a median grain-size around 10 µm for cores KZAI 04 

and 05 and 15 µm for cores KZAI 13 and 14, which are located at 1 km from the axis of the 

channel (Fig. 4). The sandy fraction usually represents less than 15% in cores KZAI 04 and 

05 and less than 20 % in cores KZAI 13 and 14, except for various short-term spikes (30% in 

cores KZAI 04 and 05, 40 % in core KZAI 14 and up to 50% in core KZAI 13), which 

correspond to coarser turbiditic events.  

Calcium carbonate contents remain generally low (<6 %, Tab. 2) with an average 

around 2.5 %. Thus, these sediments can be regarded as virtually devoid of carbonate. 

Total Organic Carbon (TOC) contents are extremely homogeneous in the four studied 

cores with a value around 3% (Tab. 2). Some samples, however, are richer in organic carbon 

with a TOC content reaching 5.6% in core KZAI 04, whereas others show values as low as 

0.1 % in core KZAI 13 (Fig. 4). These organic-lean samples correspond to the sandy turbiditic 

facies. Except for these rare sandy facies, no relationship appears between TOC and the 

granulometric characteristics of the sediment. 



 

Hydrogen Index (HI) values fluctuate between 82 and 236 mg HC/g TOC (Tab. 2) 

with a mean value around 145 mg HC/g TOC in the four studied cores (Fig. 4). The HI-values 

are extremely constant in cores KZAI 04 and 05 and show a wider range and more abrupt 

fluctuations in cores KZAI 13 and 14 (Fig. 4). Nevertheless, these variations are not very 

important if we consider that HI-values may fluctuate from 0 to 1000 (Espitalié et al., 1985). 

C/N ratios are also very homogeneous with a mean C/N ratio around 13 (range 

between 10.7 and 15.7). Similarly, isotopic ratios do not vary greatly with a mean δ13Corg 

around -26 ‰ (range between -23.8 and -27.1 ‰) and a mean δ15N around 5.5 ‰ (range 

between 5 and 6.3 ‰; Tab. 2 and Fig. 4). 

Palynofacies analyses indicate that amorphous organic matter (AOM) represents 

almost the half of total particles (between 33 and 62% with an average around 46.5%). The 

AOM particles can be classified into two main subgroups. The first subgroup is composed of 

fluffy AOM (Fig. 5A) which is probably derived from phytoplankton. The second subgroup is 

represented by AOM particles with remains of phytoclasts inside (Fig. 5B). Variations in 

AOM aspect probably highlight the origin of the organic matter (marine versus continental) 

but also the role of the depositional setting, i.e. the intensity of oxidation. 

The structured particles consist exclusively of higher plant debris at different states of 

preservation. Different types can be recognized from yellow coloured cuticles or woody fibres 

with well preserved cellular structures (Fig. 5C) to dark-brown and gelified ligno-cellulosic 

debris (Fig. 5D). Ligno-cellulosic particles represent between 20 and 53% (34% on average) 

of total particles. Black particles with different shapes, rounded or bladed, are a subordinate 

group of phytoclasts and represent char or highly oxidized particles from soil (Fig. 5E). 

Cuticles are present at a low level (0.5 to 6%), whereas sporomorphs are rare (< 2% on 

average; Fig. 5F). Fungal remains are common and may represent few percents in some 

samples. Marine palynomorphs are scarce in the palynofacies.To summarize, the palynofacies 

analysis indicates that half of the organic matter is clearly continental in origin, and part of the 

amorphous organic matter is also derived from higher plants. 

At the scale of the bulk sediment of the levees the organic matter content appears very 

homogeneous, both in terms of quantity (TOC) and quality (HI, C/N and isotopic ratios, 

palynofacies). 

 

4.2 Organic matter distribution and characteristics in the turbiditic beds 



 

Using detailed lithological descriptions, X-radiographs, and grain size analyses, six 

types of turbiditic beds have been distinguished within the levees (Gervais et al., 2001; 

Migeon et al., 2004). We sampled several of these beds with a 2 cm-spacing in cores KZAI 

04, 13 and 14 in order to investigate the variations of organic matter content and quality 

within different types of small fining-up sequences. 

Type 1-beds consist of highly bioturbated dark silty clays grading upward into grey 

clays, with thickness ranging from several centimeters to several decimeters (Fig. 6A and B). 

Dark silty clays are probably true turbidite deposits whereas grey clays are probably 

hemipelagic deposits, but discriminating between them is difficult (Migeon et al., 2004). In 

most cases, the grain size is near constant whatever the facies. The organic matter content of 

both the dark and grey clays is very homogeneous (3% in average), but dark clays may 

contain a little bit more organic matter than grey hemipelagic clays (Fig. 6B). Such beds 

resulted from fallout of suspended flocks and characterize dilute and low-velocity spillovers 

from the uppermost part of channelized turbidity currents (Migeon et al., 2004). 

Type 2-beds show a basal unit with the alternation of infra-millimetric to millimetric 

silty laminae and millimetric to centimetric clayey laminae, and an upper unit with dark silty 

clays grading upward into grey clays (Fig. 6C and D). The basal contact is always sharp and 

beds present thickness ranging from 5 to 30 cm. The contact between the two units is 

gradational, the whole sequence is normally graded, and grain-size analyses display several 

normally graded sub-intervals. Bioturbation is always absent from the basal unit but 

commonly observed in the upper unit. The absence of bioturbation in the basal unit suggests 

rapid deposition by a single channelized turbidity current. Such type 2-beds result from the 

spillover of the upper muddy part and deeper parts of channelized flows, where silts are 

carried in suspension, and correspond to divisions Td and Te of the Bouma sequence (Gervais 

et al. 2001; Migeon et al., 2004). The organic matter content of such type 2-beds are usually 

high (3% TOC) except in the first coarser centimeters of the basal unit where lower TOC 

content are noted (1.5 to 2%; Fig. 6D). 

Type 3-beds consist of three units: from base to top, dark silty clays 1–3 cm thick (unit 

1), alternating silty and clayey laminae (unit 2), and grey clays (unit 3; Fig. 6E). All contacts 

between the three units are gradational. In unit 2, silty laminae first coarsen and thicken 

upward, then fine and thin upward. The whole bed exhibits a basal inverse grading and an 

upper normal grading. The basal contact is sharp or gradational. Bed-type 3 is uncommon and 



 

its thickness varies between 10 and 20 cm (Migeon et al., 2004). Organic carbon content of 

such beds shows a wider range in accordance with the median grain size. As coarser the 

sediment as lower the organic matter content, with values as low as 0.2% in fine sands (Fig. 

6E). 

Type 4-beds consist of three units from base to top: a centimeter-scale silty bed 

passing upward to alternating silty and clayey laminae, and finally grey to beige clays (Fig. 

6F). The basal silty bed is structureless, and rarely laminated or cross-laminated. The whole 

bed is normally graded, and the basal contact is sharp. This type 4-bed has thickness varying 

between 10 and 30 cm and result from processes similar to those described for deposition of 

type 2-beds (Migeon et al., 2004). Organic carbon content is almost constant (3 % TOC) 

within this type 4-beds except at the basal part of the small sequence when grain size 

increases (Fig. 6F). 

Types 5 and 6-beds are rare, in contrast to the classical fine-grained deposits 

commonly described on levees as they correspond to structureless Ta and/or laminated Tb of 

the Bouma sequence with maximum grain-size up to 400 µm (Migeon et al, 2004). They have 

not studied so far for their organic matter content. 

Whatever the small changes in organic matter content within the small-scale fining-up 

sequences described above, they are not associated with lower HI-values. On the contrary, 

both HI and OI-values are rather constant (Fig. 6), which indicates a similar type of organic 

matter and probably a comparable preservational state of the organic particles in these 

different facies. 

 

4.3 Organic matter in the sandy facies of the channel 

The sandy facies from the channel have been analyzed in core KZAI 15 and only 4 

samples were investigated. Even if we cannot generalize these observations, it appears that the 

sands contain two times less organic carbon than the clayey facies (Tab. 2). The HI-values of 

the sandy facies from the channel are comparable to that of levee facies (Tab. 2) and 

geochemical data indicate the same molecular proportion of continental organic material and 

the same state of degradation compounds from lignin (see TMAH results in section 5.1 and 

Tab. 4). This suggests that size sorting, which explain the difference in TOC between channel 

and levee, did not influence the quality of particulate organic sediment. Any generalization of 



 

these observations for the entire Congo deep-sea turbiditic system is limited because of the 

small number of the samples in our study. 

 

5. Discussion 

 

5.1 Sources of organic matter and estimation of the continental organic carbon 

contribution 

The identification and quantification of sources, whether continental or marine, of 

organic carbon in the sediment are always difficult because several parameters influence the 

bulk and molecular characteristics of the preserved organic matter. In order to estimate the 

amount of continental organic matter relative to total organic matter in the Congo deep sea 

fan sediments we used binary mixing models with different sets of proxies (HI, C/N ratio, 

δ13Corg and δ15N), defined as follow: 

Fter = [(Xsample-Xmar)/(Xter-Xmar)] x 100 

Where Fter is the terrestrial organic carbon fraction and Xsample depends on the proxy 

analysed. Xmar and Xter are the marine and terrestrial end-member values, respectively, of 

these proxies. 

  

Information on the origin of organic matter can be determined by pyrolytic 

measurements if the thermal evolution of organic matter is low (Espitalié et al., 1985; Peters 

et al., 1986). Measured Tmax values are always low (< 420°C), indicating that organic matter 

did not experience strong thermal maturation and therefore contains very little charcoals or 

recycled material from older mature rocks. 

Although the type of organic matter is usually defined by the mean of elemental 

analysis, the Hydrogen Index (HI) parameter approximates the H/C atomic ratio, which 

determines the organic matter type (Tissot and Welte, 1984). According to the low range of 

HI values (82 to 236 mg HC/g TOC, Tab. 2), the organic matter of the studied samples could 

be attributed mainly to Types III to IV (Fig. 7). Type IV, however, appears as a subordinate 

type for some samples (Fig. 7). Type III is usually related to continental higher plants debris, 

whereas Type IV corresponds to residual deeply altered organic matter; the origin of which is 

difficult to determine. 



 

If we assume that HI value for fresh marine organic matter is around 400 mg HC/g 

TOC (Espitalié et al., 1985) and around 100 for the terrigeneous end-member (mixture of 

Types III-IV; Espitalié et al., 1985), the mean Fter value calculated in the studied cores would 

indicate that 85% of the organic matter is derived from the detrital source (Tab. 3). Taking 

into consideration the highest HI values measured on every core (Tab. 2), the continental 

contribution drops to 67% on average (Tab. 3), which still indicates a major contribution of 

continental organic matter to the Congo deep sea fan sediments. 

The carbon isotopic composition remains also remarkably constant with a range of 

δ13Corg between –23.8 and –27.1 ‰ (Fig. 4) and an mean-value around –26 ‰ (Tab. 2). Such 

values illustrate the dominant influence of organic matter inherited from plants with C3 

photosynthetic pathway and are in the same range of the particulate organic matter measured 

in the Congo River (δ13Corg = –26.7 ± 0.4 ‰, Mariotti et al., 1991; Holmes et al., 1996). If 

we assume that δ13Corg of marine organic matter is –21 ‰ for that part of the equatorial 

Ocean (Tyson, 1995), and if the detritial end-member presents a mean δ13Corg = –26.7 ‰ as 

reported by Mariotti et al. (1991), the Fter values calculated in the studied cores would 

indicate that 93% of the organic matter derives from the detrital source (Tab. 3). This 

assumption is probably not fully valid, because terrigeneous organic matter fraction is more 

resistant than the marine fraction. Consequently this terrigeneous input, although important, is 

probably overestimated. 

The relationship between total N (TN) and TOC reveals an intercept that is close to the 

origin of the cross-plot (Fig. 8), consistent with the idea that most of the nitrogen is associated 

with organic matter. If we assume an organic origin for nitrogen, the C/N ratios for the 

studied area range between 10.7 and 15.5 (Tab. 2; Fig. 4). Such values are also indicative of a 

mixture of marine phytoplankton (C/N~6.7 for Redfield ratio) and terrigeneous sources, 

which contain lower nitrogen than marine organic matter. The almost constant average C/N 

ratio (~13) in the different studied cores would require that the relative proportion of these 

two sources remain constant. 

Molar C/N ratios of samples and end members are often used in linear mixing 

equations to estimate the fraction of continentally derived organic carbon in sedimentary 

environments. Several authors have shown that this calculation actually yields the fraction of 

terrestrially derived organic nitrogen (Perdue and Koprivnjak, 2007 and references therein). 

Because continental organic matter is relatively depleted in nitrogen, the fraction of 



 

terrestrially derived organic carbon has been seriously and systematically underestimated by 

this misinterpretation of C/N mixing lines. Only the mixing equation based on N/C yields the 

true fraction of continentally derived organic carbon. 

We choose N/C ratios of 0.0653 and 0.142 as end-members for terrestrial and marine 

sources, Xter and Xmar respectively. The Xter value chosen here is derived from the C/N 

ratio (15.3)  reported by Mariotti et al. (1991) for suspended particulate organic matter in the 

load of the Congo River near its estuary, whereas the marine end-member is close to the 

reverse of the C/N for Redfield ratio. Taking these values, the organic matter preserved in 

sediments from the levees is clearly dominated by continental organic matter which represents 

almost 85 % of the preserved organic carbon (Tab. 3). 

As δ13Corg and N/C ratio, the nitrogen isotopic composition of sedimentary organic 

matter (δ15N) has the potential to provide information on the source of organic matter to the 

ocean (Calvert et al., 2001). δ15N records the isotopic composition of the substrate (nitrate, 

ammonium or dinitrogen) and the fractionation between the two isotopes 14N and 15N that 

occurs during photosynthetic pathways so that δ15N will depend on the relative utilisation of 

the nitrogen source (Altabet and François, 1994). Since nitrate and atmospheric dinitrogen 

have different isotopic signature (respectively ~5‰ and 0‰) and are the main sources of 

nitrogen respectively for marine and terrestrial plants, the nitrogen isotopic signature of 

marine plants and algae is heavier (>4-5‰) than for terrestrial plants (<1‰). Source 

identification can be complicated in oceanic sedimentary systems when bacterial 

denitrification occurs in oxygen-depleted waters or when dinitrogen fixation occurs in oceanic 

waters. However, these processes are negligible in our area off Congo (see Holmes et al., 

1996). Finally, the same conclusion may be inferred from the nitrogen isotopic ratios (δ15N 

around 5.5‰) which indicate a mixture of marine plants and C3 plants (Fig. 9). The 

continental fraction deduced from δ15N data represents around 44% of the total organic matter 

(Tab. 3). 

 

This inference for a dominance of land-derived organic matter in levee facies from the 

Congo fan, based on low δ13Corg and HI-values, is in conflict with the nitrogen isotope values 

which are too heavy (<15) for such a dominance. The nitrogen isotopic composition of 

sedimentary organic matter in the deep-sea fan of Congo must be considered with caution. In 

a previous study in the same area, Müller et al. (1994) and Holmes et al. (1996) reported 



 

already δ13Corg typical of a mixing between continental and marine plants whereas δ15N 

values were close to a marine end-member. In addition, higher than expected δ15N values 

were reported in the Congo estuary (Holmes et al., 1996). 

 

This apparent contradiction in source characterization between carbon isotopic 

composition, N/C ratio and Rock-Eval, and nitrogen isotopic ratios is evidence that the 

marine organic matter contributes significantly to the organic content of these sediments. As 

algal marine hydrogen-rich organic matter (Type II) is oxidized, its hydrogen content 

decreases while its oxygen content increases, and it may take on Rock-Eval characteristics of 

Type III organic matter. The fact that samples having high TOC content show HI-value 

reaching 256 mg HC/g TOC supports this hypothesis and suggests that the algal organic 

matter was deeply oxidized by microbial reworking. Finally, optical investigations of 

palynofacies reveal high proportion of fluffy amorphous organic matter (Fig. 5A) which is 

usually derived from phytoplanktonic sources (Tyson, 1995). The quantification using HI-

values underestimates the real contribution of the marine source to the enrichment in organic 

matter. 

 

The thermochemolysis of 9 samples provides another way to estimate the continental 

versus marine contribution to the organic matter. All chromatograms are similar to that shown 

on Fig. 10; the main quantitative data are given in Table 4. Compound distributions are 

dominated by fatty acid methyl esters (FAMEs) and lignin degradation products: vanillic and 

syringic acids and aldehydes, coumaric and ferulic acids, plus non lignitic pHO-benzoic acid 

and aldehyde. FAME distributions are dominated by even carbon numbered FA from C22 to 

C34, with a mode at n-C24 (Fig. 10). These compounds are also accompanied by lower but still 

notable proportions of odd-numbered n-alkanes from C27 to C31, with a predominance of n-

C29 (Fig. 10). All these compounds are classically assumed to be typical components of higher 

plants, the C20+ FAMEs and the high molecular weight n-alkanes being common constituents 

of aerial plants cuticular waxes. Relatively high proportions of syringic moieties (i.e. acid plus 

aldehyde) over their vanillic counterparts (S/V = 0.3-0.61; Tab. 4) reveal that lignin originates 

from Angiosperms, with a contribution from Gymnosperms being not to be excluded (Hedges 

and Mann, 1979). Rather extensive lignin alteration is revealed by the predominance of 

vanillic and syringic acids over the corresponding aldehydes [(Vac+Sac)/(Vald+Sald) = 1.74 



 

to 2.56; Tab. 4), by the high contribution of acid moieties to the total lignin (Vac+Sac)/Ltot = 

0.55 to 0.65; table 4) and also by very low proportions of coumaric and ferulic acids (data not 

shown), these two compounds originally linked to the lignin backbone by labile ester bonds 

being rather easily degraded during early diagenesis (Bourdon et al., 2000). The importance 

of the continental organic matter contribution to the sediments is also assessed by rather high 

lignin and C20+ even-carbon numbered FAMEs concentrations, amounting to 32-48 mg.g-1 

TOC and 5.7 -26.4 mg g-1 TOC, respectively (table 4). For comparison, recent analysis of 

Holocene peat by the same methods (Disnar et al., 2008) yielded lignin and C20+ FAME 

concentrations of 4-20 mg.g-1 TOC and 2-7 mg g-1 TOC, respectively. The higher yields 

obtained with Congo sediments is very probably due the loss of the more labile constituents 

(e.g. polysaccharides), during diagenesis.  

The presence of FAMEs from C16 and C18 is noted in all chromatograms. Such compounds 

are usually produced by both algae and higher plants but they are rapidly destroyed in aerial 

condition and soils (Marseille et al., 1999). Then, in sediments they can be assumed to derive 

from autochthonous (marine) production. Hopanoids components are ubiquitous in all 

analyzed samples, although in very low proportion. This suggests a contribution of bacterial 

biomass, which may have developed in soil as well as within marine sediments.  

 

To summarize, the recent mud-rich sediments from the Congo deep-sea turbidite 

system contain high amounts of organic matter, the origin of which is a mixture of terrestrial 

higher-plant debris and deeply oxidized phytoplanktonic material. Although we have 

evidence that both sources contribute to the organic matter sedimentation in the Congo deep-

sea fan, their relative importance cannot be precisely quantified. In any case, the continental 

fraction of the organic matter appears very important (at least 70-80%) especially for such 

depths and distance from the coast. A similar proportion (60 %) of continental organic matter 

was recently reported in the sediments from the GeoB6518-1 core recovered by 962 m of 

water-depth close to the canyon/upper channel-levees transition (Weijers et al., 2009). This 

similarity is surprising in that the sampling sites are at very different depths and processes that 

allow the accumulation of sediments on the edge of the canyon and along the middle part of 

channel-levees system are quite different (Savoye et al., 2000). This suggests a homogeneous 

distribution of the particulate organic matter delivered by the Congo River in the different 

parts of the deep-sea fan. 



 

 

5.2 Controls on the distribution and accumulation of organic matter in channel-levees 

Turbidite emplacement is discontinuous and usually produces layers of sediment in 

which organic matter quantity, type and preservational state are heterogeneous (Cowie et al., 

1995; Meyers et al., 1996; Watanabe and Akiyama, 1998; Lindblom and Järnberg, 2004; 

Saller et al., 2006; Caja and Permanyer, 2008). By contrast, in the levees from the Congo 

mud-rich deep-sea fan, the organic matter appears very homogeneous regardless of the scale.  

 

At the scale of a turbiditic small sequence, the organic matter shows more or less a 

constant quantity (3 %) and quality according to the pyrolysis parameters HI and OI. This is 

mainly due to the fine-grain composition of the turbidite off Congo which are mainly made by 

clay and fine silt fractions (10 µm as median grain-size). As organic matter particles are less 

dense than minerals, they are mainly associated with fine-grain component of the sediment. 

Organic matter particles have larger size in sandy facies but they are less numerous; then the 

organic content is usually lower at the base of sandy turbidites. Because the sandy fraction is 

a minor component of the studied levees, the organic matter content is near constant from the 

base to the top of a single turbiditic bed. Although, turbiditic clays cannot easily be 

distinguished from hemipelagic clays in such fine mud-rich system, the latter have been 

analysed at least in several levels and they show changes neither in quantity nor in type of 

organic matter. This implies that the hemipelagic sedimentary flux has more or less a similar 

characteristic for organic matter than the turbiditic input or, at least, that the preserved organic 

matter from hemipelagic sedimentation finally achieves the same characteristics. 

Indeed, Treignier at al. (2006) studied the organic matter content and composition of 

sediment trapped 30 m above the channel before and just after a turbiditic event, as well as the 

surficial sediment sampled nine months after the event at the same water depth (~ 4000 m) 

than our studied area.  

This sediment contained 4.2 % TOC and showed a predominance of long-chain n-alcohols 

typical for higher plant waxes, in the free lipid extracts. Despite the predominance of these 

compounds in cuticular waxes, and especially over long chain fatty acids and n-alkanes, they 

were absent among the thermochemolysis products of the nine samples we analyzed (Fig. 10). 

This absence is undoubtedly due to the microbial degradation of these labile compounds 

during early diagenesis. Treignier et al. (2006) estimated a degradation constant value 



 

comprised between 0.6 and 1.2 y-1 for the C22+ n-alcohols that is rather considerable. The fate 

of these compounds fully illustrates the considerable changes that can affect molecular 

signatures during sedimentation and diagenesis and the importance of the choice of markers 

used for assessing the origin and relative importance of original organic matter inputs to 

sediments.  

 

The quantity of organic matter is near constant in the transect 700 km from the apex of 

the canyon (KZAI 04-05) compared to the transect located 150 km downstream (KZAI 13-

14), although the sediment accumulation rate increases by one order of magnitude between 

these two areas (0.4 to 0.8 m/ka against 4.4 to 6.5 m/ka; Savoye et al., 2009). However, these 

sedimentation rates are both important for deep-sea environments. Such values indicate that, 

despite long distance transportation and/or deposition at rather great water depth, sediment 

emplacement occurred rapidly which is a suitable condition for organic matter preservation. 

Although the difference in the channel depth (140 m at KZAI 04-05 site and 90 m at KZAI 

14-15 site) generates ten times more spillovers downstream (Savoye et al., 2009), the near 

constant quantity of organic matter suggests that the composition of the spillovers of the 

channelized flows, where organic matter, clay minerals and silts are carried in suspension, 

have a more or less similar composition in these different type of particles and that in the 

channelized flow, between 90 m and 140 m height (50 m thickness), the turbulence does not 

generate a significant segregation of organic particles. As the lithology of sediments does not 

change a lot between the two areas, this assumption seems valid. 

More surprising is the fact that changes in sediment accumulation rates do not imply 

changes in the quality of the preserved organic matter. Usually, low sedimentation rates 

determine a longer residence time of the organic particles in the oxygenated zone near the 

water-sediment interface and consequently the organic matter is more easily remineralised. In 

contrast, high sedimentation rate led to a better preservation of organic particles. Here the 

organic matter quality parameters (HI, OI, C/N, δ13Corg and δ15N) appear very constant along 

both the upstream and downstream transect. 

This may be due to the fact that continental organic particles, which are the main 

component of the organic matter in Congo deep sea fan sediments, are more resistant than 

marine organic matter. Marine organic matter may represent 40% of the preserved organic 

matter but is also deeply and rapidly altered after deposition as shown by Treignier et al. 



 

(2006) on the n-alcohol fraction. Thus, changes in marine contribution during settling have 

little impact on the final composition of the organic matter of the sediment. It seems that after 

its deposition, the organic mixture of continental and marine particles is homogenised by 

oxidative alteration and exhibits constant quality parameters. 

A minor change is noted, however, in the HI and OI values with the distance from the 

channel. Samples from cores KZAI 05 and 14 which are located closer to the channel display 

higher HI- and lower OI-values compared to samples from cores KZAI 04 and 13 which are 

500 to 5000 m separated from the counterpart. The changes are minor (Δ = –40 mg HC/g 

TOC for HI and +40 mg CO2/g TOC for OI) but significant if we consider the distribution of 

analysed samples on a HI-OI diagram (Fig. 11). Moreover, the dispersion of samples is more 

important in the IH-IO diagram in cores located far from the channel. This is maybe the 

indication that changes in accumulation rates have already a little impact on the quality of 

organic matter. 

 

5.3 Implication for deep-sea petroleum source rocks analogs 

TOC is the primary parameter of source rock appraisal, with a threshold of 1 wt% at 

the immature stage for potential source rocks. With an average TOC value that largely 

exceeds this threshold, the fine-grained turbiditic sediments in the Congo deep-sea fan could 

be regarded as good future gas-prone source rocks. Mean petroleum potential range between 4 

and 4.7 kg HC per t rock and are mainly gas-prone as the organic matter is primarily of 

continental origin. 

The shaly levees are the main sedimentary facies that built the present-day Congo 

deep sea fan. The volume of potential source rock is here very important, especially if we 

consider their proximity to the sandy reservoirs located in the channel filling. Such organic-

rich facies may also a source for biogenic gas, which is not yet fully characterized. Methane-

rich vents are numerous in the Congo deep sea fan and the degassing of studied cores has 

been noted on board the research vessel just after their recovery. 

Fossil analogs of the present-day deep sea fan are distributed along the Atlantic 

passive margins throughout the geological times, especially in the Congo-Angola basin. 

Ancient deep-sea fans are now buried and such facies may be regarded as contributors to the 

regional petroleum systems. A recent study of the Oligocene succession off Angola 



 

demonstrates the petroleum potential of deep-sea claystones deposited as levee facies (Disnar 

et al., in press). 

 

5.4 Implication for the global carbon cycle 

The transfer of carbon from land to sea has been recognized as an important pathway 

in the global carbon cycle (Milliman, 1991; Burdige, 2005). Rivers play a major role and 

transport most of the ~500 Tg per year of organic carbon carried from land to the global ocean 

(Spitzy and Ittekkot, 1991). One critical aspect in the ocean carbon budget is the particulate 

export flux from the coastal zone to the open ocean (Biscaye and Andersson, 1994; Goni et 

al., 1997; Hedges et al., 1997; Andersson and Mackenzie, 2004; Dagg et al., 2004). Several 

programs have addressed this question on different types of oceanic margin and have shown 

the diversity of the modes of transfer (i) in nature with continental versus marine carbon, (ii) 

in space with canyons playing a major role in channelling the particulate flux in some places, 

(iii) in time with storms, instabilities, current surge playing a significant role in transporting 

particles and carbon from the shelf to the slope and open ocean. 

In the case of the Congo deep-sea fan, the main part of the sedimentary load, including 

organic matter, is transported directly from the river mouth to the deep-sea because the 

canyon starts within the estuary. Our results indicate that high concentration of organic matter 

(3% on average) is preserved in the shaly facies developed all along the lower channel/levee 

systems. These facies are the main deposits through time, as channel sandy facies represent 

only 20% on seismic profiles (Droz et al., 1996; Savoye et al., 2000). Thus, huge amount of 

organic matter is preserved in the deep-sea fan system of the Congo.  

Anka and Séranne (2004) estimate the volume of ancient fan related to the Congo River from 

Oligocene to Present to a minimum of 0.7 106 km3. Taking an average of 3% of Corg and 

1500 kg/m3 for the density of dry sediment, we may calculate that 3 1013 tons of carbon are 

stored in that part of the Atlantic margin. 

If we assume that the present-day delivery of particulate organic matter by the Congo River (1 

mg C/L and a mean flow around 50 000 m3/s) was constant through time and that this 

particulate organic flux was totally preserved in the sediment of the margin, we calculate that 

5.4 1013t of carbon should be stored since 34 Ma. Despite our roughly assumptions, both 

estimations are in the same range and the magnitude is probably correct. 

 



 

The Congo deep-sea turbiditic system is one of the largest in the world still affected by 

turbidite sedimentation during the interglacial high sea-level (Savoye et al., 2000). Such a 

phenomenon is unique along the present-day African margin as most of the canyons are not 

connected with the river. During the glacial periods, when sea-level was low, other huge 

rivers, including the Amazon River, were directly connected to their submarine canyons and 

carbon transfer from land to deep sea was much more higher than today. Indeed, the present-

day situation of the Congo River cannot be generalized to low seal-level period and further 

studies are needed to evaluate the efficiency of such systems for the storage of continental 

organic matter into the deep ocean at that time. 

 

6. Conclusion 

 

The claystones and siltstones deposited in the lower channel/levees system of the 

Congo deep sea fan are virtually devoid of carbonate and contain a high proportion of organic 

matter, with total organic carbon content around 3 wt%. This organic richness appears very 

homogeneous at different scales, although smaller quantities are noted in more sand-rich 

facies corresponding to the basal part of a turbiditic event.  

The identification and quantification organic carbon sources are difficult because 

several parameters influence the bulk and molecular characteristics of the preserved organic 

matter. Hydrogen Index values, carbon isotopic ratios and molecular data, all indicate a strong 

influence from the detrital source, with proportion as high as 90%. C/N ratios and nitrogen 

isotopic ratios, on the contrary, suggest that marine contribution to the organic matter 

sedimentation may represent up to 40 %. Although evidence exist that both sources contribute 

to the organic matter sedimentation in the Congo deep-sea fan, their relative importance 

cannot be precisely quantified. In any case, the continental fraction of the organic matter 

appears very important (at least 60%) for such depth and distance from the coast. 

The quantity and quality of organic matter is near constant in cores located at 700 km 

from the apex of the canyon compared to cores located 150 km downstream, although the 

sediment accumulation rate increases by one order of magnitude between these two areas. 

This suggests that the spillovers of the channelized flows, where organic matter, clay minerals 

and silts are carried in suspension, have a more or less similar composition in these different 

types of particles. Change in accumulation rates has already a little impact on the quality of 



 

organic matter, as higher plant and soil organic matter particles, which seem to be dominant, 

are more resistant than marine organic matter. 

With a TOC content of 3% and petroleum potential around 4.5 kg HC per t rock, the 

fine-grained turbiditic sediments in the Congo deep-sea fan could be regarded as  good future 

gas-prone source rocks. Analogs of the present-day deep sea fan are distributed along the 

Atlantic passive margins throughout the geological times, and should be considered as 

potential source rocks for the deep offshore realm. 

Finally, the Congo deep-sea fan is a major conveyor of organic carbon to the deep 

Atlantic Ocean in the present-day high sea-level situation. This system where the canyon is 

connected to the estuary can be generalized to other deep sea fans during low seal-level 

periods. Further studies are needed to evaluate the efficiency of such systems for the storage 

of continental organic matter into the deep ocean. 
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Captions of figures and tables  

 

Fig. 1. General map of central Africa and the Gulf of Guinea in eastern equatorial Atlantic 

Ocean, showing the course of the Congo River, its main distributaries and its drainage area 

(watershed), the surface and subsurface currents (open arrows: cold currents; black arrows: 

warm currents), and highly productive areas (the latters modified from Schneider et al., 1994).  

 

Fig. 2. Top: bathymetric map (contour interval: 100 m) showing the general morphology of 

the Congo canyon and the modern meandering channel along the Congo fan. Limits of the 

canyon, upper fan, channel/levee systems and lobes are from Babonneau et al. (2002). Studied 

areas are located in the lower channel/levee systems. Bottom: Detailed bathymetric map 

(contour interval: 10 m) and location of studied cores within the two studied areas, modified 

after Gervais et al. (2001), Migeon et al. (2004). 

 

Fig. 3. Top: line drawings of 3.5 kHz profiles showing the internal structures of the studied 

levees and location of studied cores along these schematic cross-sections (Migeon et al. 2004 

; Gervais et al. 2001). Bottom: core logs showing the sediment grain-size changes and the 

sampled interval along each core, redrawn after Migeon et al. (2004), Gervais et al. (2001) 

and Migeon (2000). 

 

Fig. 4. Vertical distribution of grain-size parameters (granulometric composition, median 

grain-size), Total Organic Carbon (TOC, in weight %), Hydrogen Index (in mg HC/g TOC), 

C/N and δ13Corg (in ‰) of the four cores studied in the levee facies with a 20 cm-spacing. 

Core location is shown on figs. 3 and 4. 

 

Fig. 5. Microphotographs of palynofacies of the fine grained sediments of the levees from the 

Congo deep sea fan near 4000 m-depth. a: Amorphous organic matter (AOM) having a fluffy 

aspect. b: AOM containing small ligno-cellulosic debris. c:  Structured phytoclast, apparently 

derived from root cortex tissues. d: Partly-gelified ligno-cellulosic debris on which vegetal 

fibre are still discernible. e: Opaque particle with corroded outlines on the right and small 

piece of structurless phytoclast on the left. f: Spore. 

 



 

Fig. 6. Vertical distribution of median grain-size (in µm), Total Organic Carbon (TOC, in 

weight %), Hydrogen and Oxygen Indexes (in mg HC/g TOC and mg CO2/g TOC, 

respectively) in several elemental turbiditic beds from cores KZAI 04, 14 and 15 with a 2 cm-

spacing. Core location is shown on figs 3 and 4.  

A and B: type1-bed, C and D: type 2-bed, E: type 3-bed, F: type 4-bed following the 

nomenclature defined by Migeon et al. (2004). 

 

Fig. 7. Kerogen type in the silty-clayey sediments of the lower channel/levee systems from 

the Congo fan as defined by the cross-plot of TOC and pyrolysis S2 parameters. Nearly all 

samples are located in the domain of Type III organic matter which usually derives from 

higher plant debris. 

 

Fig. 8. Relationship between total organic carbon and total nitrogen for three core sediments 

from the lower channel-levees system of the Congo fan. The linear regression line based on 

all data points (R²=0.81) is indicated by the dashed line. 

 

Fig. 9. Kerogen type in the silty-clayey sediments of the lower channel/levee systems from 

the Congo fan as defined by the cross-plot of δ13Corg (in ‰) and δ15N (in ‰). Here the 

organic matter derives from a mixture of C3 land plants and marine algae. 

 

Fig. 10. Example of partial reconstituted Total Ion Current (TIC) chromatogram of the 

products of thermochemolysis with TMAH of sample from the silty-clayey sediments of the 

lower channel/levee systems from the Congo fan (sample KZAI 05 – 540-541 cm). The 

dominance of lignin-derived compounds (L), long-chain and odd-numbered n-alkanes, and 

long-chain fatty acid methyl esters (FAMEs) indicate the predominance of terrestrial organic 

matter. Nevertheless, nC16:0 and nC18:0 FAMEs may be interpreted as derived from algal 

biomass whereas the presence of hopanoid testifies from a bacterial origin of some part of the 

organic matter. 

L = lignin derivatives and others phenolic compounds, all as Me ester and ethers (in 

increasing elution order) : pHO-benzaldehyde, pHO-benzoic acid, vanillin, vanillic acid 

(dominant), syringaldehyde, coumaric acid, syringic acid, ferulic acid. 



 

Hopanoids : the first compound H30 is the regular hopane, the three following ones (H30-H32) 

are hopanoic acids (as Me esters).     

 

Fig. 11. van Krevelen diagram showing the homogeneity of the organic matter in the silty-

clayey sediments of the lower channel/levee systems from the Congo fan. The samples which 

are more distant from the axis of the channel show lower HI-values and higher OI-values 

indicating a little bit stronger oxidation effect. 

 

Tab. 1. Location of the studied cores (Lat., Long., water-depth), penetration into the 

sediments, length of studied interval and number of studied samples. 

Table 1.  

Location of the studied cores (Lat., Long., water depth), penetration into the sediments, length 
of studied interval and number of studied samples. 

 Core Lat. 
(°S) 

Long. 
(°E) 

Water 
depth 
(mbsl) 

Situation Penetration 
(mbsf) 

Studied 
interval 
(m) 

Number 
of samples 

Mean 
spacing 
(m) 

Upstream KZAI 
04 

5° 
48.04 

8° 
08.96 4047 Levee 16.87 10.0 83 0.12 

 KZAI 
05 

5° 
44.50 

8° 
08.29 4012 Crest of 

levee 13.34 9.8 49 0.20 

 KZAI 
06 

5° 
44.10 

8° 
08.23 4150 Channel 

axis 3.24 0.2 1 – 

 

Downstream KZAI 
13 

5° 
47.30 

7° 
13.89 4447 Levee 17.92 9.6 79 0.12 

 KZAI 
14 

5° 
47.09 

7° 
13.98 4343 Crest of 

levee 17.3 10.0 100 0.10 

 KZAI 
15 

5° 
46.62 

7° 
14.19 4433 Channel 

axis 1.93 0.6 4 0.15 

 

Tab. 2. Bulk inorganic and organic characteristics of the studied samples in each studied core. 

Minimum, mean and maximum values are given for CaCO3 (in %), TOC (in %), Hydrogen 

Index (HI, in mg HC/g TOC), C/N, δ13Corg (in ‰) and δ15N (in ‰). 

(in ‰) and δ15N (in ‰).  



 

 Cor
e 

Situati
on 

Numbe
r of 
sample
s 
analys
ed 

CaCO3 (%) TOC (%) HI (mg HC/g 
TOC) 

Numbe
r of 
sample
s 

C/N δ13C (%o) δ15N (%o) 

    Mi
n 

Mea
n 

Ma
x 

Mi
n 

Mea
n 

Ma
x 

Mi
n 

Mea
n 

Ma
x 

analys
ed 

Mi
n 

Mea
n 

Ma
x Min Mea

n Max Mi
n 

Mea
n 

Ma
x 

Upstream 
KZ
AI 
04 

Levee 83 1.5 2.7 6.0 1.4 3.0 5.6 93 134 200 17 10.
7 12.9 15.

5 
−27.1
2 

−26.3
7 

−23.8
5 

5.1
2 5.44 6.0

9 

 
KZ
AI 
05 

Crest of 
levee 49 2.0 2.6 3.3 2.4 3.1 3.7 115 148 189 16 12.

6 
13.1
6 

13.
7 

−26.9
6 26.61 −26.3 5.2

3 5.61 6.3
1 

 

Downstre
am 

KZ
AI 
13 

Levee 79 0.8 2.6 3.3 0.1 2.97 4.0
4 82 137 171 16 11.

8 
13.0
9 

15.
7 

−26.1
7 

−25.9
4 

−25.4
6 

4.9
8 5.47 5.9

8 

 
KZ
AI 
14 

Crest of 
levee 100 1.3

3 2.5 3.2
5 

0.8
5 3.08 3.9 128 163 236           

 
KZ
AI 
15 

Channe
l 4 0.7 1.88 3.1

8 0.0 1.48 3.6
3 118 145 182           



 

 

Tab. 3. Estimates of continental organic matter fraction (in %) of the total organic matter in 

marine sediments from KZAI cores based on the binary mixing models of different proxies. 

 

. 

Core Proxy 

 Mean HI Max HI N/C δ13C (%o) δ15N (%o)

KZAI 04 89 67 84 94 45 

KZAI 05 84 70 86 98 42 

KZAI 13 88 76 86 87 44 

KZAI 14 79 55    

KZAI 15 85 73    

 

Average 85 67 85 93 44 

 
 

 

Tab. 4 . Main data on lignin-derived products and on FAMEs released by thermochemolysis 

Sac, Sald & S = syringic acid, aldehyde and total, respectively 

Vac, Vald & V = vanillic acid, aldehyde and total, respectively 

Ltot = total lignin = S + V + (coumaric and ferulic acids) 

*Compound concentrations in mg.g-1TOC. Note that sample from core KZAI 15 corresponds 

to a sandy facies from the channel.  

 

Main data on lignin-derived products and on FAMEs released by thermochemolysis. 

Cor
e 

Dept
h 
(cm) 

TO
C 
(%) 

S/
V 

(Vac + Sac)/L
tot 

(Vac + Sac)/(Vald + S
ald) 

Ltot
* 

(nC16 + nC18)FAM
Es* 

C20 + evenFAM
Es* 

KZA
I 04 1–2 1.54 0.3

0 0.65 2.56 32.2 8.9 19.5 



 

Cor
e 

Dept
h 
(cm) 

TO
C 
(%) 

S/
V 

(Vac + Sac)/L
tot 

(Vac + Sac)/(Vald + S
ald) 

Ltot
* 

(nC16 + nC18)FAM
Es* 

C20 + evenFAM
Es* 

KZA
I 04 

297–
298 2.60 0.3

3 0.60 1.74 36.2 5.4 5.7 

KZA
I 05 2–3 2.40 0.4

5 0.62 2.02 40.1 8.2 16.5 

KZA
I 05 

540–
541 3.28 0.5

9 0.56 1.83 45.0 7.6 26.4 

KZA
I 05 

960–
961 3.45 0.3

3 0.62 2.05 33.9 7.2 12.5 

 

KZA
I 13 

540–
541 3.20 0.6

1 0.59 2.37 46.3 7.4 18.7 

KZA
I 13 

926–
927 2.42 0.5

7 0.55 1.75 48.2 3.8 13.7 

KZA
I 13 

928–
929 2.42 0.5

6 0.55 1.81 48.4 5.4 15.8 

KZA
I 15 4–5 1.59 0.3

6 0.61 1.98 34.4 7.5 13.0 

Sac, Sald & S = syringic acid, aldehyde and total, respectively; Vac, Vald & V = vanillic acid, 
aldehyde and total, respectively; Ltot = total lignin = S + V + (coumaric and ferulic acids); 
*Compound concentrations in mg g−1 TOC. Note that sample from core KZAI 15 corresponds 
to a sandy facies from the channel. 
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