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Abstract 

The count intercept is a robust method for the numerical analysis of fabrics Launeau and 
Robin (1996). It counts the number of intersections between a set of parallel scan lines and a 
mineral phase, which must be identified on a digital image. However, the method is only 
sensitive to boundaries and therefore supposes the user has some knowledge about their 
significance. The aim of this paper is to show that a proper grey level detection of boundaries 
along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal 
distributions without any particular image processing. Populations of grains and crystals 
usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a 
combination of a minimum of 3 mean length intercept roses, taken on 3 more or less 
perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the 
determination of their standard deviation with direction and intensity in 3 dimensions as well. 
The feasibility of this quick method is attested by numerous examples on theoretical objects 
deformed by active and passive deformation, on BSE images of synthetic magma flow, on 
drawing or direct analysis of thin section pictures of sandstones and on digital images of 
granites directly taken and measured in the field. 

Keywords: Shape preferred orientation; Fabric; Structural geology; Intercepts; Image 
analysis 
 

1. Introduction 

The intercept method is based on counting the number of intercepted segments of a set of 
objects on the image by a set of parallel scan lines along a number of directions. In practice, 
the intercept number is the count of boundaries found by moving out of an object along a scan 
line (Fig. 1). Polar plots, or rose diagrams, of the number of intercepts in each direction were 
defined in material science by (Saltykov, 1958) and (Underwood, 1970). The method began to 
be used in geology by (Panozzo, 1983), (Panozzo, 1984) and (Panozzo, 1987), who was also 



aware of the difficulty of counting intercepts on digital images (Panozzo Heilbronner, 1988. 
The application to digital images was presented by Launeau et al. (1990) and fully formalized 
by Launeau and Robin (1996) with the addition of a Fourier analysis of the intercept count 
and the definition of the rose of traverses or the rose of mean intercept length obtained by 
dividing the area of all objects of interest by the number of intercepts in each direction. 
 

It is often difficult to identify all the boundaries when objects are crystals or grains 
interconnected to each other in images. Some boundaries are missing, hence the crystal or 
grain sizes are biased. However, since the intercept method is only sensitive to boundaries, it 
remains applicable and can still be used to analyze the anisotropy of aggregated objects when 
a significant percentage of crystal or grain boundaries remain visible (Launeau et al., 1990). 

In the procedure presented by Launeau and Robin (1996), it was necessary to threshold or 
classify the image to distinguish a phase from its background. In this new version, based on 
the detection of intercepts in grey levels, the time-consuming imaging pre-processing can be 
drastically reduced. It does not use classical edge detection, which produced too many 
artifacts, as inferred from Panozzo Heilbronner (1988), but instead combines a long low-pass 
filter along scan lines of analysis with a narrow high pass edge detector. This was used by 
(Lebichot et al., 2005) and (Pirard et al., 2007) for comparison with another grey level 
detection of intercepts designed for material science projects, where boundaries appear dark 
between light grey crystals. The present work was optimized for common pictures of rocks, as 
shown in the following examples. 

Alternative methods using grey level images to quantify anisotropy include autocorrelation 
techniques from Panozzo Heilbronner (1992) or wavelet techniques from Gaillot et al. (1999). 
Both methods are sensitive to spatial distributions, which are useful to characterize crystal or 
grain alignments. In contrast, the intercept method is insensitive to crystal alignment and 
therefore not recommended for such studies. However, it can sample images at high angular 
resolution to yield many parameters, such as the rose of boundary directions, which can be 
extracted from the Fourier analysis of their rose diagrams (Launeau and Robin, 1996). Many 
applications are available from (Diot et al., 2003) and (Romeo et al., 2007). The present grey 
level version was used by Archanjo et al. (2009). The aim of this presentation is to focus on 
the limit of the validity of the technique to avoid misuse and misunderstanding of the results. 

In structural geology, geologists are often interested in shape preferred orientation (SPO). It 
can be the SPO of rigid bodies embedded in a viscous matrix indicating a preferential flow 
direction (also known as active deformation) or the mean shape of a population of objects 
passively deformed within their surrounding material (also called passive deformation). In 
both cases, it is a population of a large number of objects. As shown by Launeau (2004) with 
repeated simulations, individual shapes do not have to be known in great detail. The SPO is 
mainly sensitive to the degree of preferred orientation, and is therefore usually elliptical when 
there are enough objects that are not all parallel to each other. When an SPO appears as an 
ellipse for any section (in 2-D), it is an ellipsoid in volume (in 3-D). This was demonstrated 
by Robin (2002), who also defined two modes of calculation, one with and one without a 
scale factor. In the scale factor procedure, the size information is used to build the ellipsoid. 
However, the lack of boundary detection in some images alters the exact determination of 
sizes in 2-D. Following the recommendation of Robin (2002), it was therefore necessary to 
use the ellipsoid construction without a scale factor. A combination of sub-samples, as 



defined by Launeau and Robin (2005), was also used to check the homogeneity of the data for 
each section and to estimate the 3-D standard deviation of the ellipsoid parameters. 

To highlight that no SPO calculation can be fully understood without questioning the 
mechanical processes involved, a set of synthetic objects, passively and actively deformed, 
were used to test the intercept method. An application to a famous textbook example enabled 
the comparison between the application of the intercept method to grey level images and the 
hand drawing of a quartzite thin section. Application to BSE images of a synthetic magma 
showed how sub-windows of measurement can be used to check the homogeneity of 2-D SPO 
and how it can detect significant shear localizations. Finally, a 3-D application showed that 
foliations and lineations can be quantified in the field, without any prior knowledge of their 
orientation, with a portable computer and a digital camera. It only requires a minimum of 3 
flat and clean random sections, nearly perpendicular to each other, to give the orientation of x, 
y and z with the lengths a, b and c of the SPO ellipsoid. 

2. Counting intercepts 

In theory (e.g. [Underwood, 1970], [Serra, 1982] and [Coster and Chermant, 1989]), at a 
single point x, of grid coordinates (i, j), the number of intercepts along a set of points N0 is 
equal to either 1, when the point is identified as belonging to the phase X analyzed, or 0 when 
it is not. 

 
 
and it follows that: 
 

 
 
where a is the surface area credited to each grid point. Typically, a is given by the distance I 
of successive points on a line, and the distance between lines, J, so a = I × J. The area of the 
window, Aw, is calculated from the total number of grid points in the window, N0

w, by 
 

 
 
and the fraction of X is 
 

 
 
Along a test line, say the jth line, the number of intercepts N1(j) is equal to the number of 
segments of the set of objects intercepted along that line (Underwood 1970, Section 1.3.3). In 
the automatic analysis of an image, N1(j) is counted on a given test line j by sliding a cursor 
along that line, i.e. by increasing i, and counting all the positions in which, for example, the 
cursor moves out of X, i.e. whenever N0(i, j) changes from 1 to 0 (Fig. 1a). The intercept 
method is based on adding the number of segments of X, on a series of straight parallel lines j 
having a direction α on the section. 
 

 
 



By multiplying by the spacing J between the grid lines, one obtains the total diameter 
intercepted along direction α within the window (Fig. 1), 
 
D(α)=JN1(α) 
 
The density of intercepts, NL(α), independent of the size of 
 
the area analyzed, Aw, and of the spacing, J, of the lines (Underwood, 1970, Section 1.3.3) is 
then obtained from: 
 

 
 
Saltykov (1958) was the first to plot NL(α) in polar coordinates (Fig. 1c) and to obtain a rose 
of intercept densities. One can also calculate and plot the rose of mean intercept distances, L̅w 
(α), which is simply the reciprocal of NL(α), 
 

 
 
When concerned with the objects that make up phase X, the mean intercept length, 
 

 
 

and the corresponding rose, Fig. 1e, are used instead. 

The application to digital images is not trivial. It supposes sampling in any α direction with 
the same I spacing between the points of analysis, despite the fact that pixel spacing varies 
from 1 in lines and columns to 20.5 in diagonals. In practice, a new grid is defined and a point 
is analyzed at the pixel location that has the closest coordinates (Fig. 2a). This sampling 
process leads to various artifacts, discussed in Launeau and Robin (1996), such as the 
multiple detection of intercepts along the scan line tangential to an object boundary, as shown 
in Fig. 2b. This is avoided by calculating a 10-pixel long weighted density of intercepts, using 
the following coefficients defined in Launeau and Robin (1996): 

A count of intercepts along lines N1 is done each time the density line crosses the 50% density 
level downward as shown in Fig. 2b. 

Despite this smoothing, a Fourier series analysis is required. Let FM be the Fourier series 
representation of the rose of intercept counts, NL(α), to its Mth harmonic (M even). Because 
we impose that the rose of intercept densities is centro-symmetric, and therefore periodic over 
π, only even-numbered components differ from 0. The series can be written as 

 
 
Or 
 



 
 
where A2m, B2m, and C2m are the (2m)th coefficients of the Fourier series, and φ2m is the phase 
angle of those (2m)th components. These components are related to each other by: 
 

 
 
Fourier series analysis consists in calculating the components of the series from observations. 
Numerically, they can be calculated from K actual intercept counts, measured at angular 
intervals δα (K δα = π). For NL(α), 
 

 
 

 
 

Since the coefficients are calculated from only K independent values of NL(α), we should not 
expect more than K Fourier coefficients, including C0, to be significant. Components should 
therefore not be calculated beyond 2M = K − 1. As discussed below, the plot of C2m versus m, 
also called the power spectrum of the Fourier series, is useful to distinguish a significant 
signal from a blank noise usually found at high m values. The Fourier series (Eq. (12)) can 
therefore be truncated below the critical m to remove this blank noise. 

3. Counting intercepts in grey levels 

The grey level method hypothesizes that a mineral phase, a crystal or a grain of it, is a subset 
of adjacent pixels presenting a short range of grey levels distinct from its neighbors by local 
sharp drops or ascents of grey levels constituting edges. In such a case, f is equal to 100%, A 
confused with Aw and thus mean intercept distances are identical to mean intercept lengths. 
This is typically the case of a monomineral rock. For example, when analyzing the dark grains 
of biotite surrounded by plagioclase ones, with a lighting gradient preventing the definition of 
a threshold level between both minerals, the mean intercept length is an average of the overall 
anisotropy without possible distinction between the minerals. Such results are therefore 
provided with a warning “100% Aw”. 

Multiple edges formed along a scan line tangential to the object boundary (Fig. 2c) are 
smoothed out (Fig. 2d) with a low-pass filter in grey levels having the same coefficients of 
Eq. (10). The effective intercept count N1 is done by the calculation of the absolute value of a 
gradient applied to the smoothed scan line: 

The precise location of the intercept is at mid-distance of the resulting edge (or gradient) 
amplitude profile, which is maximum on each intercept spot (Fig. 2h). The level of intercept 
detection is set by a threshold value. Setting it at 150 would give 1 intercept in Fig. 2h while 
setting it at 50 would gives 2 intercepts. 



Unlike the original intercept method for digital images, a minimum distance between objects 
is not required in grey levels since objects with sufficient edge amplitudes can be directly in 
contact with each other. However, any object smaller than half the size of a smooth filter 
remains invisible. 

When a rock sample occupies only a fraction of an image, which is typically the case on a thin 
section, it is surrounded by a white (in the case of plane light) or black (for polarized light) 
background which must not be analyzed. Fig. 3a is a test image made of adjacent rectangles 
with an aspect ratio of 2, simulating ideal crystals of a sample truncated at various distances 
from their boundaries, in such a way that the apparent aspect ratio is not preserved on the 
sample boundary. By masking the pixels of the background, we avoid the analysis of the 
insignificant sample boundary (Fig. 3b). The efficiency of the intercept method to analyze 
objects truncated by any window of measurement is also attested by a complementary 
analysis of the image through four overlapping sub-windows giving identical results. Fig. 3c 
displays the Fourier power spectrum and the truncation level of the Fourier series. Individual 
roses of mean intercept length are shown at the center of their sub-windows of analysis in 
Fig. 3b, and the main one is presented in Fig. 3d with the final results. Fig. 3e details the area 
of each overlapping sub-window which scans the image along horizontal and vertical 
directions. The overlapping is set at 50% in both directions as defined by Launeau and Robin 
(2005). 

When mean length roses are ellipses on sections, they can be combined with other sections to 
calculate a 3-dimensional ellipsoid following the procedure defined by (Robin, 2002) and 
(Launeau and Robin, 2005). The benefit of this new version of intercept counting is in fact its 
ability to provide a fast analysis of digital images, which can be combined together in the field 
on a portable computer to provide ellipsoid, lineation (long axis) and foliation (plan 
perpendicular to the short axis). 

4. Application to theoretical shapes 

A full discussion on the intercept mean length rose can be found in Launeau and Robin (1996). 
It is sensitive to boundaries. However, a short test on synthetic images is presented here to 
clarify the distinction between anisotropies of (passive) objects without contrast and (active) 
objects with infinite contrast of viscosity with their surrounding matrix. These are, 
respectively, soft objects that are passively deformed in their matrix, and rigid objects that are 
continuously rotating and interacting with each other in their matrix and preferentially 
oriented along the flow direction (see also the discussion in Launeau, 2004). 

The initial state of the matrix is presented as a disk (Fig. 4a) and four rectangles at 0, 45, 90 
and 135° (Fig. 4c and e) simulating an initial isotropic SPO. A passive simple shear intensity 
of 4 γ applied to the disk gives an ellipse (Fig. 4b) and four deformed rectangles (Fig. 4d). 
The active simple shear applied to four rectangles maintains the individual shapes and only 
changes their orientations (Fig. 4f). The results may be compared with the expected values 
presented in Table 1. The preferred orientation of the 4 active rectangles is given by the 
cosine direction matrix of Harvey and Laxton (1980). The first set of intercept results uses the 
Launeau and Robin (1996) method while the second set of results (in bold) uses the new grey 
level count of intercepts. 

The intensity of the passive deformations is closer to the expected values. In the first version 
of intercept counting, the Fourier series was truncated at 24 whereas the truncation level 



increases to 72 with the new version because of better noise filtering as shown in Fig. 2. This 
high number of power spectrum harmonics is necessary to analyze angular objects like 
rectangles, which display a long rectilinear boundary particularly sensitive to noise when the 
scan lines are tangential to it. 

5. Application to the BSE image of a synthetic magma 

To investigate the role of structures, such as mineral fabrics and mechanical anisotropies, in 
the flow mechanism of crystallizing magmas, a plagioclase-bearing suspension composed of 
52% of crystals was synthesized and then deformed using a Paterson HP-HT apparatus at a 
confining pressure of 300 MPa, a temperature of 850 °C, a shear strain rate γ̇ = 3.10− 4 s− 1 and 
a shear strain γ = 3.5. A thin section, normal to the radius of the core ([X Z] section), was 
prepared in the deformed sample. In this section, the applied deformation approximates 
simple shear. Deformation textures were observed with a scanning electron microscope 
(SEM) on back scattered electron (BSE) images. Plagioclase shape fabrics were determined 
by using the grey level intercept method with 16 × 16 sub-windows (Fig. 5) individually 
overlapping their neighbors by 50%. 

The intercept method reveals a strong SPO of the fabric developed with an average 
orientation α = 49.73° anticlockwise with respect to the shear direction (SD). This mineral 
foliation is locally crosscut by a 40 μm thick shear zone oriented at 8° clockwise from the SD 
and bordered by shear gradients indicating normal shear direction. The SPO of the fabric 
inside the shear zone is oriented in the shear direction. The obtained microstructures are 
consistent with those observed in natural magmatic rocks ([Nicolas, 1992], [Ildefonse et al., 
1992a], [Ildefonse et al., 1992b] and [Smith, 2002]) and confirm that the results obtained in 
experiments can be extended to natural conditions. The segmentation of all aggregated 
crystals by hand is time-consuming. It has been shown that the intercept method in grey levels 
may find all the critical parameters, including the local shear zone, without tedious image 
processing. 

6. Application to quartz-rich rocks 

The use of the intercept technique in grey level images is illustrated in a weakly deformed 
quartzite (see page 118 of Ramsay and Huber, 1983) and an undeformed quartz arenite from 
the Upper Paleozoic glacial deposits of the Paraná Basin (Southern Brazil). 

The quartzite was selected to compare counting intercepts in the grey level given by the 
orientation of the quartz-c axis and intercepts on grain boundaries drawn manually (Fig. 6). 
Both images, the thin section and its drawing, were scanned at 300 dpi. The SPOs are quite 
similar to each other. The main difference is in their size. The extinction of certain grains of 
quartz makes a part of their boundary invisible. The division of the surface area by a smaller 
number of boundaries yields bigger intercept lengths. However, the shape ratio and the 
orientation remain the same in both the drawing and the thin section picture. 

The sample of sandstone in Fig. 7 comes from alluvial-coastal arenite and conglomerate 
deposits with a paleoslope to the west. An oriented sample was collected in a quartz–arenite 
bed just below striated pavements formed by glacial erosion (Witmarsun village, Paraná 
State). The striae indicate that the ice moved to the northwest, while paleocurrents in tabular 
clastic deposits with abundant cross-bedding indicate flows mostly to the west (Assine, 1999). 
The sandstone specimen was cut in three mutually orthogonal thin sections, one of them 



approximately parallel to a crude subhorizontal bedding visible at the sampling site (XY plane 
in Fig. 7). The use of the rotating polarizer stage of Fueten and Goodchild (2001) avoids 
periodic extinctions and thus preserves most of the boundaries. Quartz grains are angular to 
sub-angular in shape and poorly sorted with some grains reaching 2 mm in length. The grain 
SPO on each thin section was analyzed with 9 × 9 overlapping sub-windows, which, with a 
combination of 3 sections and nine sub-windows, yielded 729 ellipsoids. The fit of the 
ellipsoids to the ellipsoid sought is given by the parameter, which is ideal when  = 0% 
and poorly defined above, say, 10% (Launeau and Robin, 2005). The low value of the fit 
parameter (2.3%) indicates that the sampled area in each sub-window is homogeneous. It 
shows that the quartz fabric defines a shape foliation dipping to the west and a lineation that 
tends to scatter, consistent with the moderately oblate shaped ellipsoid (T = 0.34). Hence, the 
calculated grain fabric probably records the cross-bedding of sandwaves produced by down 
current migration towards the basin paleoslope. 
 

7. Application to a granite 

The granite quarry near Pocinhos (Paraíba State, NE Brazil) is part of the Archanjo and Fetter 
(2004) study (station #128). Field pictures were taken with a digital camera in the quarry at 
two sites 50 m apart from each other. Each image was analyzed with 9 × 9 overlapping sub-
windows to check the homogeneity of the data by combining them into 729 ellipsoids, as 
shown in Fig. 8. All the classical parameters presented in this figure show that the intercept 
method is repeatable at the scale of a quarry and that such low SPO are quite stable in 
orientation and intensity. We consider that the continuity of the data from site to site is the 
best test to check their validity. We also stress that the three sections do not have to be parallel 
or perpendicular to foliation and lineation. The freedom to use any set of three or four sections 
with a wide angle between them, with no prior knowledge of the structure, facilitates the 
collection of data and reinforces the objectivity of the method. This method just needs clean, 
nearly flat and large enough rock sections with a good contrast between minerals. 

8. Conclusion 

A long (10 pixels) linear low-pass filter along scan lines coupled with a short gradient 
detector allowed us to count intercepts with grey levels with a minimum of image pre-
processing. By combining this technique with the ellipsoid calculation described by Robin 
(2002), we were able to determine the grain fabric from images taken in field studies with a 
digital camera, as well as from petrographic thin sections of hand specimens. The fabric 
recorded by the intercept method in grey levels is an average of the orientation distribution of 
the boundaries of a mineral phase that shows sufficient contrast with its matrix. Complex 
distributions of crystals deformed in a Paterson HP-HT apparatus can be detected by 
subdividing a BSE image into sub-windows and analyzing the respective sub-fabrics. For 
geological applications, the method provided useful results: (i) in a coarse-grained granite 
quarry with clean, sufficiently large and planar rock sections, and (ii) on petrographic thin 
sections of quartz-rich rocks, in which grey level variations depended on the position of the 
crystallographic axes. However, the simplicity of the method should not hide the fact that an 
operator must make a few hypotheses about the mechanisms involved in the formation of 
SPO and analyze the results in the geological context of the sample. 

Site to download the program: http://www.sciences.univ-nantes.fr/geol/SPO/. 
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Figures and Tables 
 

 
 
Fig. 1. Counting grid at a) α = 90° and b) α = 145° on a grey shaded object of a phase X. 
Analysis points are represented by open when they fall outside the object, and filled dots 
when they fall in it. The number of intercepts N1 on a line j, N1(j,α), is the number of times, in 
boxes, a cursor migrating along that line moves out of phase X. For several equally-spaced 
lines parallel to a direction α, the total number of intercepts is N1(α). c) Rose of intercept 
counts, N1(α), plot from 0 and 360°. d) The number of analysis points falling into a phase X 
divided by the number of intercepts along a line j, N1(j,α), gives the mean intercept length  
 
. e) Rose of mean intercept length  
 



 
 
Fig. 2. a) Binary image of a mineral phase X in black and its matrix in white; dots are points 
of analysis. b) 1 — raw profile of point sampling (1 is in and 0 is out of the mineral phase); 2 
— profile of local density of samples belonging to the phase X weighted by [1, 3, 6, 8, 9, 9, 8, 
6, 3, 1]/54. c) Grey level image of a black mineral phase and its white matrix with dots 
indicating points of analysis. d) — 1 raw profile of sample in grey levels; — 2 smoothed 
profile with the grey level filter [1, 3, 6, 8, 9, 9, 8, 6, 3, 1]/54. e) Binary image with 
perpendicular line of analysis. f) 1 — raw profile of point sampling; 2 — profile of local 
density with detection of intercept i. g) Same image as (e) in grey levels prior to a 
thresholding splitting it into binary values. h) 1 — raw profile of point sampling; 2 — profile 
smoothed by a low-pass filter ([1, 3, 6, 8, 9, 9, 8, 6, 3, 1]/54); 3 — absolute value of the [− 1 
1] × 6 gradient of line 2 giving a profile of edge amplitude with detection of intercept i at an 
amplitude greater than 40. Each intercept is located at the mid-distance of edge amplitude 
greater than a threshold value set at 40 in this example. 



 
 
Fig. 3. Sensitivity of the intercept method to the window of measurement boundary. a) Set of 
rectangles simulating a sample of rock with a large white empty space on the border. b) 
Location of intercepts counted on the image and the mean length intercept rose diagram at the 
center of each sub-window of measurement. c) Fourier power spectrum of an intercept count 
truncated at 24 for the inverse Fourier transform and d) Fourier rose diagram of mean length 
intercepts with final results. Note that rectangles necessitate a thin angular step of analysis 
(2°) to analyze their corners fully. e) Scheme of the sub-window scan set-up with 50% 
overlapping in line and column directions. 
 
 
 
 
 
 
 
 



 
 
 
Fig. 4. a) Enclave passively deformed in (b). c) Set of soft rectangles passively deformed in 
(d). e) Set of rigid rectangles embedded in a matrix deformed in (f). 
 
 
Table 1. The expected values for passive and active deformations at 4 γ of the synthetic 
objects presented in Fig. 4.  
Passive Active 

γ φ R γ γc Rmax

4 76.0 17.94 4 3.927 2 

 φ R  φ R 

4 rect. 77.4 17.94 4 rect. 90.6 1.609 

 
 
 
 



 
 
Fig. 5. a) Back scattered electron SEM image of a synthetic lava deformed at 3 kbar, 850 °C, 
gamma = 3.5, gamma dot = 3.10–4 s− 1 (crystals are in light grey, the melt in dark grey and 
bubbles in black), b) 16 × 16 mean intercept length roses (not scaled to the image) revealing a 
shear zone in the middle of the sample. 
 
 



 
 
 
Fig. 6. Applications to a picture and a drawing of a quartzite thin section from Ramsay and 
Huber (1983, page 118). a) 300 dpi of the thin section picture, b) its corresponding drawing. 
c) and d) are their corresponding Fourier power spectra with level of truncation to plot final 
mean length intercept roses in e) and f) respectively. Both sets of roses are scaled to each 
other. Data collected in sub-windows are in grey and means are in black. 
 
 



 
 
Fig. 7. Application to maximum polarized light, using Fueten and Goodchild (2001) 
methodology; thin sections of sandstones from the Devonian beds of the Furnas Formation 
(Brazil); see text for discussion. Jelinek (1981) parameters are P′ = exp[2(l1

2 + l2
2 + l3

2)]1/2, 
T = [2(lnb2 − lnb3)/(lnb1 − lnb3)] − 1 with ln = ln(bn/bB) and bB = (b1.b2.b3)/3.  
 
is discussed in Robin (2002). Stereograms are lower hemispheres of equal area projections 
showing that sections of measurement [1] for YZ, [2] for XZ and [3] for XY are oblique on 
the characteristic planes of the SPO ellipsoid whose principal axes are labeled A, B and C. 
Images are mosaics of 3 maximum polarized light digital pictures. 
 



 



Fig. 8. Application to two sites of Pocinhos granite (Paraíba State, NE Brazil). A set of 3 
nearly perpendicular digital pictures (# 1.2 to 1.3 on site 1 and # 2.1 to 2.3 on site 2) are 
oriented in the field and analyzed with the grey level intercept method applied to 9 × 9 sub-
windows leading to 729 combinations of ellipsoids using the Robin (2002) method. Despite 
particularly weak fabrics, both sites give similar results. Stereograms are lower hemispheres 
of equal area projections. Fabric parameters are defined in Fig. 7. Mean intercept lengths are 
typically equal to mean intercept distances in this case. This is not important since we are only 
concerned by relative or normalized lengths. 


