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Abstract Large rock falls and rockslides represent a risk for
human communities in mountainous areas as they can cause
fatalities and destruction of settlements and infrastructures.
Assessing the associated hazard requires constraining the time
frequency of such events. Since large rockslides are not common,
estimating their frequency requires recording them over a long
period of time. The Holocene period then appears as pertinent,
which implies that rockslide features have to be dated with
absolute chronology methods. This paper presents a character-
isation and dating of the Lauvitel rockslide, one of the largest
Holocene rockslides in the French Alps. Combining field
observation with electrical tomography profiles performed on
the rockslide deposit that constitutes the Lauvitel Lake dam
allows estimating its volume at a minimum of 12×106m3. In
addition, cosmic ray exposure dating using in situ-produced 10Be
concentration measurements has been applied to date seven
samples collected both on the main sliding surface and on blocks
lying on the dam and further downstream. Ages obtained are
consistent with a single large rockslide event, which occurred at
4.7±0.4 10Be-ka and formed two distinct deposits. However, from
a mechanical point of view, these clearly separated deposits could
hardly result from a single movement. A comparison of their
reach angles with those reviewed in the literature highlights that
the lower deposit must result from rock avalanches larger than
107m3, while the upper one (the Lauvitel dam) must result from
several events smaller than 106m3. In the context of hazard
assessment for land use planning, these events can, however, be
considered as a unique event.
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Introduction
Rock falls and most rockslides are extremely rapid mass move-
ments representing a risk for human communities in mountain-
ous areas: Rock falls smaller than 1 m3 may cause fatalities while
larger ones may destroy human settlements. In order to assess the
hazard associated with such events in land use planning, potential
rock falls have to be identified and characterised, and their
probability of occurrence has to be evaluated on a given period of
time (Fell et al. 2005; Picarelli et al. 2005). For land use planning
purposes, the period of time to be considered is on the order of
∼100 years. In the current state of knowledge, there is no reliable
mechanical method that is able to predict the future behaviour of
a stable rock slope, even in a probabilistic way (Hantz and
Frayssines 2007). Therefore, rock fall/slide hazard assessment is
usually limited to qualitative approaches. Recently, some authors
have proposed to use historical inventories in order to assess rock
fall/slide hazards in a quantitative way (Dussauge-Peisser et al.
2002; Hantz et al. 2003; Moon et al. 2005). This quantitative
approach is based on the knowledge of the rock fall/slide

frequency within a particular area. The time period considered
for such inventories must, however, be long enough to provide a
significant estimate of the mean frequency. Two types of
inventory can be distinguished. The first is based on historical
records, which usually cover 101 to 102years and is appropriate for
volumes ranging from ∼100 to 105m3 (e.g. Dussauge-Peisser et al.
2002). The second is based on the recognition of large Holocene
events representative of larger volumes: Hungr and Evans (2004)
presented time frequency of rock falls larger than 20×106m3.
More detailed field investigations are necessary to achieve such
inventories for smaller volumes, distinguishing homogeneous
areas according to their geomorphic settings. Using such a
resulting frequency in hazard assessment supposes that rock fall
frequency remains constant during the Holocene. Data from a
new Alpine rock fall inventory support this view (Schoeneich et al.
2008). However, some authors suggest that rock avalanche
frequency may have been higher during the early Holocene due
to different climatic forcing (Cruden 1995; Ballantyne 2002; Ivy-
Ochs et al. 2009). Ongoing climate change may thus influence
rockslide frequency (Climchalp 2008a, b). Therefore, it appears
essential to date Holocene rockslides to assess the potential
relation between climate and geological setting on rock fall
occurrence rate. Finally, in order to construct magnitude–
frequency relationships, the frequency has to be determined for
different slide magnitudes; it is also important to determine the
volume of each event.

This paper focuses on the Lauvitel rockslide where geo-
physical prospecting and cosmic ray exposure (CRE) dating were
performed in order to constrain both its volume and age. The
volume was determined by estimating deposit thickness and
aerial surface through geophysical and geomorphological surveys.
The age of the event was determined through CRE dating using in
situ-produced 10Be concentration measurements of samples
collected on features associated with the rockslide. Rock ava-
lanches have generally been dated with the radiocarbon method
(cf. Schoeneich et al. 2008 for a review), but this method requires
organic matter (i.e. wood or charcoal) to be found within the
deposit. Such an important constraint is not required when using
CRE dating. Recently, several rock slides have been dated with
this method, using 36Cl for limestone (Soldati et al. 2004; Van
Husen et al. 2007; Ivy-Ochs et al. 2009; Prager et al. 2009) and
10Be for quartz-bearing rocks (Cossart et al. 2008; Hormes et al.
2008; Le Roux et al. 2009).

The Lauvitel rockslide
The Lauvitel valley is a 7-km-long tributary of the Vénéon River,
one of the main rivers draining the Ecrins–Pelvoux massif. This
massif belongs to the External Crystalline Massifs of the Western
Alps and is located about 50 km southeast of Grenoble (Fig. 1).
The 68-m-deep Lauvitel Lake lies upstream of a natural dam at an
elevation of 1,500 m (Fig. 2). The origin of this lake has been
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diversely interpreted within the literature. Kilian (1922) and
Monjuvent (1978) interpreted the dam as a frontal moraine of
the Lauvitel glacier, and they also described lateral moraines
downstream of the dam. Moreover, Kilian (1922) described an
earlier moraine at the bottom of the Vénéon valley, which is
interpreted by Monjuvent as a frontal moraine of the Vénéon
glacier. These moraines should have been deposited during the
Late glacial stage (∼15–12 kaB.P.). For Delebecque (1898) and Abele
(1974), the dam is the deposit of a large rock slide, the scar of
which is clearly visible on the left side wall of the Lauvitel valley
(Fig. 3). Many arguments support the rockslide hypothesis rather
than a glacial origin: first, the prominent scar dominating the dam
to the west; second, the gentle but obvious slope of the deposit
from the west wall towards the opposite valley side; third, the
coarse blocky shape of the deposit and its homogeneous
petrography, which is the same granite as the scar, whereas this
lithology is nearly absent in the upper catchment; and finally the
large lake-level fluctuations. The lake’s level varies seasonally by
ca. 25 m due to the porosity of the dam. Apart from the lithology,
the morphological setting and hydrological properties largely
resemble the Oeschinensee dam (Swiss Alps), which is a rock
avalanche dam (Niklaus 1967). Abele (1974) suggested that the
sliding mass split up in two parts, the upper one forming the dam
and the lower one propagating down to the Vénéon, where Kilian

(1922) described a moraine. According to this hypothesis, Abele
(1974) estimated a total rockslide volume of 75×106m3. Consid-
ering this volume, the Lauvitel rockslide/avalanche could be the
largest rockslide known in the Ecrins–Pelvoux massif and belong
to the largest rockslides or rock avalanches identified within the
crystalline massifs of the European Alps (Schoeneich et al. 2008).

From a geotechnical point of view, the west wall of the
Lauvitel valley consists of granite and comprises three joint sets
with the following mean dip direction/dip and spacing: J1 (90/58,
1 m); J2 (190/80, 1 m); and J3 (270/60, 100 m). The joint set J1 is
roughly parallel to the initial valley wall. The sliding surface
(Figs. 2 and 3) occurs from 2,400 m to 1,700 m and is mainly
defined by J1 joints. It dips 57° in its upper part (2,387 m to
1,907 m), 45° in its medium part (1,907 m to 1,840 m) and 50° in its
lower part (1,840 m to 1,709 m). At first sight, the slide could be
classified as a translational one, but the variations in inclination
of the sliding surface lead to its classification as a compound
slide. The reach angles (Heim 1932) corresponding to the upper
and lower deposits are 33° and 19°, respectively.

Geophysical survey of the dam
Two electrical tomographic profiles were collected: (1) profile 1
(A–B; Figs. 2 and 4) runs along the crest of the dam for ∼700 m
across the valley and (2) profile 2 (C–D; Figs. 2 and 4) runs
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parallel to the valley axis along ∼300 m. Profile 2 crosses the
supposed lower limit of the dam, characterised by a sudden
change in slope inclination where many springs are located. Both
profiles were acquired using a Wenner configuration and 64
electrodes spaced every 5 m. Data of profile 1 were gathered, as
they were recorded using a roll-along technique every 16 electro-
des. The inversed profiles are shown in Fig. 4 after suppressing
aberrant resistivity values obtained due to bad coupling between
electrodes and the sometimes rocky material. They were derived
using the RES2DINV software with a L1 regularisation norm and
are presented after three iterations, satisfying root mean square
error values.

On top of profile 1 (Figs. 2 and 4), the three different
formations visible on the surface are characterised by different
resistivities. On the northwestern side, the scree corresponds to
values ranging between 3,500 and 5,000 Ω m. On the southeastern

side, an alluvial fan is characterised by resistivities between 2,500
and 4,000 Ω m. In the central part of the profile, the rockslide
deposit has a resistivity higher than 5,000 Ω m. This can be
explained by its high porosity, which is implied by the accumu-
lation of large blocks (typical size of a few cubic-metres scale).

The thickness of this latter formation is about 10 m below the
eastern part of the dam and reaches up to 50 m below its western
part, with a resistivity much higher than 5,000 Ω m. Below this
surficial layer, resistivity decreases with depth, indicating finer
and wetter material that could be morainic. In the eastern part of
the profile, the lower resistivity (1,000 Ω m) observed at the
elevation of about 1,500 m, which roughly corresponds to the lake
level at the time of geophysical survey (1,490 m, 31 August 2005;
D. Dumas personal communication), can be explained by the
water-table position. The deeper occurrence of the water saturation
signal in the northwestern part could be due to the longer distance
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from the lake. The high resistivity zone (7,500–10,000 Ω m) on the
eastern lower part of the profile (Fig. 4) is interpreted as an edge
artefact of the inversion due to fewer data underneath.

Contrarily to profile 1, the nature of the ground surface was
less visible on profile 2 due to vegetation cover. However, the
resistivity values clearly show two different types of material

below the surface. The upper and steeper part (i.e. the northern
part; Figs. 2 and 4), which has an approximate thickness of 40–
50 m, corresponds to a similar resistivity range as the surficial
layer in profile 1 (i.e. higher than 5,000 Ω m). The lower part
shows mostly low resistivity values (i.e. <1,000 Ω m, Fig. 4) as for
the saturated materials previously described. These two forma-
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Fig. 3 General southward view of the
Lauvitel valley. Light shaded areas
correspond to (a) primary rock slide
plane (up) and (b) upstream rock
avalanche deposit (down). The
Lauvitel lake is clearly visible upstream
of the dam. The five highest sample
locations are also represented
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tions are interpreted as the rockslide deposit and the moraine
identified in profile 1, respectively. A relatively high resistivity
zone (7,500–10,000 Ω m) appears under the saturated moraine at
a depth of 10–20 m, which can be interpreted as bedrock.
Considering these two electrical tomography profiles, the base of
the deposit would fall from an elevation of 1,500 m in the
southeastern part of profile 1 to ∼1,330 m in the centre of profile 2
where it crosses the surface (Fig. 4). However, the area that
connects these two locations cannot be directly inferred from our
electrical tomography profiles.

Geophysical prospecting has been used to confirm the
supposed lower limit of the upper deposit, which was
previously determined through geomorphological evidence.
The projected surface of the upper deposit (Fig. 2) is estimated
to be 40×104m2. Along the geophysical profiles, its mean
thickness varies between 10 and 50 m. From the examination
of the profiles and the geomorphological map, the mean
thickness can reasonably be estimated at 30±10 m, leading to
an approximated volume of 12� 4� 106m3. This has to be
considered as a minimal value, as the low resistivity values due
to the supposed water table can lead to an underestimation of
the real thickness of the deposit.

Cosmic ray exposure dating

Sampling locations
Seven samples were collected during summer 2005 (Figs. 2 and 3).
Samples Lau2075, Lau2025 and Lau1800, whose index refers to the
sampling elevation, were collected on the clearest main sliding
planes (Fig. 3) where the dip is about 60°. Considering the
topography of the scar (Figs. 2 and 3), these samples were
probably shielded by several tens of metres of rock before the
slide occurred. Lau01 was taken in the scar near its assumed
northern limit, on a 70° dipping plane. Lau04 was sampled on the
top of a block located on the middle of the dam surface,
downstream from the main scar but sufficiently far from it to
reject the hypothesis of a single block fallen later than the main
event. Lau10 and Lau11 (Fig. 2) were collected on separate blocks
located on the lower deposit described by Abele (1974). All
samples are granite and were collected with hammer and chisel
from the uppermost 5 cm of the rock surface.

Sample preparation, analysis and cosmic ray exposure age calculation
Samples were prepared for accelerator mass spectrometry (AMS)
10Be measurements following chemical procedures adapted from
Brown et al. (1991) and Merchel and Herpers (1999). Samples were
crushed and sieved; 250–1,000 m fractions were conserved for
chemical procedures. Pure quartz grains were obtained by
repeated H2SiF6–HCl etching and atmospheric 10Be content
eliminated by successive HF sequential dissolutions. Prior to the
complete HF digestion of quartz grains, addition of a weighted
300 μl of 10−3g g−1 Be carrier solution allowed to fix the 10Be/9Be
ratio of samples. Remaining solutions were dried, diluted in HCl
and purified on anion and cation exchange columns, and Be was
extracted by alkaline precipitations. BeO targets were finally
prepared for AMS 10Be measurements performed with the 3 MV
Tandétron facility at Gif-sur-Yvette, France (Raisbeck et al. 1987,
1994). The presented data were calibrated against 07KNSTD using
a 10Be half-life of 1:36� 0:07ð Þ � 106 years (Nishiizumi et al. 2007).

In order to determine CRE ages from the 10Be concentrations
measured in the quartz fractions, the following equation was used:
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where C(x, ε, t) is the
10Be concentration as a function of depth x

(g cm−2), ε is the erosion rate and t the exposure time (years); C0

is the potential 10Be inherited concentration prior to exposition at
the surface; Λn, Λμs and Λμf are the effective apparent attenuation
lengths (g cm−2) for neutrons, slow muons and fast muons,
respectively. Pspal, Pμs and Pμf are the spallogenic, slow and fast
muon production rates, respectively, that contribute to the total
10Be production. All calculations were performed using attenu-
ation lengths of 150, 1,500 and 5,300 gcm−2 for neutrons, slow and
fast muons as well as contributions to the total production of
98.85%, 1.5% and 0.065%, respectively. These values are based on
field-calibrated measurements (Braucher et al. 2003). A modern
spallogenic production rate (i.e. induced by neutrons) of 4.49±
0.39 atoms g−1year−1 at sea level and high latitude was used for
internal consistency with the data of Stone (2000), according to
the recently published absolute calibration of 10Be AMS standards
by Nishiizumi et al. (2007). Combined with contributions from
slow and fast muons, this sea-level and high-latitude production
rate has then been scaled for sampling altitudes and latitudes
using the scaling factors proposed by Stone (2000).

The surface production rates were corrected for local slope and
topographic shielding due to surrounding geomorphic features
following Dunne et al. (1999). Analytical uncertainties (reported as
1σ; see Table 1 and Fig. 5) include a conservative 3% uncertainty based
on long-termmeasurements of standards (Raisbeck et al. 1987, 1994),
a 1σ statistical error on counted 10Be events and the uncertainty
associated with the chemical and analytical blank correction
(associated 10Be/9Be blank ratio was 3:86� 1:72ð Þ � 10�15). To
compare the 10Be exposure ages with absolute ages, an additional
6% maximum uncertainty for production rates was also systemati-
cally propagated (Stone 2000). Considering the geological context,
the 10Be ages were calculated assuming a negligible inherited
component. We also considered the erosion negligible during the
involved time period, and therefore provide minimum ages.
Furthermore, as sample thicknesses were systematically <5 cm, no
correction was applied for this effect. The presented data do not take
into account temporal magnetic field variations as the induced effect
on the production rates is assumed negligible on the time period
spanned in this study (i.e. max. ∼5% 10Be production rate decrease
compared to the modern value according to Pigati and Lifton 2004).
CRE ages are thus presented in 10Be-ka.

Results
Measured in situ-produced 10Be concentrations ranging from 2.07 to
9.16×104 atoms g−1 yield CRE 10Be ages ranging from 2.3±0.8 to 6.3±
1.6 10Be-ka (Table 1). As shown in Fig. 5, which presents the calculated
CRE ages as a function of the sampling elevations, six of the seven
measured samples yield 10Be ages that statistically overlap. A first
statistical treatment of these data was achieved using method
described in Lowell (1995). Each CRE age obtained for each sample
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is considered as an individual Gaussian distribution with its value
corresponding to the mean of the distribution and its associated
uncertainty corresponding to the dispersion about the mean.
Gaussian distributions of each individual CRE age can then be
summed together to provide a new Gaussian distribution represen-
tative of the dataset (Lowell 1995). On Fig. 6a, the data probability
curve shows a shoulder on the low-value side (i.e. from ∼1.9 to ∼2.9
10Be-ka), while a major mode appears at ∼4.3 10Be-ka. To test the
reliability of this major mode and in order to calculate an averaged
age that takes into account individual age uncertainty, the mean
square of weighted deviates (MSWD) statistic may be used
(McIntyre et al. 1966; Douglass et al. 2006). By combining MSWD
with probability curves, a group of samples sharing a commonmean
age may be identified (Douglass et al. 2006). A calculated MSWD
value of 1.0 indicates that analytical errors are as expected, whereas a
value less than 1.0 indicates that the analytical errors may be
overestimated. Alternatively, a value significantly larger than 1.0
indicates either an underestimation of analytical errors or geological

factors producing dispersed CRE ages (Douglass et al. 2006).
Considering all data, the MSWD value calculated is 1.78 and the
weighted CRE age is 4.2±0.5 10Be-ka. When omitting sample Lau11,
which causes the low-value shoulder observed on the cumulative
probability curve (Fig. 6a), the MSWD value calculated for the six
remaining samples is 0.74. Thus, Fig. 6b shows that by omitting
sample Lau11, the new cumulative probability curve better fits a
Gaussian distribution. Finally, it seems that the low-value shoulder
shown on probability curve (Fig. 6a) identifies an outlier reflecting
unusual geological processes, whereas the major mode highlights a
single past collapse event at 4.7±0.4 10Be-ka.

Discussion
Three samples collected on blocks (i.e. Lau04, Lau10 and Lau11) are
significantly younger than 10 10Be-ka and provide evidence that the
material covering both the dam surface and the lower deposit is not
glacial. The ages obtained for all samples except Lau11 are consistent
with (but do not prove) the hypothesis of a single rock slide∼4.7 10Be-
ka years ago. Lau11 corresponds to the most distant block and is
located close to the Vénéon River, which erodes the toe of the deposit.
This samplemay have been buried in the deposit for some time before
being exposed due to river bank erosion; this geological process may
explain its younger age. Assuming this hypothesis, the estimated
exposure age of the event is 4.7±0.4 10Be-ka (MSWD 0.74, n=6). For
the reasons exposed below, no correction was applied for snow cover.
The four samples Lau01, Lau1800, Lau2025 and Lau2075 have been
collected in the scar where slopes are steeper than 55°. No correction
was applied for these samples, as snow cover rarely accumulates on
smooth rock slopes steeper than 45°. Although Lau04 was collected on
an almost horizontal surface at about 1,500m elevation within an area
where snow cover is likely to reach 1 m during 4 months, this sample
was taken on the top of a sharp >3-m-high block fromwhich the snow
is frequently blown, leading to limited snow thickness and persis-
tence. Both Lau10 and Lau11 were sampled at an elevation of about
900 m where snow accumulation is moderate as well. Assuming a
snow cover of 1 m during 4 months, which is an end-member
scenario, would lead to a 220-years-older age. Therefore, we assume
that this scenario would keep the consistence of a unique event ∼4.7
10Be-ka ago, given reported uncertainties.

Table 1 Sample locations, cosmogenic-nuclide analytical data and 10Be exposure ages

Samples Elevation
(m)

Longitude
WGS 84
(°E)

Latitude
WGS 84
(°N)

Skyline
shielding
factora

Corrected production
rate (atoms g−1year−1)b

10Be
concentration
(104 atoms g−1)c

Exposure
age
(10Be-ka)

Lau01 1,722 6.060 44.980 0.50 9.21±0.55 3.95±1.21 4.3±1.3

Lau04 1,513 6.069 44.974 0.93 14.65±0.88 9.16±2.34 6.3±1.7

Lau10 925 6.078 44.992 0.91 9.03±0.54 3.86±0.57 4.3±0.7

Lau11 887 6.078 44.993 0.94 8.93±0.54 2.07±0.70 2.3±0.8

Lau1800 1,800 6.075 44.977 0.75 14.59±0.88 5.71±1.42 3.9±1.0

Lau2025 2,025 6.075 44.977 0.63 14.46±0.87 8.83±1.51 6.1±1.1

Lau2075 2,075 6.072 44.978 0.63 14.97±0.90 7.56±1.99 5.1±1.4

a Geomorphic scaling factors calculated following the method of Dunne et al. (1999)
b Sample 10 Be production rate scaled for latitudinal and altitudinal effects from Stone (2000), using a modern spallogenic production at sea level and high altitude of 4.49±0.39
atoms g−1 year−1 (see text for details) and corrected from geomorphic factors
c Analytical uncertainties include a conservative 3% uncertainty based on long-term measurements of standards, a 1σ statistical error on counted 10 Be events and the uncertainty
associated with the chemical and analytical blank correction (see text for details and references)
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Our chronological results do not allow distinguishing more than
one event, but the spatial distribution of the deposit shows two clearly
separated areas (Fig. 2), which could hardly result from a unique
movement. The reach angles of the two parts of the deposit can give
some indications about the volume of the individual rock move-
ments. Figure 7 (modified from Corominas 1996) shows the relation
between the reach angle and volume for 47 slide events. This relation
shows that a reach angle of 19°, which corresponds to the lower part of
the Lauvitel deposit, can be attained only for a volume greater than
about 107m3. The only exception corresponds to unobstructed paths,
which is not the case of the Lauvitel rock avalanche, as falling
materials were deflected by the opposite valley wall. Therefore, the
lower deposit may result from a large (or a few large) rock avalanche
(s) with a volume larger than 107m3. A reach angle of 33°, which
corresponds to the upper part of the Lauvitel deposit, is highly
improbable for a volume greater than 106m3. Therefore, the upper
deposit, whose volume has been estimated to at least 12×106m3 from
geophysical prospecting, possibly results from the accumulation of
individual rock movements smaller than 106m3. However, neither
CRE ages nor mechanical arguments allow constraining the chronol-

ogy of individual rock movements (i.e. more dating should be
necessary to define such a detailed chronology), but their occurrence
in a narrow spatial and temporal scale shows a causal relation
between successive events. From a probabilistic point of view, these
rock movements cannot be considered independently and record a
single multiphase event for rock fall/slide hazard assessment
purposes. Furthermore, from a mechanical point of view, they could
result from the previous large movement which produced the lower
deposit, and probably occurred following a relatively short period of
time. It must be recalled that a large volume of rock can fall in a short
time period even by successive individual movements. Although the
propagation distance is less than for a unique event, the risk can also
be important. A recent example of successive rock movements
making up a total volume of ∼30×106m3 in a few-hours timescale is
given by the Randa rockslide (Sartori et al. 2003).

Conclusion
Electrical tomography allowed to confirm that the Lauvitel dam
consists of a rock slide deposit and to estimate its volume at
12� 4� 106m3. The dam forms the upper part of a much larger
rockslide deposit, whose total volume can be estimated to at least
50� 70� 106m3 from the apparent volume of the scar. The Abele
(1974) hypothesis of a large rockslide–rock avalanche reaching the
Vénéon River is consistent with (a) the systematic occurrence of
large granite blocks on the surface of the deposit filling the bottom of
the Vénéon valley, whereas the northern side valley walls of the
Vénéon River are made of gneiss, (b) their ages that are much
younger than expected in case of a glacial origin, (c) the existence of
a sliding plane, the age of which overlaps that of the blocks
downstream, (d) the size of the scarp and (e) the reach angle. This
event might have occurred at∼4.7±0.4 10Be-ka but the hypothesis of
several large events of more than 107m3 cannot be rejected. More
dating would be needed to confirm the uniqueness of this event. It
can be inferred from the reach angle that the upper deposit,
forming the Lauvitel dam, possibly results from successive
individual rock movements smaller than 106m3. In the context
of rock fall hazard assessment for land use planning, all the
movements described here have to be considered as a unique
multiphase event dated at 4.7±0.4 10Be-ka (MSWD 0.74, n=6)
within a rock fall/slide inventory. Combining CRE dating and
electrical tomography has proved to be an efficient tool to both
date and characterise a Holocene rockslide–rock avalanche and
contribute to further constrain the frequency of such cata-
strophic events.

1.0

0.5

0

 Upper deposit 

Lower deposit 

tan33° 

tan19° 

ta
n 

[r
ea

ch
 a

ng
le

]

Log [rockfall volume (m3)]

0 2 4 6 8 10

Fig. 7 Plot of rock fall and rock avalanche volume versus tangent of the reach
angle for 47 events. Tangent of the reach angles of Lauvitel lower and upper deposits
have been added. Labels correspond to obstacles and topographic constraints of the
path: f dense forest, s scree deposit, b bends, d deflections, h channelling,w opposite
wall, u unobstructed. Modified from Corominas (1996)

R
el

at
iv

e 
pr

ob
ab

ili
ty

R
el

at
iv

e 
pr

ob
ab

ili
ty

Cosmic Ray Exposure age (10Be−ka) Cosmic Ray Exposure age (10Be−ka)

0 2 4 6 8 10 12 0 2 4 6 8 10 12

A B4.2±0.5 10Be−ka
MSWD: 1.78
n = 7/7

4.7±0.4 10Be−ka
MSWD: 0.74
n = 6/7

Fig. 6 CRE age probability spectra.
(A) represents the cumulative
probability curve computed from all
data. (B) represents this cumulative
probability curve considering only six
of seven samples (Lau11 excluded,
see ‘Sample preparation, analysis and
cosmic ray exposure age calculation’
for details). Thick horizontal bars
on each figure represent individual
ages (±1σ)

Landslides 7 & (2010) 399



Acknowledgements
This study is part of RD’s Msc project at Université Paul Cézanne
and Université Joseph Fourier in the framework of the ANCEMT
project funded by the Agence Nationale de la Recherche (project
N° 06-BLAN-0207). We thank the Parc National des Ecrins, X.
Bodin, D. Fiat and O. Leroux for invaluable field assistance. We
acknowledge S. Merkel and G. Aumaitre for technical assistance
during 10Be samples preparation and measurements, and P. van
der Beek for improving the style of the manuscript. S. Garambois
and A. Revil are also acknowledged for fruitful discussions on the
interpretation of electrical prospecting results and D. Dumas for
providing lake-level information. The geophysical survey was a
low-carbon-footprint operation, with material transported by
donkeys. A constructive review by an anonymous reviewer
improved the manuscript.

References

Abele G (1974) Bergstürze in den Alpen. Ihre Verbreitung, Morphologie und
Folgeerscheinungen. Wissenschaft Alpenvereinshefte 25, München

Ballantyne CK (2002) Paraglacial geomorphology. Quatern Sci Rev 21:1935–2017
Braucher R, Brown ET, Bourlès DL, Colin F (2003) In situ produced 10Be measurements

at great depths: implications for production rates by fast muons. Earth Planet Sci Lett
211:251–258

Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook ED (1991) Examination of
surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al.
Geochim Cosmochim Acta 55:2269–2283

Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844
Climchalp (2008a) Climate change in the Alps: impacts and natural hazards. ONERC

Technical Report N°1
Climchalp (2008b) State of knowledge on climate change impacts in the Alps. http://

www.risknat.org/projets/climchalp_wp5/pages_eng/base_eng.htm
Corominas J (1996) The angle of reach as a mobility index for small and large

landslides. Can Geotech J 33:260–271
Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) The consequences of glacial

debuttressing in deglaciated areas: pieces of evidence from field data and
cosmogenic datings. Geomorphology 95:3–26

Cruden DM (1995) Rock slope movements in the Canadian Cordillera. Can Geotech J
22:528–540

Delebecque A (1898) Les lacs français. Chamerot & Renouard, Paris, p 436
Douglass DC, Singer BS, Kaplan MR, Mickelson DM, Caffee MW (2006) Cosmogenic

nuclide surface exposure dating of boulders on last-glacial and late-glacial moraines,
Lago Buenos Aires, Argentina: interpretive strategies and paleoclimate implications.
Quatern Geochronol 1:43–58

Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of
cosmogenic nuclides for geometric shielding and attenuation at depth on sloped
surfaces. Geomorphology 27:3–11

Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M,
Giraudet A (2002) Probabilistic approach to rock fall hazard assessment: potential of
historical data analysis. Nat Hazards Earth Syst Sci 2:15–26

Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment
and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide
risk management. Taylor & Francis, London, ISBN 04 1538 043 X.: 3–25

Hantz D, Frayssines M (2007) Contribution à l'évaluation de la durée de vie d'un
compartiment rocheux susceptible de s'ébouler. Rev Fr Géotech 119:65–79

Hantz D, Vengeon JM, Dussauge-Peisser C (2003) An historical, geomechanical and
probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3:693–701

Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth Verlag, Zurich, 218 pp.
Hormes A, Ivy-Ochs S, Kubik PW, Ferreli L, Maria Michetti A (2008) 10Be exposure ages of rock

avalanche and a late glacial moraine in Alta Valtellina, Italian Alps. Quatern Int 190:136–145
Hungr O, Evans SG (2004) The occurrence and classification of massive rock slope

failure. Felsbau 22:1–11
Ivy-Ochs S, Poschinger AV, Synal H-A, Maisch M (2009) Surface exposure dating of the

Flims landslide, Graubünden, Switzerland. Geomorphology 103:104–112

Kilian W (1922) Les stades de recul des glaciers alpins et l'origine du lac Lauvitel
(Oisans). C R Acad Sci 175:660–665

Le Roux O, Schwartz S, Gamond JF et al (2009) CRE dating on the head scarp of a major
landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth
Planet Sci Lett 280:236–245

Lowell TV (1995) The application of radiocarbon ages estimates to the dating of glacial
sequences: an example from the Miami sublobe, Ohio, USA. Quatern Sci Rev 14:85–99

McIntyre G, Brooks C, Compston W, Turek A (1966) The statistical assessment of Rb–Sr
isochrones. J Geophys Res 71:5459–5468

Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the
determination of long-lived radionuclides via accelerator mass spectrometry.
Radiochimica Acta 84:215–219

Monjuvent G (1978) Le Drac: morphologie, stratigraphie et chronologie quaternaire d'un
bassin Alpin. Editions du CNRS, Paris, p 433

Moon AT, Wilson RA, Flentje PN (2005) Developing and using landslide frequency
models. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management.
Taylor and Francis, London, pp 681–690

Niklaus M (1967) Geomorphologische und limnologische Untersuchungen am
Oeschinensee. Beiträge zur Geologie der Schweiz–Hydrologie, Nr 14. Bern

Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007)
Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res, B Beam
Interact Mater Atoms 258:403–413

Picarelli L, Oboni F, Evans SG, Mostyn G, Fell R (2005) Hazard characterization and
quantification. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management.
Taylor & Francis, London, ISBN 04 1538 043 X: 27–61

Pigati JS, Lifton NA (2004) Geomagnetic effects on time-integrated cosmogenic nuclide
production with emphasis on in situ 14C and 10Be. Earth Planet Sci Lett 226:193–205

Prager C, Ivy-Ochs S, Ostermann M, Synal HA, Patzelt G (2009) Geology and radiometric 14C-,
36Cl-and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria). Geomorphology 103:93–103

Raisbeck GM, Yiou F, Bourlès D, Lestringuez J, Deboffle D (1987) Measurements of 10Be
and 26Al with a Tandetron AMS facility. Nucl Instrum Methods Phys Res, B Beam
Interact Mater Atoms 29:22–26

Raisbeck GM, Yiou F, Bourlès D et al (1994) The AMS facility at Gif-sur-Yvette: progress,
perturbations and projects. Nucl Instrum Methods Phys Res, B Beam Interact Mater
Atoms 92:43–46

Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematics of the 1991 Randa
rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433

Schoeneich P, Hantz D, Deline P, Amelot F (2008) A new database of Alpine rock falls
and rock avalanches. Interpraevent, Dornbirn, Austria 2:243–250

Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian
Dolomites since the Late glacial. Catena 55:141–161

Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res
105:23753–23759

Van Husen D, Ivy-Ochs S, Alfimov V (2007) Landslides in Almtal: mechanism and age.
Austrian J Earth Sci 100:114–126

R. Delunel ()) : R. Braucher : D. L. Bourlès
Centre Européen de Recherche et d’Enseignement des Géosciences
de l’Environnement (CEREGE),
UMR 6635 CNRS–Aix Marseille Université, BP 80 13545 Aix en Provence, France
e-mail: romain.delunel@e.ujf-grenoble.fr

D. Hantz
Laboratoire de Géophysique Interne et de Tectonophysique,
Université Joseph Fourier, BP 53, 38041 Grenoble, France

P. Schoeneich
Institut de Géographie Alpine—UMR 5194-PACTE/Territoires,
Université de Grenoble, Grenoble, France

J. Deparis
BRGM,
3 avenue Claude-Guillemin, 45060 Orléans Cedex 2, France

Present address:
R. Delunel
Laboratoire de Géodynamique des Chaînes Alpines,
Université Joseph Fourier, BP 5338041 Grenoble, France

Original Paper

Landslides 7 & (2010)400

http://www.risknat.org/projets/climchalp_wp5/pages_eng/base_eng.htm
http://www.risknat.org/projets/climchalp_wp5/pages_eng/base_eng.htm

	Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps)
	Abstract
	Introduction
	The Lauvitel rockslide
	Geophysical survey of the dam
	Cosmic ray exposure dating
	Sampling locations
	Sample preparation, analysis and cosmic ray exposure age calculation

	Results
	Discussion
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


