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Abstract: 

Classical palynofacies method, which consists of an organic concentrate microscopic 

qualitative observation after mineral phase dissolution, is commonly used in order to 

study sedimentary organic matter. In the present study we develop a new quantitative 

palynofacies method that allows organic particles mass concentrations to be determined 

in studied samples. This method was developed to help quantify the input of fossil 

organic matter (FOM) into modern environments as a result of sedimentary rocks 

weathering. Studied samples were collected from different pools, like bedrocks, 

weathering profiles, soils and riverine particles in an experimental watershed “Le 

Laval”. This watershed overlying Callovo - Oxfordian marls (1km² in area) is located 



near Digne, Alpes-de-Haute-Provence, in France. In addition to palynofacies 

techniques, Rock-Eval 6 pyrolysis and Al2O3 content measurements (inductively 

coupled plasma emission spectrometry) were carried out on the samples. Obtained 

results show that this quantitative palynofacies method is suitable for FOM studies in 

modern environments, and FOM particles are quantified in the different pools. Results 

also give evidence that FOM alteration depends on the type of weathering, but also on 

the kind of organic particles. Soil formation under vegetation, resulting from the 

(bio)chemical weathering, lead to fossil organic particles concentration losses that do 

not exceed 30%. Elsewhere, mechanical weathering appears extremely fast and has no 

qualitative or quantitative influence on the observed FOM particles, which feeds 

directly into riverine stocks. FOM appears to be very resistant to weathering processes, 

this highlights its occurrence into supergene pools and then into carbon cycle. 

Quantitative palynofacies analysis is a new method adapted to such study, but can also 

be applied to other palynological, paleoenvironmental or archeological studies.  

 

Keywords: Quantitative palynofacies, fossil organic matter, experimental watersheds, 

marls, carbon cycle, weathering processes. 

 

1. Introduction  

 

The study of the behavior of greenhouse gasses, such as CO2, requires an estimation of 

carbon fluxes which occur between different carbon pools such as the atmosphere, soil, 

biosphere and hydrosphere (Houghton, 1998; 2005; IPCC, 2007). Numerous estimates 

of river and soil carbon amounts have been calculated (Eswaran et al., 1993; Balesdent, 



1996; Batjes, 1996; Adams and Faure, 1996; Carter et al., 1997; Holland, 1978; Degens 

et al., 1991; Probst, 1992; Amiotte-Suchet, 1995; Ludwig et al., 1996; Aitkenhead and 

McDowell, 2000), but all these estimates generally neglect Fossil Organic Carbon 

(FOC), originating from weathering and erosion of ancient and recent sediments. 

However at the global scale, shales and carbonates chemical weathering release between 

0.04 and 0.09 Gt/yr of FOC (Di-Giovanni et al., 2002; Copard et al., 2007) and 0.04 to 

0.08 Gt of FOC has been argued to be delivered to the world’s oceans by rivers 

(Meybeck, 1993, 2005; Blair et al., 2003, 2004). These fluxes are the same order of 

magnitude as rivers global particular organic carbon load, estimated between 0.09 and 

0.3 GtC/yr (Berner, 1992; Ludwig et al., 1996; Stallard, 1998), thus suggesting that 

FOC should be taken into account. 

 

Numerous studies have already tracked FOC occurrence in different compartments, 

such as rivers (Kao et al., 1996; Di-Giovanni et al., 2000;  Masiello and Druffel, 2001; 

Blair et al., 2003, 2004; Raymond and Bauer, 2001 , 2004), soils (Lichtfouse et al., 

1997a,b; Di-Giovanni et al., 1998a, 1999a,b, 2000; Copard et al., 2006) and recent 

sediments (Combaz et al., 1977; Tyson, 1995; Di-Giovanni et al., 1997, 1998b, 1999b, 

2000; Eglinton, 1997; Leithold et al., 2001; Blair et al., 2003; Dickens, 2004a,b ; 

Wakeham et al., 2004) using a large analytical panel, such as microscopic (palynofacies 

method), isotopical (13C, radiocarbon ages), geochemical (organic carbon, C, N), 

molecular and physical (IR spectra analysis) investigations. All these works reveal 

either -i) the discrimination of FOC from Recent Organic Carbon (ROC), or -ii) the 

quantification of FOC losses during rocks weathering and erosion, but neither can 

perform both operation simultaneously.  



 

In this work, we propose a new quantitative optical method (quantitative palynofacies 

analysis) using a pollen standard and organic particles densities. This method allows the 

mass concentration of each type of organic particle in the studied samples to be 

obtained. Investigations were carried on marl weathering profiles because FOC content 

of such a sedimentary rock is higher than carbonate and sandstones, and these rocks 

represent about 30% of the global continental surface (Amiotte-Suchet et al., 2003).  

 

2. Study area and sampling 

 

The studied area is the “Le Laval” watershed located near Digne (Alpes-de-Haute-

Provence, France, Fig. 1). The watershed is poorly vegetated (21% vegetation density) 

and the vegetation is mainly composed of grass, graminaceous plants, brooms, scots 

pines and oaks overlying Callovo-Oxfordian marly limestones (Mathys, 2006). Three 

weathering profiles were collected:  

 

P1 (80cm thick) is a bedrock/weathered rocks (alterites) profile (Fig. 1) from a slope 

without vegetation context. 15 samples were collected every 5 cm, from the bedrock 

(>70 cm depth) to the surface.  

 

P2 (140 cm thick) is a bedrock/alterites/soil profile (Fig. 1) from a wooded slope area. 

This profile consists of soil horizons (litter layers - OL, humic layers – OH, and organo-

mineral layers -A) in the first 20 cm, followed by 105 cm of alterites and then by 

bedrock. Two types of material were distinguished: -i) compact fragments of rock (PL) 



and -ii) fine and friable elements (TF). 47 samples were collected every 5 cm (3 soils 

layers, 22 PL samples and 22 TF samples). 

 

P3 (60 cm thick) is an alterites/soil profile (Fig. 1) from a flat pasture area. The profile 

is composed mainly of clay in the first 30 cm, and then of a mixture of clay and rock 

fragments. 10 samples were collected every 6 cm. 

 

Riverine particle samples were also examined. Height Laval suspended load (SL) 

samples were collected using automatic sampling between July 2006 and January 2008 

and two bed load (BL) samples were collected in 2002 and 2006.  

 

3. Methods 

 

3.1. Microscopic investigations 

 

Optical investigations (palynofacies method) were performed with a DMR XP Leica 

microscope by using the transmitted light mode. Initially developed by Combaz (1964), 

the palynofacies method consists of a study of thin slides of a total assemblage of 

particulate organic matter isolated from sedimentary rocks using HCl–HF. The 

approach involves the distinction of different categories of petrographic components 

based on their size, form and colour, and an estimate of their relative proportions in the 

particular organic assemblage (Combaz, 1980; Tyson, 1995). Relative quantification 

was performed with a 50 x objective and it is effective when 500 particles are counted, 



because variations of relative abundances were also lower than 5% (Sebag et al, 

2006a,b). 

 

Quantitative methods have already been developed by different authors (Battarbee and 

Kneen, 1982; Vernal, 1987) in order to evaluate diatoms, pollens, or microfossil 

abundance in sediments. In these studies, a known number of standard particles 

(Lycopodium or Eucalyptus pollens, polystyrene microspheres) is incorporated in the 

studied samples. After counting, the surface relationship between standards and studied 

particles allows to estimate particles occurrences (i.e. number of particles). 

 

Here, quantitative palynofacies analysis is based on the incorporation of a known mass 

of standard (Cupressus pollen) in organic concentrate after acid attacks. Cupressus 

pollen was chosen as a standard because of its strong reaction under UV excitation that 

helps greatly in its identification (Fig. 2d). For each sample, the mass concentration of 

each kind of particle in organic concentrate is obtained after observations and counting 

(500 particles) as follow (eq.1):   

 

density Standard
density  Particles

(%)area   Standard
(%)area    Particles(mg) added standard Mass

econcentratorganicin  (mg) Particleseq.1)                  

×
×

=
 

 

This corresponds to a comparison between the mass of standard added to the area ratio 

between the studied organic particle and standard which are then corrected by the organic 

particles densities. 

 



Particles mass concentrations in initial sample (prior acid attacks) are calculated as follow 

(eq.2): 

(mg) mass sample Initial
(mg) Particles                

sample)(mg/gionconcentratmass Particleseq.2) =
 

 

3.2. Rock-Eval pyrolysis 

 

The geochemical characteristics of the samples were acquired using Rock-Eval 6 

pyrolysis (RE6, Vinci Technologies®). Previously developed for petroleum purposes 

and the analysis of sedimentary rocks, the method has been now been successfully 

tested for recent material (Di-Giovanni et al., 1998; Disnar et al., 2003; Copard et al., 

2006; Sebag et al., 2006c). 

The protocol consists of two successive stages performed under a temperature program 

of 30 °C min-1. The first consists of pyrolysis of 100 mg of crushed sample in an oven. 

Hydrocarbon and oxygenated products released during a temperature increase from 200 

to 650 °C are removed via a N2 flow and quantified with flame ionization and infrared 

detectors. The second stage consists of oxidation in an oven of the carbonaceous residue 

subjected to a temperature increase from 400 to 750°C (Espitalié et al., 1985; Lafargue 

et al., 1998; Behar et al., 2001). 

Analysis of the pyrolysis signal provides a number of parameters, such as -i) Tmax, the 

temperature in °C at which the maximal hydrocarbon (HC) release occurs, and -ii) the 

hydrogen index (HI, in mg HC g-1 TOC), which can be defined as an indicator of the 

hydrogen richness of a sample. The organic carbon content (OC) is given by the total 



organic carbon (TOC, expressed in wt %), that is equal to the sum of pyrolysed OC and 

residual OC provided by the oxidation stage. 

 

3.3. Al2O3 contents  

 

Quantitative palynofacies aims to quantify FOM mass concentrations in studied 

samples, but it also aims to estimate FOM loss during bedrock weathering. Indeed, 

mineral fractions can undergo significant changes in chemical composition during 

weathering processes (i.e. carbonate dissolution, silicates hydrolysis). Thus, an 

equivalent FOM mass concentration into two compartments (i.e. soil and bedrock) can 

be interpreted in two ways: -i) a FOM loss during bedrocks weathering or -ii) an 

evolution of FOM concentration caused by a loss of mineral phase. To overcome this 

problem, all mass concentrations were normalized to the Al2O3 contents of studied 

samples as this oxide is resistant toward chemical dissolution. (Campy and Macaire, 

1989, 2003). 

Al2O3 contents were obtained by ICP analysis (inductively coupled plasma emission 

spectrometry) with a Jobin-Yvon ULTIMA® spectrometer. 100 mg of finely crushed 

raw sample (prior to acid attacks) is mixed with 250 mg LiBO2 and melted at 1000 °C 

for 5 min under argon. The pearl produced is then dissolved in nitric acid and the 

solution is then pulverized in an argon plasma (10 000 K). This leads to -i) the 

dissociation of matter into atoms and ions and -ii) the emission of characteristic 

wavelengths when atoms return to a lower energy states. 

  

4. Results 



  

4.1. Quantitative palynofacies investigations 

   

4.1.1. Particles description 

Twelve categories of organic particles were identified in the samples following different 

morphological and textural criteria (palynofacies observations in transmitted and 

reflected light, Fig. 2). Because the present study deals with the measurement of the 

density of each of categories of organics particles, we firstly present all particles in 

detail. For the sake of brevity, only major classes were described in the following 

sections. 

 

- Amorphous particles (Fig. 2a): 1) clear and granular amorphous organic matter 

(CGAOM) consists of group of colloidal particles that appear gray or yellow when 

under transmitted light, and opaque or with a slight orange tint under reflected light. 

Their dimensions are highly variable between 10 μm and 100 μm, 2) reddish amorphous 

organic matter (RAOM) consists of groups of colloidal particles that appear dark red 

under transmitted light and with a black matrix appearance under reflected light. This 

class is associated with mineral matter and frequently with pyrite. These particles are 

generally small in sizes and ranged between 10 and 100 μm, 3) gelified amorphous 

organic matter (GA) have no internal structure and have an orange-red colour under 

transmitted and reflected light. These particles can reach a very large size over than 

several hundred μm. 

- Ligno-cellulosic fragments (Fig. 2b): 4) dark degraded ligno-cellulosic fragments 

(DDLC) show visible internal structures inherited from the original organic material. 



These particles have a dark brown colour under transmitted light due to an advanced 

pedological evolution (degradation and/or oxidation) and they appear dark under 

reflected light, 5) translucent ligno-cellulosic fragments (TLC) show visible internal 

structures. These particles are generally translucent under transmitted light and black 

under reflected light, 6) gelified ligno-cellulosic fragments (GLC) show traces of 

internal structures but suffer of a higher state of gelification. They correspond to a more 

advanced degradation stage giving them a reddish-orange colour under transmitted and 

reflected light, 7) opaque ligno-cellulosic fragments (OLC) do not display any 

identifiable structure and show high reflectance under reflected light observation. These 

particles are subdivided according to their shapes (elongated - el OLC, squat - sq OLC, 

complex - c OLC, concave - conc OLC); we have also distinguished the corroded 

outline opaque ligno-cellulosic fragments (CoOLC) showing a very high and "metallic" 

reflectance.  

Ligno-cellulosic fragments dimensions are highly variable between 10 and 100 μm. 

- Gelified debris (Fig. 2c): These particles have homogeneous contours and textures 

and exhibit high reflectance. We distinguish 8) gelified debris (GD) that are fully 

transparent under transmitted light and  9) opaque gelified debris (OGD) which internal 

surfaces appear dark under transmitted light. These particles are generally small and 

rarely exceed 10 μm. 

- Other organic particles (Fig. 2d) easily recognisable due to their specific morphology 

were also observed as: 10) mycelium fragments (Myc) which are elongated and have a 

colour tint ranging from light brown to brown under transmitted light. Size of these 

particles exceed several hundred μm, 11) cuticular fragments (Cut) corresponding to 

some residues of the outer membranes of higher plants. Their size are very variable and 



can exceed several hundred μm, 12), spores and pollen grains (SP) which are the 

reproductive cells of macroflora. These particles are generally small and reach only 10 

μm.  

We also report a relative proportion of framboidal pyrite (resistant to acid treatment). 

 

4.1.2. Particle density 

The particle densities were measured using various density liquids (ethanol – 0.8 g/cm3, 

water -1 g/cm3 and bromoforme – 2.9 g/cm3) which mixing provided various densities 

solutions (0.8, 1, 1.3, 1.5, 1.7 and 1.9 g/cm3). Two samples were examined: a bedrock 

organic concentrate located at the bottom of the P2 profile and an OH layer located at 

the top of the same profile. Both samples were selected because their organic content 

covers all particles observed in this work, as indicated by microscopy observations. For 

each density fraction, we estimate the carbon recovered using Rock-Eval pyrolysis TOC 

(%) as follow (eq.3): 

 

(%)TOC fraction (mg)weightfraction      
 (mg)fraction  thein  recovered mass Carbon eq.3)

×
=

 

 

After palynofacies counting, we estimate the carbon mass for each organic particle in a 

fraction using the following equation (eq.4): 

 

%) - counting(surfacesfraction  theinarea particle(mg)fraction  thein recovered mass carbon
  (mg) fractiona  incarbonorganic Particleseq.4)                                   

×
=

 

Obtained results for OH and PL samples organic particles are expressed in Fig. 3.   



 

OH sample (Fig. 3a) mainly contains ligno-cellulosic fragments, GA, Cut and Myc 

particles. RAOM, OLC, GD and pyrite particles are very rare or absent. The 

characteristics of the individual organic particle groups are given below: 

OH sample amorphous particles: CGAOM mostly occurs in the less dense fractions 

and maximum Corg is recovered at a density of 1 g/cm3 (15.75 mg); GA particles have 

a more complex distribution with two maximum, between 0.8 and 1 g/cm3 (59.6 mg) 

and between 1.3 and 1.5 g/cm3 (102.4 mg).  

- OH sample ligno-cellulosic fragments: DDLC particles are mostly collected between 

1.3 and 1.5 g/cm3 (15.3 mg), whereas TLC and GLC are between 0.8 and 1 g/cm3 

(respectively 37.3, 103.4 mg).  

Myc and Cut particles are mostly represented between densities of 0.8 and 1 g/cm3. SP 

particles can be found in a wide range of densities, from 0.8 to 1.5 g/cm3.  

 

PL samples (Fig. 3b) mainly consist of OLC, GD and ROAM particles. These particles 

appear to be denser than those of the OH sample and none remains in suspension at the 

density of 1.  

- PL sample amorphous particles: ROAM are mostly collected in the two fractions 

equal or below 1.3 g/cm3 (8.3 and 10.7 mg) and in suspension at a density of 1.5 g/cm3 

(21.2mg).  

- PL sample opaque ligno-cellulosic fragments: el OLC occur between 1.3 and 1.5 

g/cm3 (2.4 mg); c OLC are found between 1.7 and 1.9 g/cm3 (1.96 mg) and conc OLC 

are observed in all fractions, with a slight predominance between 1.5 and 1.7 g/cm3 (1.1 

mg) and between 1.7 and 1.9 g/cm3 (0.8mg); Co-OLC particles are present in the 



densest fractions above 1.7 g/cm3 (1.5 mg) and above 1.9 g/cm3 (1.4mg); sq OLC seem 

to be found preferentially in more than one density fraction, below 1.3 g/cm3 (4.9 mg) 

and between 1.5 and 1.7 g/cm3 (11 mg). 

- PL sample gelified debris: GD particles are poorly present and are collected in all 

fractions between 1 and 1.5 g/cm3 with a slightly predominance in fraction equal or 

below 1.3 g/cm3 (0.47 and 0.6 mg); OGD mostly present in fraction equal or below 1.3 

(9 and 13.8 mg).  

- PL sample pyrite is too dense to be found in these fractions and is poorly collected in 

studied samples.  

All these results allow us to assign an approximate density for each kind of particle 

(Table 1).   

 

4.1.3. Quantification of samples organic particles 

Particles were grouped according to their optical properties: all OLC, all other ligno-

cellulosic fragments (as LC), GD with OGD (as GDgr), and Myc, Cut and SP as divers 

(Div).  

 

In the P1 weathering profile, organic content (Fig. 4) is homogeneous and the samples 

reveal a strong predominance of OLC (between 0.176 and 0.296 mg/g), RAOM 

(between 0.109 and 0.192 mg/g) and GDgr (0.061 and 0.113 mg/g). In contrast, pyrite 

particle concentrations show significant changes along the profile and their proportions 

decrease from bottom to surface (from 0.268 to 0.034 mg/g).    

 

P2 weathering profile: 



For soil samples, quantitative palynofacies analysis has not been applied to samples OL 

and OH because standard particles are very small (20 μm) comparatively to large and 

slightly altered recent organic particles observed in these samples (up to 1 mm). This 

difference makes the observation of standard particles difficult and classical 

(qualitative) palynofacies is here used (Fig. 5a). OL and OH samples mainly contain LC 

particles (> 47 %) and in less proportion CGAOM, GA and Div particles. Other organic 

particles and pyrite are absent or occur in very small quantities. A layer sample exhibits 

more variable organic content (Fig. 5b) and contains OLC (0.163 mg/g), RAOM (0.132 

mg/g), GDgr (0.070 mg/g), LC (0.543 mg/g) and GA (0.664 mg/g) particles. Pyrite is 

absent from this sample.  

PL samples organic content (Fig. 5b) is similar to that observed in profile P1. Maximum 

concentrations are obtained between 110 and 125 cm depth (OLC, RAOM and GDgr 

concentrations can reach 0.512, 0.317 and 0.248 mg/g). Pyrite is observed in overall 

samples, and instead a great variability, a decrease of obtained values from bottom to 

surface is observed, with concentration dropping by about 0.219 to about 0.015 mg/g.  

TF samples exhibit an intermediate organic content between PL and A layer samples 

(Fig. 5c). OLC, GDgr and RAOM concentrations are the same order as in PL samples, 

with a maximum between 110 and 125 cm depth (OLC, RAOM and GDgr 

concentrations can reach 0.500, 0.314 and 0.184 mg/g). Samples collected between 20 

and 40 cm depth are generally poor in these particles with average concentrations of 

0.192 mg/g for OLC, 0.134 mg/g for ROAM and 0.55 mg/g for GDgr. Pyrite is either 

completely absent or present in very small quantities in TF samples. Other particles 

concentrations decrease according with depth from 0.5 to 0.01 mg/g for LC and from 



0.422 to about 0.18 mg/g for GA. CGAOM and Div are poorly present and their 

concentrations decrease with the depth as well.  

 

P3 weathering profile:  

Organic contents are similar to that observed in P2 profile A layer and TF samples (Fig. 

5d). OLC, RAOM and GDgr amounts are quite constant, while others particles 

concentrations decrease with depth (i.e. from 1.415 to 0.018 mg/g for LC, from 0.531 to 

0.021 mg/g for GA, from 0.122 to 0.007 mg/g for Div and from 0.167 to 0.005 mg/g for 

CGAOM). Pyrite is absent or is slightly present (< 0.013 mg/g). 

 

Riverine particles:  

“Le Laval” SL and BL samples organic content (Fig. 5e) mainly consists of OLC 

(between 0.221 and 0.403 mg/g), RAOM (between 0.195 and 0.297 mg/g), GDgr 

(between 0.042 and 0.070 mg/g) and pyrite (between 0.033 and 0.328 mg/g). LC, GA, 

Div and CGAOM are slightly present and the sum of these particles does not exceed 

0.125 mg/g.    

 

4.2. Chemical investigations  

  

4.2.1. Rock-Eval analysis  

P1 weathering profile: samples (Fig. 6) are homogeneous and exhibit low TOC values 

(between 0.3 and 0.52 %), low HI values (between 11 and 22 mg HC g –1 TOC) and 

Tmax values close to 520°C.  

 



P2 weathering profile:  

- Soils samples: OL and OH litters samples (Fig. 7a) are characterized by high TOC 

values (40.67 and 25.55 %), high HI values (446 and 309 mg HC g -1 TOC) and low 

Tmax values (336 and 330°C). A layer sample exhibits different TOC, HI and Tmax 

values (respectively 1.46 %; 164 mg HC g –1 TOC and 410°C).  PL samples (Fig. 7a) 

show very similar TOC, HI and Tmax values to those observed in profile P1, except for 

the samples collected between 110 and 125 cm depth, which have more important TOC 

(between 0.62 and 0.69 %). TF samples (Fig. 7b) exhibit more contrasted values. TOC 

and HI values decrease with depth (1.13 to 0.49 % and 128 to 14 mg HC g –1 TOC) 

whereas Tmax increases in the deepest samples (from 400 to 520°C).  

 

P3 weathering profile: P3 profile (Fig. 7c) samples TOC values decrease with depth 

before stabilizing at 36 cm (from 1.73 to approximately 0.3 %), HI values also decrease 

with depth (from 180 to 63 mg HC g –1 TOC) and Tmax values are close to 400 °C . 

 

Riverine particles: Riverine particles (Fig. 8) present similar values to those obtained in 

PL samples. Independently of the sampling period, SL and BL samples exhibit low 

TOC values (between 0.48 and 0.62 %), low HI values (between 11 and 29 mg HC g –1 

TOC) and some Tmax values close to 520°C (except 2006 BL samples, which exhibit a 

higher Tmax of 575 °C).  

 

4.2.2. Al2O3 contents (Fig. 9) 

For P1 profile, Al2O3 contents decrease with depth from 15.5 to 12.5 %. PL samples of 

P2 profile exhibit some Al2O3 contents ranging between 14 and 17.52 %, while TF 



samples contain few Al2O3 (13.06-16.2 %). This low content is also observed in P3 

samples, where values are ranged between 13.00 and 14.95 %.  

Al2O3 contents in riverine particles are similar to those measured in weathering profiles 

with an average of 14.9 %. 

 

5. Discussion 

 

5.1. Identification of fossil organic matter and recent organic matter 

 

Bedrocks samples show a palynofacies mainly dominated by OLC, ROAM and GDgr 

that can altogether represent 95 % of the organic matter. These particles are not found in 

the OL sample, which is mainly dominated by LC, GA, Div and CGAOM. With these 

results, we are able to discriminate and follow recent and fossil organic matter all along 

the studied profiles.  

 

5.2. Method validity  

 

Quantitative palynofacies method would give the opportunity to assess organic matter 

mass percentage (OM wt%). To test its validity, results were compared with TOC % 

obtained by Rock-Eval analysis (TOC % = OC wt%).  

Case of fossil organic matter (FOM): For P1 and P2 profiles, bedrocks and PL samples 

mainly contain FOM. For these samples, we obtain an organic matter/organic carbon 

ratio (OM wt%/TOC %, i.e. quantitative palynofacies/RE6 pyrolysis) of 1.31 ± 0.25; 



which is consistent with some values found in literature for mature organic matter 

(Trichet., 2006).  

Case of recent organic matter (ROM): The estimation of palynofacies accuracy to 

quantify ROM is more difficult, since the OM/OC ratio can evolve during soil processes 

(Disnar et al., 2003). OC content (OC wt%) was therefore assessed by using: -i) the 

FOM and ROM wt% obtained by quantitative palynofacies, -ii) the OM/OC ratio of 

1.31 previously get for FOM (i.e. OLC, ROAM and GDgr particles) and -iii) the 

OM/OC ratio of 1.7 for ROM (LC, GA, Div and CGAOM particles) given by literature 

(Duchaufour, 2001). Calculation of  OC (wt%) is given as follow (eq.5): 

 

[ ] [ ]
1.70

%)(wt  OC ROM
1.31

%)(wt  OCFOM    (wt%) OC Sample eq.5)    +=  

 

A difference of ± 15.5 % (Fig. 10) is observed between TOC (%) given by RE6 

pyrolysis and this calculated OC content. In detail, for samples showing high TOC 

values (> 0.9 %) this new method systematically provides lower OC (wt%). Several 

reasons can explain this trend. First, optical observations on samples having a high TOC 

values (i.e. ROM in organic horizons) reveal a significant proportion of large ROM 

organic particles as gelified amorphous organic matter (AG). Consequently, the 

standard surface (pollens) used seems to be insufficient to quantify these particles. 

Second, ROM contains more acido-soluble compounds, notably in litter where there is 

highest TOC values, which are lost during preparation (20 to 30 % of ROM).  

 

Quantitative palynofacies allows to quantify observed fossil organic particles in 

different samples, with an error of ± 15%. ROM quantification is more delicate as this 



method systematically underestimates its contribution. However, this is it not a real 

problem for our study, which focuses on FOM, but this highlights that the quantitative 

palynofacies method must be improved for other studies, focusing on ROM. Indeed, 

another larger standard should be used to quantify larger organic particles.  

 

5.3. FOM evolution during rocks weathering 

 

Quantitative palynofacies results were normalized with Al2O3 contents. These reports 

are noted AR (aluminium ratio).  

 

Bedrocks /weathering profiles transition: Alterites formations are mostly dominated by 

bedrocks chemical weathering (Campy and Macaire, 1989, 2003). This transition would 

have a low influence on FOM quantity and quality. FOM AR values vary between 0.28 

and 0.38 in P1 profile; and between 0.27 and 0.59 in P2 PL profile (Fig. 11a,b). There 

are also any trends in AR values whatever the diverse observed FOM previously seen 

(cf. section 4.1.3.). Conversely, along these two profiles a significant decrease in pyrite 

content is observed as illustrated by AR values that drop from 0.017 to 0.003 in P1 

profile and from 0.016 to 0.001 in P2 PL profile (Fig. 12). This strong sensitivity of 

pyrite to weathering processes was already evidenced in previous study (Petsch et al., 

2000).  

 

Weathering profiles/Soils transition: Soil formation is mainly controlled by (bio) 

chemical weathering (hydrolysis, oxidation due to water infiltration and biological 

activity). In A soil layer from P2 profile, organic matter is a mixing of FOM and ROM 



(principally GA) (Fig. 11b). The transfer between weathering profiles is accompanied 

by a decrease in FOM concentration as testified by a drop in the FOM AR value from 

0.038 in PL samples (average) to 0.022. There is no change in FOM evolution along P3 

profile (Fig. 11c). Indeed, OLC, RAOM and GDgr AR values remain relatively constant 

from the bottom to the top of the profile (respectively around 0.011, 0.006 and 0.008). 

Conversely, a rapid ROM decrease is however observed with depth (ROM AR falls 

from 0.161 to 0.004).   

 

Weathering profiles / TF transition: In P2 profile, organic matter from TF samples is 

composed of FOM and ROM (mainly GA and GLC) (figure10b). ROM occurrence 

quickly declines with depth. FOM appears to be more resistant and shows, from 40 cm 

depth to the bottom of the profile, a concentration close to that estimated in PL samples 

(FOM AR value average 0.04). OLC particles are slightly more concentrated in TF 

samples as well as RAOM particles while GDgr particles are slightly less concentrated 

(Fig. 11b). This shows that chemical weathering does not affect FOM, except for GDgr 

particles. 20 to 40 cm depth range differs because FOM concentration in the TF samples 

is close to those measured in the P2 A layer sample. FOM losses are close to 28 % 

between PL and TF samples (Fig. 11b), but such losses vary according to the nature of 

the observed particles. Indeed, OLC particles resist to weathering, while ROAM and 

GDgr particles are more sensitive. In fact their losses reach 39 and 43 % (Fig. 11b). We 

also note that pyrite disappears in TF samples (Fig. 12).    

 

Bedrocks / riverine particles transition: Riverine particles are directly produced by a 

direct mechanical erosion of the marls by water streaming (Di Giovanni et al., 2000). 



This would have no impact on FOM concentrations. Indeed obtained results indicate 

that bedrock to riverine particles transfer (Fig. 11d) does not have significant 

quantitative and qualitative impacts on liberated FOM. In addition, pyrite is found in all 

riverine particles samples (Fig. 12) suggesting an absence of weathering during this 

transfer.  

 

5.4. FOM occurrence in modern pools 

 

Our results show that FOM can occur in significant quantities in modern C pools. For 

the studied watershed, FOM can contribute for about 98% of total organic matter in PL 

samples, 85 % in riverine particles and between 20 and 90 % in TF and A layer 

samples. Obtained results pointed out that FOM and pyrite are found at the watershed 

outlet without qualitative or quantitative changes. Considering that the time transport of 

fluvial particles between “le Laval” watershed and Rhône delta does not exceed five 

days (IRS, 2001), our results suggest that FOM could significantly contribute to Rhône 

organic content. To extend our results, this means that FOM contribution has to be 

definitively taken into account in riverine loads and in soils carbon contents at local, 

regional and global scales. 

  

5.5. Factors controlling FOM alteration 

 

It appears that FOM alteration depends on the weathering type, but also on the kind of 

particles.  



Bacterial activity mainly occurs in wooded areas (weathering profiles/soils and PL/TF 

transitions) and associated FOM looses reach only 30%. OLC particles are more 

resistant whereas RAOM and GDgr losses reach an average of 40 %. Conversely, pyrite 

is very sensitive and its loss attains 90 % (Fig 12). These results are in agreement with 

some previous studies; indeed Petsch et al (2000) showed a FOM partial mineralization 

along weathering profiles, whereas Copard et al (2006) showed that weathering process 

does not affect all FOM compounds in the same way. 

Chemical weathering is mainly observed at the profiles bases (bedrocks / alterites) and 

seems to have no impact on marls organic content, only pyrite particles are affected.  

Mechanical weathering (bedrocks/riverine particles transition) has no impact on marls 

organic contents. Pyrite particles occurrence in riverine particles despite its sensitivity to 

weathering can be explain by the geomorphological context. Indeed, Callovo-Oxfordian 

marly limestones are characterized by a very strong erosion rate and by typical badlands 

morphology with V-shapes gullies (Mathys, 2006). Because of its intensity, mechanical 

weathering seems to be the main factor limiting (bio)chemical weathering, but as 

consequences,  promotes FOM and pyrite export. 

 

5.6. Callovo-Oxfordian marly limestones FOM representativeness  

 

According to RE6 values as Tmax > 500°C, very low HI (generally < 30 mg HC g –1 

TOC), FOM in Callovo-Oxfordian marly limestones is thermally mature. This may 

explain the low sensitivity of this OM to weathering. However, our results can only be 

extrapolated to FOM which present some similar features as: -i) the same physical and 

chemical properties (i.e. the same OM precursor), -ii) the same environmental deposit 



(i.e. the same early diagenetic conditions and mineral protection), -iii) the same 

geological history (i.e. the same maximum temperature of burial recorded by FOM 

leading to a specific maturity degree) and -iv) the same geomorphological context (i.e. 

the same weathering context depending on climate and geology).  

Indeed, all these previous points have impacts on the sensitivity of FOM toward 

weathering processes and erosion. For examples, Petsch et al., (2000) showed that FOM 

contained in organic carbon rich bedrocks (black shales) is very sensitive and losses 

recorded can reach 60 to 100 % along weathering profiles. Conversely, Fredericks et al. 

(1983) showed that some mature bituminous coals are more resistant and C-losses reach 

only 20 % in the same context. 

 

Conclusions 

 

Quantitative palynofacies is a new and promising method that enables both taking into 

account organic matter diversity and quantifying its contribution in studied samples 

with a sensitivity close to (± 15 %). This method allowed us: -i) to discriminate ROM 

from FOM particles, -ii) to quantitatively follow FOM during and after its releasing; 

and -iii) to highlight FOM resistance to weathering process (observed losses do not 

exceed 30 %). 

In detail, transfers between compartments are accompanied by some losses in FOM 

particles. Theses ones depend on the organic constituent’s nature, but also on the kind 

of transfer. A gradient of lability can be built from OLC (most resistant) to GDgr (most 

labile) particles. We also observe different trends in the FOM behavior during the 

different transfers occuring in continental surfaces. Thus, bedrocks/riverine particles 



and bedrocks/alterites transfers have not impacts on FOM; while weathering profiles/ 

TFand weathering profiles / soils transfers imply the maximum FOM losses (30 %).  

 

Such results underline that FOM delivery in continental surfaces by weathering can not 

simply act as a source of carbon to the atmosphere or a direct input in supergene C 

reservoirs. Indeed FOM fate appears to be mainly controlled by the nature of weathering 

processes (i.e. hydrolysis, bacterial activities) and further studies should be performed 

to clarify the FOC role in the carbon cycle in terms of delivery and fate. Fossil 

contribution should then be taken into account in organic stocks and fluxes estimates 

both at local than at global scales.  

  

Finally, this method has a wide range of applications. For example, quantitative 

palynofacies could be used for paleoenvironmental reconstructions as it enables to track 

and quantify different organic markers in various compartments (soils, marine or 

lacustrine sediments). 

 

Acknowledgements 

This work is a contribution of the GIS ‘Bassins de Draix, étude de l’érosion en 

montagne’ driven by the Cemagref and was financially supported by the CNRS 

programme INSU PNSE-ACI : Influence de l’érosion sur les flux de matière organique 

fossile dans les géosystèmes continentaux actuels (sols, cours d’eau) : bassins 

expérimentaux de Draix, Alpes de Haute Provence, France. The authors warmly thank 

Marielle Hatton, Rachel Boscardin for their assistances. We are grateful to reviewers for 

constructive comments. 



 

References 

Adams, J., Faure, H., 1996. Changes in moisture balance between glacial and 

interglacial conditions, influence on carbon cycle processes: Brandson, J., Brown, AG., 

Gregory, KJ. (Eds.), Global Continental Change: The Context of Paleohydrology. 

Geological Society of London Special Publication 115, 27-42. 

Aitkenhead, J.A., McDowell, WH., 2000. Soil C:N ratio as a predictor of annual 

riverine DOC fluxes at local and global scales. Global Biogeochemical Cycles 14, 127-

138. 

Amiotte-Suchet, P., 1995. Cycle du carbone, érosion chimique des continents et 

transferts vers les océans. In : ULP-CNRS (Ed.), Mémoire Sciences Géologiques 97, 

156 pp. 

Amiotte-Suchet, P., Probst, J.L., Ludwig, W., 2003. Worldwide distribution of 

continental rock lithology: implications for the atmospheric/soil CO2 uptake by 

continental weathering and alkalinity rivers transport to the oceans. Global 

Biogeochemichal Cycles 17:  DOI: 10.1029/2002GB001891. 

Balesdent, J., 1996. The significance of organic separates to carbon dynamics and its 

modelling in some cultivated soils. European Journal of Soil Science 47, 485-493. 

Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. European 

Journal of Soil Science 47, 141-163. 

Battarbee, R.W., Kneen, M.J., 1982. The use of electronically counted microspheres in 

absolue diatom analysis. Limnology and Oceanography 27, 184-188.  

Behar, F., Beaumont, V., Penteado, H.L De B., 2001, Rock-Eval 6 Technology: 

Performances and Developments. Revue de l’Institut Français du Pétrole 56, 111-134. 



Berner, R.A., 1992. Comments on the role of marine of marine sediment burial as a 

repository for anthropogenic CO2. Global Biogeochemichal Cycles 6, 1-2.  

Blair, N.E., Leithold, E.L., Ford, S.T., Peeler, K.A., Holmes, J.C., Perkey, D.W., 2003.  

The persistence of memory: The fate of ancient sedimentary organic carbon in a modern 

sedimentary system. Geochimica and Cosmochimica Acta 67, 63–73. 

Blair, N.E., Leithold, R.L., Aller, R.C., 2004. From bedrock to burial: the evolution of 

particulate organic carbon across coupled watershed-continental margin systems. 

Marine Chemistry 92, 141-156.  

Campy, M,  Macaire, J.-J., 1989. Géologie des formations superficielles. Masson, Paris, 

433 pp. 

Campy, M., Macaire, J.J., 2003. Géologie de la Surface. Erosion, Transfert et Stockage 

dans les Environnements Continentaux, 2nd Edition. Dunod, Paris, 440 pp. 

Carter, MR., Angers, DA., Gregorich, EG., Bolinder, MA., 1997. Organic carbon 

storage and nitrogen stocks and storage profiles in cool, humid soils of eastern Canada. 

Canadian Journal of Soils Science 77, 205-210.  

Combaz, A., 1964. Les palynofaciès. Revue de Micropaléontologie 7, 205-218.  

Combaz, A., Bellet, J., Poulain, C.I., Tissot, C., 1977. Géochimie organique des 

sédiments marins profonds, mer de Norvège - Mission ORGON 1.  CNRS (Ed.), Paris, 

290 pp.  

Combaz, A., 1980. Les kérogènes vus au microscope. In: Durand, B. (Ed.), Kerogen. 

Technips, Paris, pp 55-111. 

Copard, Y., Di-Giovanni, C., Martaud, T., Albéric, P., Olivier, J.E., 2006. Using Rock-

Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: 



implications for the roles of erosion and weathering. Earth Surface Processes and 

Landforms 31, 135-153.  

Copard, Y., Amiotte-Suchet, P. Di-Giovanni, C., 2007. Storage and release of fossil 

organic carbon related to weathering of sedimentary rocks. Earth and Planetary Science 

Letters 258, 345-357. 

Degens, E.T., Kempe, S., Richey, J.E., 1991. Biogeochemistry of major world rivers.  

SCOPE 42, 323-344. 

Dickens, A.F., Gélinas, Y., Hedges, J.I., 2004a. Physical separation of combustion and 

rock sources of graphitic black carbon in sediments. Marine Chemistry 92, 215-223.  

Dickens, A.F., Gélinas, Y., Hedges, J.I., 2004b. Reburial of fossil organic carbon in 

marine sediments. Nature 427, 336-339.Di-Giovanni, C., Bertrand, Ph., Campy, M., 

Disnar, J.R., 1997. Contribution de matière organique méso-cénozoïque dans un flux 

organique terrigène tardi et post-glaciaire (bassin de Chaillexon, Doubs, France). 

Bulletin de la Société géologique de France 168, 553-559.  

Di-Giovanni, C.,  Disnar, J.R., Bichet, V., Campy, M., 1998a. Sur la présence de 

matière organique méso-cénozoïque dans les humus actuels (bassin de Chaillexon, 

Doubs, France). Comptes rendus de l’Académie des Sciences Paris 326, 553-559.  

Di-Giovanni, C., Disnar, J.R.,  Bichet, V., Campy, M., Guillet, B., 1998b. 

Geochemichal characterization of soil organic matter and variability of a past glacial 

detrital organic supply (Chaillexon lake, France). Earth Surface Processes and 

Landforms 23, 1057-1069. 

Di-Giovanni, C., Disnar, J.R., Campy, M., Macaire, J.J., 1999a. Variability of the 

ancient organic supply in modern humus. Analusis  27, 398-402. 



Di-Giovanni, C., Disnar, J.R.,  Turpin, S., Bréheret, J.G., 1999b. Estimation de la 

contribution des matières organiques remaniées au stock organique des sols et 

sédiments lacustres (bassin des Peyssiers, hautes Alpes, France). Bulletin de la Société  

Géologique de France 170, 121-129. 

Di-Giovanni, C., Disnar, J.R., Bakyono, J.P.,  Keravis. D., Millet, F., Olivier, J.E., 2000. 

Application de l’étude de la matière organique à l’analyse de l’érosion: exemple du 

bassin versant du Moulin, dans les terres Noires des Alpes de Haute Provence, France. 

Comptes rendus de l’Académie des Sciences Paris 331, 7-14.  

Di-Giovanni, C., Disnar, J.R., Macaire, J.J., 2002. Estimation of the annual yield of 

organic carbon released from carbonates and shales by chemical weathering. Global and 

Planetary Change 32, 327-343. 

Disnar, J.R., Guillet, B., Keravis, D., Di-Giovanni, C., Sebag, D., 2003. Soil organic 

matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic 

Geochemistry 34, 327-343. 

Duchauffour, P., 2001. Introduction à la science du sol; végétation, environnement. 

Dunod, Paris (331 pp.). 

Eglinton, T.I., Benitez-Nelson, B.C., Pearson, A., McNichol, A.P., Bauer J.E., Druffel, 

E.R.M., 1997. Variability in radiocarbon ages of individual organic compounds from 

marine sediments. Science 277, DOI: 10.1126/science.277.5327.796. 

Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications, 

Partie 1-2. Revue de l’Institut Français du Pétrole 40, 563-579. 

Eswaran, H., Van Den Berg, E., Reich, P., 1993. Organic carbon in soils of the world. 

Soil Science Society of America Journal 57, 192-194. 



Fredericks, P.M, Warbrooke, P., Wilson, M.A., 1983. Chemical changes during natural 

oxidation of a high volatile bituminous coal. Organic Geochemistry 5, 89-97. 

Holland, H.D., 1978. The Chemistry of Atmosphere and Oceans. Wiley Interscience 

Publishers, 351 pp. 

Houghton, R.A., 1998. Missing sinks, feedbacks, and understanding the role of 

terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles 12, 

25-34.   

Houghton, R.A., 2005. Aboveground forest biomass and the global carbon balance. 

Global Change Biology 11, 945-958. 

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment.  In: Salomon, S., Qin, D., Manning, M., 

Marquis, L., Averyt, K., Tignor, M., Leroy-Miller, H., Zhenlin C. (Eds), Cambridge 

University Press, Cambridge, United Kingdom and New York, USA, 996 pp. 

Kao, S.J., Liu, K.K., 1996. Particulate organic carbon export from a subtropical 

mountainous river (Lanyang Hsi), in Taiwan. Limnology and Oceanography 41 1749-

1757. 

IRS 2001.  Etude globale pour une stratégie de réduction des risques dus aux crues du 

Rhône. Institution interdépartementale des bassins Rhône-Saône (Ed.), Valence, 40 pp.  

Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon 

exploration, production and soil contamination studies. Revue de l’Institut Français du 

Pétrole 53(4), 421-437. 

Leithold, R.L., Blair, N.E., 2001. Watershed control on the carbon loading of marine 

sedimentary particles. Geochimica and Cosmochimica Acta 65, 2231-2240. 



Lichtfouse, E., Bardoux, G., Mariotti, A., Balesdent, J., Ballentine, D.C.,Mack, S.A., 

1997a.  Molecular 13C and 14C evidence for the allochtonous and ancient origin of C16-

C18 n-halkanes in modern soils. Geochimica and Cosmochimica Acta 61, 1891-1898. 

Lichtfouse, E., Budzinski, E., Garrigues, P., Eglinton, T.I., 1997b. Ancient polycyclic 

aromatic hydrocarbons in modern soils: 13C, 14C and biomarkers evidence. Organic 

Geochemistry 26, 353-359. 

Ludwig, W., Probst, JL. , Kempe, S., 1996. Predicting the oceanic input of organic 

carbon by continental erosion. Global Biogeochemical Cycles 10, 23-41. 

Masiello, C.A., Druffel, E.R.M, 2001. Carbon isotope geochemistry of the Santa Clara 

River. Global Biogeochemical Cycles 15, 407-416. 

Mathys, N., 2006. Analyse et modélisation à différentes échelles des mécanismes 

d’érosion et de transport de matériaux solides. Cas des petits bassins versants de 

montagne sur marnes (Draix, Alpes de Haute Provence). PhD Thesis, Institut nationale 

polytechnique  de Grenoble (France), 346 pp.  

Meybeck, M., 1993. C,N,P, and S in rivers: from sources to global inputs : Wollast, 

Machenzie and Chou (Eds.), interaction of C,N,P, and S biogeochemical cycles on 

Global Change, 163-193. 

Meybeck, M., 2005. Origins and behaviors of carbon species in world rivers. In: Roose 

and Lal (Eds.), Erosion and Carbon Dynamics, Advances in Soil Sciences Series. CRC 

Boca Raton, pp 209-238.  

Petsch, ST., Berner, RA., Eglinton, T.I., 2000. A field study of the chemical weathering 

of ancient sedimentary organic matter. Organic Geochemistry 31, 475-487. 



Probst, J.L., 1992. Géochimie et hydrologie de l’érosion continentale, Mécanismes, 

bilan global actuel et fluctuation au cours des 500 derniers millions d’années. In: ULP-

CNRS (Ed.), Mémoire Sciences Géologiques 94, 161 pp. 

Raymond, P.A., Bauer, J.E., 2001. Riverine export of aged terrestrial organic matter to 

the North Atlantic Ocean. Nature 409, 497-500. 

Raymond, P.A., Bauer, J.E., 2004. Controls on the variability of organic matter and 

dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry 92, 353-366. 

Sebag, D., Di Giovanni, C., Ogier, S., Mesnage, V.,  Laggoun-Défarge F., Durand, A., 

2006a. Inventory of sedimentary organic matter in modern wetland (Marais Vernier, 

Normandy, France) as source-indicative tools to study Holocene alluvial deposits 

(Lower Seine Valley, France). International Journal of Coal Geology 67, 1-16.  

Sebag, D., Copard, Y., Di-Giovanni, C., Durand, A., Laignel, B., Ogier, S., Lallier-

Verges, E., 2006b. Palynofacies as useful tool to study origins and transfers of 

particulate organic matter in recent terrestrial environments: Synopsis and prospect. 

Earth-Science Reviews 79, 241-259. 

Sebag, D., Disnar, J.R.,  Guillet, B., Di Giovanni, C., Verrecchia, E.P., Durand, A., 

2006c. Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: 

bulk characterization and quantification of degradation. European Journal of Soil 

science 57, 344-355. 

Stallard, R.F., 1998. Terrestrial sedimentation and the carbon cycle: Coupling 

weathering and erosion to carbon burial. Global Biochemical Cycles 12(2), 231-257. 

Trichet, J., 2006.  Climat et matière organique.  In Rotaru, M., Gaillardet, J., Steinberg, 

M., Trichet (Eds.),  Paris, Vuibert / Société géologique de France, pp 143-179.     



Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. 

Chapman and Hall, London, 615 pp. 

Vernal, A., Larouche, A., Richard, J.H., 1987. Evaluation of palynomorph 

concentrations: do the aliquot and the marker-grain methods yield comparable results? 

Pollen and Spores, XXIX, 291-304.  

Wakeham, S.G., Forrest, J., Masiello , C.,  Gaelinas , Y.,  Alexander , C., leavitt, P., 

2004. Hydrocarbons in Lake Washington Sediments. A 25-Year Retrospective in an 

Urban Lake. Environmental Science & Technology 38, 431-439. 

 

Figure captions 

 

Fig. 1. Geographical location of “le Laval” watershed and schematic weathering 

profiles studied. Compact fragments of rock samples (PL); fine and friable elements 

samples (TF); suspended load samples (SL); bed load samples (BL); litter layers 

samples (OL); humic layers samples (OH) and organo-mineral layers samples (A). 



 

Fig. 2. Categories of particulate organic matter distinguished from morphological 

criteria : clear and granular amorphous organic matter (CGAOM), - reddish amorphous 



organic matter (RAOM),  - gelified amorphous organic matter (GA), - gelified debris 

(GD), - dark gelified debris (OGD), opaque ligno-cellulosic  fragments (OLC) 

fragments that do not display any identifiable structure as well as any fluorescence 

under UV excitation. These particles are separated by their shapes (elongated - el OLC, 

squat - sq OLC, complex - c OLC, concave conc OLC), - corroded outline opaque 

ligno-cellulosic fragments (CoOLC), - cuticular fragments (Cut),- spore and pollens 

(SP), - dark degraded ligno-cellulosic fragments (DDLC) ; - translucent ligno-cellulosic  

fragments (TLC),-  mycelium fragments (Myc),  - gelified ligno-cellulosic fragments  

(GLC), pyrite.  



 



Fig. 3.  Particles organic carbon amounts in different density fractions, a) humic layers 

sample (OH); b) compact fragment of rock sample (PL). 

 

Fig. 4.  P1 profile samples quantitative palynofacies counting. All opaque ligno-

cellulosic are grouped as OLC; reddish amorphous organic matter (RAOM); all 

gelified debris are grouped as GDgr; all non opaque ligno-cellulosic fragments are 

grouped as LC; gelified amorphous organic matter (GA); mycelium, cuticular 

fragments and spore and pollens are grouped as divers (Div); clear and granular 

amorphous organic matter (CGAOM) and pyrite. 



 

Fig. 5. Quantitative palynofacies counting ; a) P2 profile litter layer (OL) and humic 

layer (OH) samples; b) P2 profile organo-mineral layer (A) and compact fragments of 

rock samples (PL); c) P2 profile fine and friable elements samples (TF); d) P3 profile 

samples and e) riverine particle samples (suspended load samples - SL; bed load 

samples – BL). All opaque ligno-cellulosic are grouped as OLC; reddish amorphous 

organic matter (RAOM); all gelified debris are grouped as GDgr; all non-opaque 

ligno-cellulosic fragments are grouped as LC; gelified amorphous organic matter (GA); 



mycelium, cuticular fragments and spore and pollens are grouped as divers (Div); clear 

and granular amorphous organic 

 



Fig. 6. Rock-Eval 6 measurements along P1 profile. Total organic carbon (TOC - %); 

hydrogen index (HI - mg HC/ g-1 TOC) and Tmax (°C). 

 

Fig. 7. Rock-Eval 6 measurements along (a) P2 profile compact fragments of rock 

samples (PL); (b) P2 profile fine and friable elements sample (TF); and (c) P3 profile 

samples. Total organic carbon (TOC - %); hydrogen index (HI - mg HC/ g-1 TOC) and 

Tmax (°C). 



 



Fig. 8. Rock-Eval 6 measurements of riverine particles (suspended load – SL; and bed 

load samples - BL). Total organic carbon (TOC - %); hydrogen index (HI - mg HC/ g-1 

TOC) and Tmax (°C). 

 

Fig. 9. Samples Al2O3 contents. Compact fragments of rock samples (PL); organo-

mineral layers sample (A); fine and friable elements samples (TF); suspended load 

samples (SL) and bed load samples (BL). 

 

Fig. 10. Correlation between TOC (%) obtain by Rock Eval analysis and OC (wt%) 

calculated with quantitative palynofacies results.   



 

Fig. 11. Quantitative palynofacies results normalized against Al2O3 contents (noted AR) 

along profiles P1 (a); P2 (b); P3 (c) and riverine particles (d). FOM is the sum of OLC, 

ROAM and GDgr particles; ROM is the sum of LC, GA, CGAOM and Div. Compact 

fragments of rock samples (PL); fine and friable elements samples (TF); suspended 

load samples (SL); bed load samples (BL); litter layers samples (OL); humic layers 

samples (OH) and organo-mineral layers samples (A). 



 

Fig. 12. Pyrite concentrations normalised against Al2O3 contents (noted AR) along 

studied profiles and riverine particles. Compact fragments of rock samples (PL); fine 

and friable elements samples (TF); suspended load samples (SL); bed load samples 



(BL); litter layers samples (OL); humic layers samples (OH) and organo-mineral layers 

samples (A). 

 

 

 
 
 
 
 Table 1: Observed organic particles densities. 

 
 

 CGAOM RAOM DDLC GLC TLC el OLC sq OLC c OLC conc OLC 
Particles 
density 1 1.5 1.4 0.9 1.4 1.4 1.6 1.8 1.7 

  GD OGD Myc SP 
Co 

OLC pyrite  GA Cut 
Standard 

pollen 
Particles 
density 1.2 1.2 0.9 0.9 1.7 5 1.4 0.9 1.3 

 
 


