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Abstract: This paper describes an olistostrome formation and accompanied bimodal volcanic rocks 

occurring in the Baiyanggou area, south of Bogda Shan. The main lithotectonic units consist of 

olistostrome, volcanic rocks and turbidite. The olistostrome is tectonically underlain by Upper 

Carboniferous limestone and sandstone along a NEE-trending detachment fault. Paleo-growth fault 

is locally observed. The olistostrome unit includes plenty of blocks of limestone, sandstone, rhyolite 

and volcaniclastic rocks, and a matrix of greywacke. Limestone blocks are dated as Pennsylvanian-

Bashkirian in age by the coral and brachiopod fossils that are extensively recognized in the Upper 

Carboniferous strata. The volcanic unit consists of pillowed and massive basalt and rhyolite, the 

latter occur as an 8-10-meter thick layer above the olistostrome unit. The turbidite unit is mainly 

composed of chert, siliceous mudstone and sandstone, within which the Bouma sequence can be 

locally recognized. Meter-wide gabbro and diabase dykes intrude these three units.  

Geochemically, rhyolites are characterized by high ACNK value of >1.1, depletion of Ba, Nb and 

Sm, and enrichment in Rb, Th and Zr. Basaltic rocks are rich in K2O, they show a LREE-enriched 

pattern and depletion in Ba, Nb and Zr, and enrichment in Ti, Ce and Hf, similar to continental rift-

type tholeiite series. A gabbro porphyrite intruding the olistostrome was dated at 288 ± 3 Ma by a 

sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb method, and a rhyolite at 297 ± 2 

Ma by a laser ablation inductively coupled plasma mass spectrometer (LA-ICPMS) zircon U-Pb 

method. 

The Baiyanggou olistostrome and accompanying bimodal volcanic series are linked to an 

extensional setting that developed in the south of the Bogda Shan. Several lines of evidence, e.g. 

occurrence of large scale strike-slip shear zones, large number of mantle-derived magmatic rocks 

and available geochronological data, demonstrate a significant geodynamic change from 

convergence to extension in the Chinese Tianshan belt, even in the whole Central Asian Orogenic 

Belt. The extension in the Chinese Tianshan belt is initiated at ca. 300 Ma, i.e. around 

Carboniferous-Permian boundary times, and the peak period of intra-plate magmatism occurred in 

the interval of 300-250 Ma.  
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Introduction 

The Tianshan belt, sub-E-W-extending over 3000 km from NW China to Kazakhstan and 

Kyrgyzstan, is the southern part of the Central Asian Orogenic Belt (CAOB in short) and therefore 

important for understanding the geology of Central Asia. The CAOB was formed by amalgmation 

of various continental blocks, arc complex and accretionary wedges, and underwent subsequent 

polyphase tectonic evolution (Coleman 1989; Li et al. 2000, 2003; Zhao XX et al. 1990; Shu et al. 

2003a; Windley et al. 1990, 2007; Xiao et al. 2008). The terrane amalgamation and related 

lithospheric shortening occurred in the Late Paleozoic (Allen et al. 1993, 1995, 2001; Li et al.; 

2003, 2006a; Shu et al. 1997, 2000, 2002, 2003b; Laurent-Charvet et al. 2002, 2003; Jahn et al. 

2004; Xiao et al. 2004a; de Jong et al. 2009; Wang et al. 2006, 2008, 2010; Charvet et al. 2007), 

forming a primary framework of the Tianshan orogenic belt. Two angular unconformities occurring 

in the pre-Permian strata documented the main orogenic events. The first one occurs between Early 

Carboniferous (Visean) conglomerate and Silurian schist in the Central Tianshan area; the second 

between Permian conglomerative bed and Carboniferous strata in the whole Tianshan belt (Guo et 

al. 2002; Xiao et al. 2004b; Charvet et al. 2007). 

In the Kelamaili suture zone located in the east of Junggar block, Famennian-Tournaisian 

radiolarians were found in the chert of an ophiolitic suite (Shu and Wang 2003), and thus the latest 

Devonian-earliest Carboniferous age represents a lower limit of oceanic closure. In the Bayingou 

area, south of Junggar block, the Sikeshu granite intruding the ophiolitic mélange yielded SHRIMP 

zircon U-Pb age of 316 ± 3 Ma (Han et al. 2010). In Central Tianshan, the granite intruding the arc 

volcanic rocks was dated at 318 ± 5 Ma by SHRIMP zircon U-Pb method (Sun et al. 2006). These 

dates defined a crucial upper age constraint for the time of collision between terranes. 
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Previous works show that a post-collisional tectonic-magmatic event occurred in Chinese 

Tianshan belt since Early Permian (Shu et al. 2005; Charvet et al. 2007; de Jong et al. 2009; Wang 

et al. 2009). It is characterized mainly by large-scale strike-slip shearing and rifting as well as 

bimodal magmatism. Three large-scale Permian strike-slip ductile shear zones, sub-E-W-extending 

more than 600 km, developed in the Tianshan and Junggar areas. To the north, the Erqishi sinistral 

strike-slip shear zone is located in the southern margin of the Altai orogenic belt; to the south, the 

Main Tianshan Shear Zone or the Weiya–Bingdaban zone is a dextral strike-slip fault; and the 

middle zone is named the Kangguer-Huangshan dextral strike-slip shear zone (Shu et al., 2000). 

Bimodal volcanic rocks, consisting of alkaline basalt and rhyolite intercalated with clastic rocks, 

develop widely in the whole Tianshan belt. Alkaline granitic dykes and gabbro-diabase swarms 

intrude the pre-Permian rocks. Geochronological results suggest that the strike-slip shearing took 

mainly place in the interval of 290-245 Ma (Shu et al. 1999; Laurent-Charvet et al. 2003; de Jong et 

al. 2009), and the extensional magmatism was dated at 300-250 Ma (Jiang et al. 1999; Sun et al. 

2006; Wang et al. 2009; Chen and Shu 2010). 

The sub-E-W-trending Bogda Shan is an important tectonic belt separating the Junggar Basin to 

the north from the Turpan-Hami Basin to the south (Fig. 1). It has been considered as (1) a 

Carboniferous volcanic arc (Ma et al. 1993, 1997; Laurent-Charvet et al. 2003), (2) an 

intracontinental rifting zone during the Carboniferous-Permian time (He et al. 1994; Gu et al. 2000), 

(3) a Carboniferous volcanic arc superimposed by an Early Permian rift (Shu et al. 2005), or (4) a 

part of mantle plume related large igneous province (Xia et al. 2004). 

In the southern Bogda Shan, an olistostrome was found in the Baiyanggou area, 30 km to the 

southeast of Urumqi City. Based on its geometric and structural features, Shu et al. (2005) proposed 

that the formation of the Baiyanggou olistostrome was a result of a post-collisional event 

accompanied by Early Permian syntectonic plutonism and bimodal volcanism. 

In order to better understand the geological environment of the Baiyanggou olistostrome and its 

tectonic significance, and put more precise age constraint on its formation, in this paper, we present 
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new detailed description of the olistostrome, geochemistry and isotopic ages of the magmatic rocks, 

and conclude that the extension-related bimodal magmatism and olistostrome formation started 

around Carboniferous-Permian boundary times, thus marking the end of compressional tectonism in 

the North Tianshan. 

 

Geological background 

Structural outline 

The Central part of Bogda Shan is mainly composed of Carboniferous sedimentary, volcanic and 

volcaniclastic rocks. These sequences were folded into an asymmetric anticline and subsequently 

cut by a detachment fault (Fig. 2). A gabbroic pluton of about 180 square kilometers intrudes the 

Carboniferous rocks. The gabbro is not directly dated, although a diabase dyke in the southern 

Bogda Shan was dated at 294 ± 1 Ma (Sm-Nd isochron) (Gu et al. 2001). The northern and southern 

slopes of the Bogda Shan are occupied by Permian sedimentary rocks that are intercalated with 

bimodal volcanic rocks in the southern slope. 

Early Permian bimodal volcanic rocks occur in an E-W-extending zone of over 500 km-long in 

the southern foot of Bogda Shan (Fig. 1). This zone is also called the Shanshan-Qijiaojing-Kulai rift 

zone (Shu et al. 2005). The volcanic rocks are mainly composed of purple-colored ignimbrite, 

rhyolite and green-black basalt. The total thickness of bimodal volcanic series varies in different 

segments, but the basaltic rocks are usually thicker than rhyolitic rocks. Their ages remain undated 

although they have been assigned as Early Permian in the available geological map (scale 

1/1,500,000) (XJBGMR 1992).  

Several NE- to E-W-trending normal faults are widely developed in the studied area. Therein a 

detachment fault between Carboniferous and Permian sequences is considered as the boundary of 

the Early Permian rifting basin (Shu et al. 2005). Growth fault can be locally distinguished along 

the detachment fault according to the variation of the rocks thickness. The formation of detachment 

fault is assumed as earliest Permian since the fault cut Upper Carboniferous rocks, and the fault 
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plane was in turn cross-cut by an Early Permian gabbro dyke (cf. below) and also sealed by 

Permian sedimentary rocks (Fig. 2).  

Triassic clastic rocks were thrust onto the Jurassic coal-bearing strata due to Cenozoic 

intracontinental events. All pre-Paleogene rocks were cut and displaced by Cenozoic thrust faults 

with a strike of NE or sub-E-W (Fig. 2). Most Paleozoic ductile thrust and strike-slip faults dated in 

the neighboring areas at the interval of Late Carboniferous to Permian (Ma et al. 1997; Shu et al. 

2002; Laurent-Charvet et al. 2003) have been displaced or replaced by Cenozoic faults.  

 

Stratigraphic sequences 

According to drill-hole data (XJBGMR 1993), the Carboniferous-Permian sedimentary sequences 

develop upon the Silurian-Devonian metamorphic basement. The Carboniferous strata with a 

thickness of 1200-1800 m are the oldest rocks exposed in the Bogda Shan. It is divided into three 

formations, namely: the Lower Carboniferous Liushugou Formation (C1l), Qijiagou Formation 

(C1q), and Upper Carboniferous Aoertu Formation (C2a) (XJBGMR 1960). These formations 

mainly consist of sandstone, mudstone, limestone, bioclastic limestone, tuff, basaltic rocks and 

andesite intercalated with rhyolite; the only difference is the fossil assemblages developed in these 

rocks. 

The Permian strata, more than 3000 m thick, can be divided into three series. The Lower Permian 

defined as Jijicao Group (P1jj) is composed of terrestrial coarse sandstone, sandstone, siltstone and 

neritic-bathyal facies turbitite, siliceous mudstone and chert intercalated with bimodal volcanic 

rocks or alkaline basalt. The Middle Permian is further subdivided into three formations (namely, 

Wulabo, Jingjingzigou, Lucaogou Formations) that are composed of terrestrial clastic rocks 

including purple conglomerate, coarse sandstone and greywacke and sandstone. The Upper Permian 

Hongyanci Formation is composed of lacustrine siltstone and mudstone.  

The Middle Permian Wulabo Formation (purple conglomerate and coarse-grained sandstone) 

overlies unconformably the Lower Permian Jijicao Group, and then grades upwards into rhythmic 
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sandstone and mudstone of Jingjingzigou, Lucaogou and Hongyanci Formations. 

 

Litho-tectonic units 

The Baiyanggou olistostrome and associated rocks are exposed more than 20 km long and 3-5 

km wide in the southwest of the Bogda Shan (Figs. 1, 2). Our field survey was conducted between 

N43°40'33'', E88°03'21'' and N43°42'13'', E88°02'55''. The outcrop is continuous forming a N-S 

trending section of ca. 2700 m long. Bedding dips to the south for ca. 60°. Three distinct 

lithotectonic units can be recognized, namely, an olistostrome unit containing intercalated basalt 

and rhyolite, a basalt unit and a turbidite unit (Fig. 3). 

 

Olistostrome unit 

This unit is ~1360 m wide at surface and can be divided into two parts. The lower part, with a 

width of 1200 m, consists of allochthonous blocks of limestone, sandstone and chert as well as 

volcanic breccia, which are surrounded by medium to fine-grained matrix of mudstone and tuff. 

Majority of blocks is grey-white limestone that occupies 60-70% of total content. The upper part of 

this unit is composed of greywacke with a thickness of 160 m, containing a small amount of 

irregular conglomerates of the underlying strata such as limestone and tuff. A bimodal volcanic 

series with a thickness of 8-10 m is intercalated in greywacke, consisting of fine-grained basalt and 

rhyolite. Microscopically, the rhyolite consists mainly of angular rock fragments (chert and 

sandstone), plagioclase-quartz crystal fragments and plastic glass with multi-angular camber and 

flame-like shapes. 

Single olistolith exhibits various shape such as lens, breccia and sub-round with different sizes 

(Fig. 4C). The bigger blocks are limestone with sizes ranging from 100 m to 300 m in diameter, 

which includes brachiopoda and coral fossils; the brachiopoda was identified as Choristites sp. with 

a Late Pennsylvanian age, and the coral fossils are unclear in age due to extensive recrystallization 

(examination at Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 
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unpublished data). The petrography and included fossils resemble those of the limestone of the Late 

Carboniferous Aoertu Formation in the Bogda area. 

In the bottom of the olistostrome unit, a N70°E-trending main detachment fault zone, 15 m wide 

and dipping to the south at 65°, contacts with Late Carboniferous limestone and sandstone of the 

Aoertu Formation (Fig. 4A). An 80 cm wide gabbro dyke (Fig. 4E) dated at 288 Ma (cf. below) 

crosscuts the main detachment fault and olistostrome body, indicating that this main detachment 

fault was formed before 288 Ma. Growth fault and syn-sedimentary texture, such as convolute 

bedding and small sliding folds, can be observed in the lower part of this unit.  

Near the main detachment fault, olistostrome formation was involved in south-verging 

asymmetric folds, in which cleavage occurs parallel to the south-dipping fold axial plane. Some 

small blocks of limestone and sandstone distribute preferentially in a NE50°-60° direction. Within 

or near the fault zone, breccia fragments of different size can be recognized. Two groups of joints in 

the contact zone were measured; their average directions are calculated from 115 measurements at 

20°∠70° (dip/dip angle) and 80°∠72° (inset A of Fig. 3) and for 200°∠65° and 270°∠72° (inset B of 

Fig. 3). The drag folds and sheared cleavages are also common; acute angles between the axis of 

drag fold or cleavage and the main fault plane indicate a southeastward slipping of the hanging 

wall. 

 

Basalt unit 

This unit, 330 m wide (i.e., ~280 m thick), is divided into two parts. The lower part is 250 m 

wide and consists of pillow basalt; the 80 m-wide upper part is composed of massive basalt. The 

pillow basalts occur above the underlying olistostrome; and the massive basalts were intruded by a 

30-50 cm wide dyke of diabase porphyrite. This unit is overlain by turbidite unit (cf. below).  

Pillow basalt shows a typical hemispherical shape (Fig. 4D) demonstrating a sequence younger 

towards the SE of the section (Fig. 3). The crust of the pillow is composed of 2-3 cm thick 

chalcedony, and gaps among pillows are filled by glassiness and siliceous clay. The pillow bodies 
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have different sizes, the largest is up to 80 cm in diameter, the smallest is 10 cm and most pillows 

are 40-50 cm in diameter.  

A vesicular structure is commonly observed in the pillow basalt. All vesicles are filled by 

amygdaloid calcite or quartz. The vesicular pillow basalt with porphyritic structure consists of 

phenocrysts of labradorite (An=65-70, 15 %), pyroxene (5-10 %), olivine (2-3 %) and groundmass 

composed of micro-crystals of plagioclase, pyroxene and chlorite (70%), as well as accessory 

minerals (magnetite+spinel, 2-4 %). Hornblende is also found to be associated with pyroxene 

phenocrysts. Most mafic micro-crystals in the groundmass have been replaced by chlorite. 

Upward, the pillow lava becomes gradually massive basalt, in which vesicular structure can not 

be observed. Pillowed and massive basalts exhibit fracture and joint but not fold due to their rigid 

and massive physical property.  

 

Turbidite unit 

This unit, with a thickness of ~1100 m, overlies conformably the basalt unit. The top of this unit 

cannot be seen due to being covered by Quaternary alluvium. The turbidite unit is also divided into 

two parts: the lower part consists of grey turbidite sequence consisting of conglomerate-sandstone-

siltstone-siliceous mudstone sequence (Fig. 4F), having a thickness of 350 m; the upper part, 750 m 

thick, is composed of grey-green laminar sandstone and massive mudstone.  

A few decimeter-scale limestone blocks were observed in this unit. Rhythmic, graded and 

massive bedding, and small-scale growth fault (140∠60) are well developed. The graded bedding 

shows a normal sequence younger to the south. Layer-slip faults parallel to steep bedding-planes 

occur widely between above-mentioned three units, implying an extension after the olistostrome 

accumulation.  

 

Geochemical features of igneous rocks 
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In order to determine the magma composition and understand the tectonic settings of the 

aforementioned volcanic rocks, 12 representative samples (5 basalts, 3 rhyolites, 1 gabbro and 3 

diabases) were analyzed for major, trace and rare earth elements. Petrographic features of the 

samples are presented in Table 1. The sampling locations are shown on the cross-section (Fig. 3). 

The major element contents were analyzed using XFR method by Zhang Mengqun in the Modern 

Analysis Center of Nanjing University, and the contents of rare earth and trace elements were 

determined by Gao Jianfeng using Finnigan MAT Element II-type ICP-MS in the State Key 

Laboratory for Mineral Deposits Research, Nanjing University. Analytical procedures are same as 

described by Rickwood (1989), Falkner et al. (1995) and Qi et al. (2000a, 2000b). Uncertainties for 

major elements represent 2% errors (XFR) and 5% for rare earth and trace elements (ICP-MS). 

REEs were normalized to chondrite values according to Sun and McDonough (1989), and trace 

elements to primitive mantle values following McDonough and Sun (1995).  

All samples used for analysis are not-fractured and least altered. The loss on ignition (LOI) is 

usually low (0.34 to 1.55 wt %) except for the pillow basalt sample 2965 (2.35 %). Analytical 

results are shown in Table 2. 

The Geochemical data show that the analyzed igneous rocks from the Baiyanggou section consist 

of basaltic and rhyolitic rocks. Five basaltic samples show similar features, they have high content 

of SiO2 (51.4-52.7 %) that could have been elevated by input of secondary quartz amygdales. They 

are richer in Na2O (2.78-3.81 %) than in K2O (~0.90 %). They show LREE-enriched patterns 

(LaN/YbN = 5.3-7.4), with weak negative or no significant Eu anomalies (Eu/Eu* = 0.79-1.03) (Fig. 

5A; Table 2). In the trace element spider-diagrams (Fig. 5B), enrichment of Ti, Ce, Hf and 

depletion of Ba, Nb, Zr can be observed, these features are similar to those of continental rift-type 

basalt (Condie 1989; Wilson 1989; Furman 2007). The gabbro and diabase porphyrite show similar 

geochemical characteristics in REEs and trace elements to the basalts (Figs. 5A, B). 

Compared with the basaltic rocks, three rhyolitic samples are poorer in plagioclase and biotite, 

and richer in potassic feldspar and sanidine. In major element compositions, all rhyolitic samples 
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are K-riched, with high total alkalies (K2O+Na2O) contents of 7.11-9.08 %. They are poor in CaO 

and MgO contents (Table 2). Their ANKC values (Mol Al2O3 / (Na2O+K2O+CaO)) are 0.86-0.94.  

All rhyolitic samples have high total contents of rare earth elements of 198-207 ppm. They show 

LREE-enriched patterns, with significant negative Eu anomalies (Eu/Eu* = 0.22-0.39) (Fig. 5C; 

Table 2), suggesting a marked fractionation between LREE and HREE. Their primitive-mantle-

normalized trace element patterns show prominent enrichment of Rb, Th, Zr and Hf (Fig. 5D). 

These features are comparable to the rift-related rhyolitic rocks (Li et al. 2008). A distinct negative 

Nb anomaly can be observed. This feature could be related to a mantle source modified by 

subduction related material as observed in post-collisional magmatic rocks (Wang et al. 2009; de 

Jong et al., 2009). 

In the Nd*2-Zr/4-Y and Ti versus Zr discrimination diagrams, most of samples plot either in the 

within-plate tholeiite field (Fig. 6A) or in the within-plate basalt field (Fig. 6B). 

 

Zircon U-Pb dating of igneous rocks 

Sampling and analytical techniques 

In order to constrain the age of olistostrome in the Baiyanggou area, we conducted SHRIMP and 

LA-ICPMS U-Pb dating on the zircons from the igneous rocks. One gabbro (Sample 234) was 

collected from the lower part of olistostrome unit (Fig. 3). Sample 2891 was collected from rhyolite 

layer located above the olistostrome (Table 1; Fig. 3).  

Zircon grains were hand-picked from the crushed sample power after heavy liquids and magnetic 

separation. Most zircon grains are light purple, transparent and idiomorphic-hypidiomorphic. Zircon 

grains from the gabbro are smaller (20-50 μm in diameter) than those from the rhyolite (ca. 40-80 

μm). Zircon mounting, microscopic and cathodo-luminescence (CL) photography were performed 

in the Center of Ion-Probe in Beijing.  

The zircons of gabbro were analyzed using a SHRIMP II, the beam size is 30 μm. Standard 

zircons (TEM) from Australia were used for correction of isotopic fractional distillation and 
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determination of U, Th, Pb contents. Common Pb was corrected with measured 204Pb of standard 

(TEM). Detailed analytical procedures have been described by Compston et al. (1984, 1992) and 

Kröner et al. (1998). The data were analyzed with Ludwig’s SQUID 1.02 and ISOPLOT 2.06 

(Ludwig 1999).  

Age dating of the zircons from Sample 2891 from the upper part of olistsotrome unit was carried 

out at the State Key Laboratory for Mineral Deposits Research (Nanjing University), using the 

Agilent 7500s ICPMS coupled with a New Wave 213 μm laser ablation (LA) system with an in-

house sample cell. Detailed analytical procedures are similar to those described by Griffin et al. 

(2004), Jackson et al. (2004) and Wang XL et al. (2007). In order to control instrument stability and 

analytical accuracy, two analyses of the GJ zircon standard (608 ± 1.5 Ma; Jackson et al. 2004) and 

one analysis of standard MudTank (732 ± 5 Ma; Black and Gulson 1978) were done after each 10 

analyses of zircon samples. All analyses were carried out using a beam width of 40 μm. U–Pb ages 

were calculated from the raw signal data using on-line software package GLITTER (ver. 4.4) 

(http://www.mq.edu.au/GEMOC). Common lead was corrected using the EXCEL-embedded 

program ComPbCorr#3 15G by Andersen (2002).  

All errors are quoted in 1 sigma level, and weighted mean apparent ages were then calculated in 2 

sigma level with 95% confidence. 

 

Results and age significance 

Twelve zircon grains of gabbro porphyrite (Sample 234) were analyzed. The analytical results are 

presented in Table 3. Most analytical data are concordant (Fig. 7A). Eight analyses yielded apparent 

206Pb/238U ages ranging from 276~300 Ma, a mean age was calculated at 287.5 ± 3.4 Ma, which is 

interpreted as the crystallization age of the gabbro. Three analyses with older apparent 206Pb/238U 

ages of 315-323 Ma gave a mean age of 320.8 ± 4.2 Ma. This age is significantly older, and is 

therefore considered as the inherited zircons from the Carboniferous arc-type magmatic rocks. The 

rest one analysis yielded a much older age of 1826 ± 10 Ma (Table 3) that is probably derived from 
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a Paleoproterozoic basement rock in the deep crust of the studied area, but could also be a result of 

contamination. 

Twenty-four zircon grains of rhyolitic sample 2891 were analyzed using the Laser Ablation 

Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) method. The dating results are listed 

in Table 4. All dated zircons show a clear zoning, and have Th/U ratios of 0.25-0.63 (average 0.40). 

Most ages are consistent within errors and accordant except analyses 1, 8 and 23 (Fig. 7B) that are 

not involved in mean age calculation. The other 21 analyses yielded a mean 206Pb/238U age of 296.6 

± 1.8 Ma with a MSWD value of 0.05. 

This age is a little older than that of gabbro (288 ± 3 Ma), in agreement with the field occurrence 

of intrusive contact between the gabbro dyke and rhyolite. Thus, the ages of 297-288 Ma are the 

peak period of building the Baiyanggou olistostrome formation and companied bimodal 

magmatism.  

 

Relationship with the Late Paleozoic tectonic events in the southern margin of 

CAOB 

During the Paleozoic, three continental plates, namely, Tarim, Kazakhstan and Siberia, as well as 

small blocks with various affinities (arc, seamount, continental crust and oceanic crust) such as 

Altai, Dalbut, Junggar, Central Tianshan and Yili-North Tianshan occupied the Central Asia. Since 

Late Devonian, Kazakhstan Ocean (also called Tianshan-Mongolian Ocean in some literatures) 

subducted southward beneath the Tarim plate, producing the Bogda and Yili-North Tianshan 

volcanic arcs, and a block-amalgamation took subsequently place. This event affected strongly the 

southern margin of the CAOB, leading to the accretion of terranes (Xiao XC et al. 1990; Sengör et 

al. 1993; Shu et al. 2002, 2004; Wang et al. 2006, 2007a, 2008; Charvet et al. 2007; Windley et al. 

2007; Xiao et al. 2004a, 2004b, 2008). Ophiolites, glaucophane-schist-bearing mélanges, mylonitic 

rocks and I-type granitoids were formed in response to such geodynamic processes (Windley et al. 

1990, 2007; Allen et al. 1993, 1995; Gao et al. 1998; Jahn et al. 2004; Li et al. 2006a, 2006b; 
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Abrajevitch et al. 2008; Wang et al. 2010). The aforementioned SHRIMP zircon U-Pb age of 321 ± 

4 Ma from the inherited zircons captured by the Baiyanggou gabbro dyke is interpreted as the 

timing of arc-related magmatism of the Bogda Shan. 

Reconstruction of the Xinjiang paleogeography suggests that the marine environment of 

Tianshan-Junggar domain was gradually reduced both in surface and depth during the 

Carboniferous time (XJBMR 1993), and the peak of marine consumption took place in the Late 

Carboniferous (Zhou and Dean 1996). 

The ophiolitic mélange, mylonite and amphibole-bearing granites are distributed along the 

different suture zones, which were sealed by a regional unconformity of Middle-Late Permian 

coarse sediments, providing an upper limit of suturing time (Gao et al. 1998; Shu et al. 2000, 2001; 

Charvet et al. 2007; Wang et al. 2007a). The siliceous rocks of ophiolite suite were dated at the 

Famennian-Tournaisian by radiolarian fossils (Shu and Wang 2003; Shu et al. 2007; Liu et al. 

2006), representing the lower limit of suturing time. This suturing built the Tianshan range and 

various deformation structures such as folding and thrust-stacking. 

Since Early Permian or late stage of Late Carboniferous, the termination of oceanic subduction 

and subsequently slab detachment caused lithospheric thinning, upwelling of mafic magma and 

strike-slip shearing that is widespread in the southern margin of CAOB including Chinese Tianshan 

belt (e.g. de Jong et al., 2009; Wang et al. 2009). This event could be linked to an extensional event 

in the Chinese Tianshan belt and neighboring Kyrgystan and Kazakhstan orogenic belts (Natal'in 

and Sengör 2004; Charvet et al. 2007). 

As aforesaid, in the Baiyanggou olistostrome domain, the bimodal volcanic rocks, pillow basalts 

and alkaline gabbro/diabase dykes of 288 Ma were derived from mantle magma with partly 

contribution of crustal material. Geochemically, these rocks show an affinity of rifting setting. We 

assume that the gabbros/diabases in the central part of the Bogda Shan were probably generated in a 

similar environment although their geochronological and geochemical features still need to be 

further studied.  
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  Thus, with more and more multidisciplinary data obtained, the previous tectonic interpretations 

of the study area should be re-evaluated. Firstly, a Late Paleozoic passive margin (e.g. He et al. 

1994) is no longer supported by newly published data since the study area underwent a subduction-

related convergent regime with production of magmatic arc system. Secondly, the hypothesis of 

mantle plume is considered unlikely due to lacking of basic geological evidence rather than 

geochemical significance (de Jong et al., 2009; Wang et al. 2009). Moreover, a Late Paleozoic 

volcanic arc should be also constrained more precisely, i.e., a Late Devonian-Carboniferous 

volcanic arc (e.g. Wang et al. 2007a) was followed by Permian extension and rift-related post-

collisional magmatism.  

It is worth emphasizing that the Baiyanggou olistostrome-bearing sequence records a deepening 

sedimentary environment. The olistostrome series with the blocks of Late Carboniferous platform 

facies limestone and the matrix of greywacke (Unit 1) indicates a collapse likely linked to a post-

collision setting. The pillow basaltic rocks (Unit 2) represent an underwater eruption, and a 

turbidite-chert assemblage with Bouma sequence (Unit 3) suggests a deep-water sedimentation. 

Thus, we conclude that a deep-water environment existed still in some localities in the southern 

margin of Chinese Tianshan area. 

Recently, 40Ar/39Ar dating showed that the strike-slip shearing in Chinese Tianshan and Altai 

took mainly place in the interval of 290-245 Ma. The aforementioned Erqishi sinistral strike-slip 

zone was dated at 281 ± 8 Ma and 289 ± 4 Ma on muscovite of gneiss (Laurent-Charvet et al. 2002). 

The Main Tianshan Shear Zone or the Weiya–Bingdaban dextral shearing zone yield a muscovite 

age of 269 ± 5 Ma (Shu et al. 2002); the shearing of North Tianshan Fault occurring during 285-250 

Ma (de Jong et al. 2009); ductile strike-slip faulting in Nalati Fault continued up to 260-250 Ma 

(Wang et al. 2007b); the ductile deformation of the Kangguer-Huangshan zone was dated around 

260-247 Ma on muscovite (Wang YT et al. 2004) and 247 ± 1 Ma on biotite of mylonite (Chen W 

et al. 2004). These regional strike-slip faults are correlated both in space and in time with the 

Permian extensional structure and magmatism, and can be therefore considered to be linked to be 
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response of collisional (Shu et al. 2005) or oblique-collisional tectonics (de Jong et al., 2009; Wang 

et al. 2009). This link between the post-collisional transcurrent tectonics and synchronous 

magmatism and metallogeny is a common feature of Central Asian Orogenic Belt in Late Paleozoic 

times (de Jong et al., 2009; Pirajno 2010).  

As reported by previous researchers, mafic dykes and alkaline rocks dated as Permian are 

widely distributed in the Tarim block and its surrounding ogogenic belts (Chen HL et al. 1997; 

Jiang et al. 1999; Wang JB et al. 2006; Zhang et al. 2008), showing a violent magmatism under an 

extensional setting. As seen in the Kuruqtag segment of the NE-Tarim block and the central and 

southern Tianshan belt, the interbedded diabase and granite dykes with a bimodal geochemical 

feature construct a marked ―zebra mountain sight (Figs. 8A, B). The dating values of bimodal 

igneous series or alkaline basalts are concentrated in the interval of 300-250 Ma (Zhao ZH et al. 

2000; Chen HL et al. 1997; Shu et al. 2005; Li et al. 2006b; Wang B et al. 2009). 

Furthermore, the Baiyanggou olistostrome yielded two isotopic ages, 288 ± 3 Ma (SHRIMP U-

Pb) on the gabbro dyke and 297 ± 2 Ma (LA-ICPMS U-Pb) on the rhyolite, respectively, consistent 

with the dating of the neighboring Karlik granites of 297 ± 2 Ma and 295 ± 2 Ma (LA-ICP-MS 

zircon U-Pb) (Chen and Shu 2009), representing a likely initial time of extensional event. 

As observed in the Baiyanggou section, a local marine basin existed during Early Permian while 

coeval strike-slip shearing and extensional magmatism as well as olistostrome were developed in 

the Tianshan belt. The Early Permian turbidite-chert sequence and pillow lava in the Baiyanggou 

area confirm this conclusion. Since Middle-Late Permian, paleo-Tianshan ocean was entirely closed, 

a regional-scale Middle-Late Permian unconformity accompanied with a thick molasse sequence 

indicate the termination of a marine setting and the beginning of a welded terrestrial environment 

for the Tianshan area of the CAOB.  

 

Conclusions 

An olistostrome formation occurs in the south of the Bogda Shan, it is overlain by bimodal 
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volcanic rocks and turbidite sequence, and intruded by gabbro and diabase dykes. Geochemical 

analyses on the volcanic rocks suggest that they formed in an intraplate setting with contribution of 

subduction-related magma source. Olistoliths include blocks of Late Carboniferous limestone. 

Zircon SHRIMP and LA-ICPMS dating on the overlying rhyolite and intruding gabbro gyke 

yielded ages of 297 and 288 Ma, respectively. These stratigraphic and chronological data constrain 

the timing of the olistostrome at the Carboniferous-Permian boundary. Occurrences of normal fault, 

regional large-scale strike-slip shear zones and coeval magmatism suggest an extensional setting 

that developed in the south of the Bogda Shan. The extension in the Chinese Tianshan belt is 

initiated at ca. 300 Ma, and laterally comparable throughout in the Central Asian Orogenic Belt. 
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Figure 4. Field photographies of the olistostrome domain in the Baiyanggou area 

A, Detachment fault between the Permian olistostrome and the Carboniferous limestone-sandstone; 

B, Olistolith of limestone (white) within greywacke matrix; C, Olistolith of limestone (ligh color); 

D, Pillow basalt; E, Gabbro porphyrite; F, Turbidite  
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Figure 5. The Condrite-normalized REE patterns (A and C) and the primitive mantle-normalized 

trace elements spider diagrams (B and D) for the basalt and rhyolite, respectively 
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Figure 6. Tectonic discriminations of the Baiyanggou igneous rocks (Pearce et al. 1984) 

A, The 2*Nb-Zr/4-Y diagram; B, The Ti vs Zr diagram 

N-MORB, Normal Middle Ocean Ridge Basalt; E-MORB, Enriched Middle Ocean Ridge Basalt; 

WPT, Within-plate tholeiite; MORB, Middle ocean ridge basalt; WPB, Within-plate basalt; VAB, 

Volcanic arc basalt.  
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Figure 7. Concordia diagrams of zircon U-Pb dating on the igneous rocks of the Baiyanggou 

domain, representative CL images of dated zircons are also shown 

A, Sample 234, gabbro porphyrite (SHRIMP); B, Sample 2891, rhyolite (LA-ICP-MS) 
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Figure 8. Images of Early Permian bimodal igneous rocks 

A, The “zebra mountain” consisting of bimodal igneous rock swarm (Kuruqtag, Yuli County); B, 

the Early Permian mafic rock swarms intruding the Late Carboniferous granite (Weiya, Hami City) 

 

Captions of tables 

Table 1  Petrographic features of igneous rocks in the Baiyanggou, south of Urimqi City, NW 

China 
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Table 2  Analytical results of major elements (wt%), rare earth elements (ppm) and trace elements 

(ppm) for igneous rocks from the Baiyanggou cross-section in the southern foot of Bogda Shan 
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Table 3  The SHRIMP U-Pb data of zircons from the gabbro porphyrite in the Baiyanggou section 

 

 

 

Table 4  The LA-ICPMS U-Pb data of zircons from the rhyolite in the Baiyanggou section 

 

 


