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Abstract  26 

 27 

Ecological studies need environmental descriptors to establish the response of species or 28 

communities to ecological conditions. Soil water resource is an important factor but is 29 

poorly used by plant ecologists because of the lack of accessible data. We explore 30 

whether a large number of plots with basic soil information collected within the 31 

framework of forest inventories allows the soil water holding capacity (SWHC) to be 32 

mapped with enough accuracy to predict tree species growth over large areas. We first 33 

compared the performance of available pedotransfer functions (PTFs) and showed 34 

significant differences in the prediction quality of SWHC between the PTFs selected. 35 

We also showed that the most efficient class PTFs and continuous PTFs compared had 36 

similar performance, but there was a significant reduction in efficiency when they were 37 

applied to soils different from those used to calibrate them. With a root mean squared 38 

error (RMSE) of 0.046 cm3 cm-3 (n = 227 horizons), we selected the Al Majou class 39 

PTFs to predict the SWHC in the soil horizons described in every plot, thus allowing 40 

84% of SWHC variance to be explained in soils free of stone (n = 63 plots). Then, we 41 

estimated the soil water holding capacity by integrating the stone content collected at 42 

the soil pit scale (SWHC’) and both the stone content at the soil pit scale and rock 43 

outcrop at the plot scale (SWHC”) for the 100.307 forest plots recorded in France 44 

within the framework of forest inventories. The SWHC” values were interpolated by 45 

kriging to produce a map with 1 km² cell size, with a wider resolution leading to a 46 

decrease in map accuracy. The SWHC” given by the map ranged from 0 to 148 mm for 47 

a soil down to 1 m depth. The RMSE between map values and plot estimates was 33.9 48 

mm, the best predictions being recorded for soils developed on marl, clay, and hollow 49 

silicate rocks, and in flat areas. Finally, the ability of SWHC’ and SWHC” to predict 50 
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height growth for Fagus sylvatica, Picea abies and Quercus petraea is discussed. We 51 

show a much better predictive ability for SWHC” compared to SWHC’. The values of 52 

SWHC” extracted from the map were significantly related to tree height growth. They 53 

explained 10.7% of the height growth index variance for Fagus sylvatica (n = 866), 54 

14.1% for Quercus petraea (n = 877) and 10.3% for Picea abies (n = 2067). The 55 

proportions of variance accounted by SWHC” were close to those recorded with 56 

SWHC” values estimated from the plots (11.5, 11.7, and 18.6% for Fagus sylvatica, 57 

Quercus petraea and Picea abies, respectively). We conclude that SWHC” can be 58 

mapped using basic soil parameters collected from plots, the predictive ability of the 59 

map and of data derived from the plot being close. Thus, the map could be used just as 60 

well for small areas as for large areas, directly or indirectly through water balance 61 

indices, to predict forest growth and thus production, today or in the future, in the 62 

context of an increasing drought period linked to a global change of climatic conditions. 63 

 64 

Keywords: Digital soil mapping, soil water holding capacity water balance, GIS, site 65 

index, vegetation modelling. 66 

 67 

1. Introduction 68 

 69 

Relating plant species to environmental factors is a central topic in plant ecology 70 

since pioneers recognized the importance of climate in determining global vegetation 71 

types (Von Humboldt, 1807). Currently, plant species or communities response to 72 

ecological conditions is increasingly studied and concerns many applications, such as 73 

modelling ecological niches and mapping distribution range, evaluating species 74 

abundance, diversity or productivity (Coops and Waring, 2001). For these studies, the 75 
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availability of accurate environmental descriptors is of crucial importance (Dirnböck et 76 

al., 2002). Most of the time, climatic factors are considered alone because of their 77 

availability in large climatological datasets or because geographic information systems 78 

(GIS) programs allow their calculation (Piedallu and Gegout, 2008). Although soil 79 

factors have been recognized for their importance (Coudun et al., 2006), they are poorly 80 

used as input in predictive models (Guisan and Zimmermann, 2000), particularly for 81 

broad areas, due to the high cost and long duration of fieldwork required to obtain 82 

relevant data. The availability of accurate digital soil information at scales relevant for 83 

plant ecologists and forest managers is now a crucial factor in plant modelling studies 84 

(Cresswell et al., 2006; Carré et al., 2007b). 85 

The soil water regime is recognized to be one of the most important soil factors for 86 

plant growth, influencing photosynthesis rate, carbon allocation, microbial activity and 87 

nutrient cycling  (Lebourgeois et al., 2005; Breda et al., 2006). On the other hand, 88 

available water for plants remains difficult to evaluate due to the lack of accessible data, 89 

its estimation requiring expensive laboratory measurements (Wosten et al., 1999).It is 90 

most of the time estimated by plant ecologists thought climatic water balance (rain – 91 

actual evapotranspiration), more easily available (Piedallu and Gegout, 2007). However, 92 

the water contained in the soil enabling to compensate the lack of rain over dry periods 93 

during the year (especially during summer), the maximum amount of water available for 94 

plants stored in a soil is particularly important to evaluate. It is characterised by the soil 95 

water holding capacity (SWHC), defined as the difference between the water content at 96 

field capacity and at wilting point (specified in cm of water for a soil of a given depth) 97 

(Bruand et al., 2003). This local characteristic is related to the vegetation production 98 

variability and, combined with climatic variables, allow the calculation of soil water 99 

balance. 100 
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Numerous studies focus on the development of pedotransfer functions (PTFs) 101 

(Bouma, 1989), allowing the prediction of complex soil hydraulic characteristics from 102 

basic soil properties which are easier to collect in the field (Wösten et al., 2001). The 103 

simplest ones are PTFs providing average values of the hydraulic properties of soil 104 

horizons grouped in classes (class PTFs). Their use requires easy-to-collect data, 105 

allowing the sampling density to be increased for the same effort, in order to better 106 

describe the soil spatial heterogeneity (Islam et al., 2006). During the last two decades, 107 

continuous PTFs which relate particle size distribution, bulk density or organic carbon 108 

content to hydraulic parameters by empirical equations have been developed. Unlike 109 

class PTFs, continuous PTFs require input variables that are costly to collect. 110 

Comparison of PTFs for water content estimation shows poor to good prediction 111 

accuracy depending on calculation method and on the location and characteristics of soil 112 

samples used for their calibration (Cornelis et al., 2001; Wagner et al., 2001; Givi et al., 113 

2004). Comparison between continuous and class PTFs shows contrasting results, some 114 

studies highlighting lower uncertainty with continuous PTFs (Van Alphen et al., 2001), 115 

others pointing out that the choice between class and continuous PTFs can be unclear 116 

when calculating soil functional characteristics (Al Majou et al., 2007; Rubio et al., 117 

2008). Other authors such as Nemes (2003) have discussed the geographical origin of 118 

PTFs and achieved better prediction with PTFs developed locally than with PTFs 119 

developed with soils originating from a large territory. Finally, it has been shown that 120 

PTFs developed on soils similar to those of the studied area perform well, thus avoiding 121 

the undesirable effect of regional specificity (Rawls et al., 2001; Schaap et al., 2001).  122 

In forest areas, the relation between water content and stand productivity has been 123 

studied for several decades but the lack of available data is actually a major limit to 124 

model species productivity over large and diversified areas. The knowledge of SWHC is 125 
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particularly important in the present climate change context, with an expected decrease 126 

in water availability in a large part of the world (Nemani et al., 2003). However, most 127 

studies have focused on the creation of PTFs to predict water hydraulic soil properties 128 

but only a few have evaluated the performance of such PTFs, particularly when they are 129 

used for vegetation modelling (Nemes et al., 2006). The validity of PTFs to predict the 130 

hydraulic properties of forested soils is thus poorly known, most samples used for their 131 

elaboration originating from cultivated soils, whose characteristics are different (Vincke 132 

and Delvaux, 2005). In this context, little research has focused on mapping the SWHC 133 

despite a clear interest for ecological studies and forest management (Romano and 134 

Santini, 1997; Orfanus and Mikulec, 2005). The existing SWHC maps are generally 135 

achieved at a local scale using inventories requiring information that is costly to collect 136 

and those few existing for large territories are generally derived from soil maps 137 

achieved at low resolution (McBratney et al, 2003; Al Majou et al, 2008b). The quality 138 

of these maps is difficult to estimate and their predictive ability is generally unknown. 139 

The aim of this study is thus to discuss if easy-to-collect soil information observed 140 

on numerous forest plots during broad scale inventories can be used to achieve a fine 141 

resolution SWHC map over large areas. Firstly, we studied the performance of six class 142 

PTFs available for French soils to convert the textural classes of horizons recorded by 143 

the National forest inventory into SWHC values. Their prediction quality was compared 144 

with values recorded with three more sophisticated continuous PTFs, using a dataset of 145 

227 horizons for which particle size distribution, organic carbon content, bulk density 146 

and SWHC values were known. The class PTFs giving the best performance were 147 

selected to estimate soil water holding capacity at the pit scale by taking into account 148 

the stone content of the soil (SWHC’) and at the plot scale by taking into account both 149 

the stone content of the soil and the proportion of rock outcrop (SWHC”) for 120,902 150 
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plots scattered over the whole of France. In a second step, we used 100,307 of these 151 

plots to map the SWHC” using geostatistical methods. The map resolution was chosen 152 

according to the cell size after comparison of the prediction accuracy recorded with a 153 

validation dataset containing 20,595 independent plots. The quality of the final map was 154 

evaluated according to the type of bedrock and at different scales using the same 155 

validation dataset. Finally, on the basis of previous studies showing an effect of SWHC 156 

on forest productivity (Bravo-Oviedo and Montero, 2005; Mitsuda et al., 2007), we 157 

compared the ability of SWHC’ and SWHC” to predict potential growth for three 158 

common tree species of European forests. The suitability of using basic soil information 159 

available in forested areas to map SWHC” and to improve potential production 160 

modelling is then discussed.  161 

 162 

2. Material and methods  163 

 164 

2.1. PTFs selected to identify the class PTFs used for study 165 

 166 

We selected 6 class PTFs established on soil datasets collected in France or 167 

including soils located in France: 168 

- The class PTFs established by Jamagne et al. (1977) using soils originating from the 169 

North of the Paris basin (Jamagne class PTFs) and which provide SWHC values 170 

according to 16 texture classes; 171 

- The class PTFs developed by Bruand et al. (2002) and Bruand et al. (2004) using 219 172 

and 302 horizons (85 horizons A and 217 horizons E, B, C), respectively, originating 173 

from soils located in different French regions (Bruand-2002 and Bruand-2004 class 174 

PTFs). The Bruand-2002 class PTFs are volumetric water contents at different matrix 175 

potentials according to classes combining 8 textures and bulk density values. The 176 
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Bruand-2004 class PTFs are also volumetric water contents at different matrix 177 

potentials but according to 13 texture classes without any reference to bulk density; 178 

- The class PTFs established by Al Majou et al. (2008) using 320 horizons (90 topsoil 179 

and 230 subsoil horizons) corresponding to a large range of French soil characteristics 180 

(Al Majou class PTFs). The Al Majou class PTFs are volumetric water contents at 181 

different matrix potentials but according to the 5 texture classes of the CEC texture 182 

triangle (Commission of the European Communities, 1985) and location of the horizon 183 

in the profile (topsoil or subsoil); 184 

- The class PTFs developed by Schapp et al. (2001) and which correspond to the H1 185 

first level of prediction of the Rosetta software which was developed using 2134 soil 186 

samples originating from North American and European soils (Shaap class PTFs). The 187 

Shaap class PTFs were sets of parameter values according to the 12 texture classes of 188 

the USDA triangle (SSSA, 1997) for the water retention curve established by Van 189 

Genuchten (1980): 190 

nn
rs

r h
h

/11])(1[
)( 







         (1) 191 

with (h), the volumetric water content (cm3 cm-3) at the matrix potential h (cm), s and 192 

r the saturated and residual water contents (cm3 cm-3), respectively,  (cm-1) a 193 

parameter related to the reciprocal of the air entry matrix potential, and n another 194 

parameter related to the pore-size distribution; 195 

- And finally the class PTFs developed by (Wosten et al., 2001) using the European 196 

Hypres soil database (Wösten class PTFs). Among the 5521 horizons making up 197 

Hypres, 171 originate from French soils. The Wösten class PTFs were also sets of 198 

parameter values for the water retention curve established by Van Genuchten (1980) 199 
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according to the 5 texture classes of the CEC triangle (Commission of the European 200 

Communities, 1985).  201 

The prediction quality of the 6 above class PTFs was compared with the prediction 202 

quality of 3 continuous PTFs requiring particle size distribution, organic carbon content 203 

and bulk density information:  204 

- The continuous PTFs developed by Vereecken et al. (1989) using soils from Belgium 205 

(Vereecken continuous PTFs) and recognized as leading to the best prediction when 206 

used for soils with similar characteristics in Belgium (Cornelis et al., 2005), Switzerland 207 

(Mermoud and Xu, 2006) and Germany (Tietje and Tapkenhinrichs, 1993); 208 

- The continuous PTFs developed by Teepe (Teepe et al., 2003) with German soils 209 

located exclusively under forest (Teepe continuous PTFs); 210 

- And the continuous PTFs developed by Al Majou et al. (2007) using soils originating 211 

from different regions of France (Al Majou continuous PTFs). 212 

 213 

2.2. Evaluation of efficiency of the selected PTFs 214 

 215 

The ability of the selected class PTFs to predict water content at different matrix 216 

potentials was discussed and compared to continuous PTFs, by using a database 217 

containing water content measurements. We brought together 227 horizons 218 

corresponding to 63 entire soil profiles, independent of the plots used to map SWHC 219 

and not used to develop the selected PTFs. A set of 140 horizons originating from the 220 

SOLHYDRO database (Bruand et al., 2003), the other 87 horizons originating mainly 221 

from the work published by Bigorre (2000). The 227 horizons were collected in 222 

different soil types distributed mainly in lowlands throughout the whole of France and 223 

cover various texture conditions (35 sandy, 128 loamy and 73 clayey horizons). Since 224 
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most of available PTFs are derived from measurements on cultivated soils, we evaluated 225 

their performance to predict water content for soils under forest using a subset of 95 226 

horizons. The horizons were sampled during winter when the soil was near to field 227 

capacity. The bulk density was measured using cylinders of 1236 cm3 in volume. The 228 

mean gravimetric water content was determined at different matrix potentials with 229 

pressure membrane or pressure plate apparatus by using twelve to fifteen undisturbed 230 

clods 5-10 cm3 in volume per sample (Bruand and Tessier, 2000). The volumetric water 231 

content (, in cm3 cm-3) was calculated by multiplying the mean gravimetric water 232 

content by the bulk density. The database also contained for each horizon the particle 233 

size distribution and the organic carbon content. The SWHC was computed by the 234 

difference between the volumetric water content at -100 hPa (2,0) and -15,000 hPa 235 

(4,2) matrix potential for each horizon, for a soil depth to a maximum of 1 m. The water 236 

content at field capacity corresponded to its value at -100 hPa according to the results 237 

recorded by Al Majou et al. (2008). The efficiency of the PTFs was discussed by 238 

comparing the SWHC predicted using the 6 class PTFs and 3 continuous PTFs selected 239 

with the SWHC measured for the 227 horizons. It was also assessed by comparing the 240 

predicted SWHC to its calculated value using the measured SWHC and the soil 241 

characteristics collected in every plot (horizon thickness, soil depth) for all 63 soils 242 

studied. 243 

 244 

2.3. Estimation of soil water holding capacity on plots 245 

 246 

The most efficient class PTF allowing the prediction of water content was selected 247 

for SWHC estimation on plots. A set of 120,902 soil descriptions surveyed in forest 248 

within the framework of the National Forest Inventory (NFI, IFN in French) and 249 
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scattered over the whole territory of France (550,000 km²) was used to realize and to 250 

validate the map (Figs. 1a and b). From 1989 to 2004, 100,307 of these plots were 251 

collected over the whole of France by quasi-systematic sampling with a mean density of 252 

1 plot per 1.1 km2 (Drapier and Cluzeau, 2001). Then, from 2005 to 2007, 20,595 other 253 

plots located on a regular mesh on the whole French territory with a density of 1 plot 254 

per 25 km² were surveyed, the mesh being moved each year. The part of the protocol 255 

concerning information required for SWHC estimation remains unchanged between the 256 

two methods. The 100,307 plots originating from the 1989 to 2004 protocol were used 257 

to establish the map, and the 20,595 plots from the 2005 to 2007 protocol were used for 258 

validation. 259 

On each 400 m² surveyed plot, the proportion of surface area occupied by rock 260 

outcrop (RO) was visually estimated and a soil pit was dug down to 1m depth when 261 

possible thus allowing to assess the stone content (i.e. volumetric proportion of visible 262 

mineral fragment > 2mm in size) in every horizon of the vertical faces of the pit (Baize 263 

and Jabiol, 1995). At most two horizons were distinguished in every soil pit. For every 264 

horizon the upper and lower limits were noted with a precision of 10 cm and the texture 265 

was manually estimated according to 9 classes (1, sand; 2, loamy sand; 3, sandy clay 266 

loam; 4, silt loam; 5, silty clay loam; 6, silt; 7, silty clay; 8, clay loam; and 9, clay). For 267 

a limited area in southern France (i.e. in the four French administrative departments 268 

Pyrénées Orientales, Aude, Ariege and Tarn), the survey performed between 1989 and 269 

1992 distinguished only one soil horizon and the depth of the pit was limited to 70 cm.  270 

We first calculated the soil water holding capacity at the soil pit scale (SWHC’ in 271 

mm of water) by taking into account the stone content recorded in the soil in every pit 272 

as follows: 273 

 



n

i

iiii

1
2,40,2

3 T))(SC1(' SWHC        (2) 274 
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with n the number of horizons in the soil profile, SCi the stone proportional content in 275 

horizon i, i
2  the water content at -100 hPa matrix potential of horizon i, i

2.4  the water 276 

content at -15,000 hPa matric potential of horizon i and Ti the thickness of horizon i in 277 

mm. 278 

We also calculated the soil water holding capacity at the plot scale (SWHC”) by 279 

taking into account both the stone content recorded in the soil studied and the 280 

proportion of rock outcrop recorded on each plot. We considered that RO corresponded 281 

to the proportion of soil volume which was actually occupied by rock. Thus, SHWC” 282 

was calculated as follows:  283 

 








 


n

i

iiii

1
2,40,2

3 T))(SC1()RO1(" SWHC       (3) 284 

The SWHC” was assumed to be more closely related to the actual soil water holding 285 

capacity of every plot and particularly smaller than SWHC’ in mountain areas or on 286 

calcareous plateaus where rock outcrops are frequent.  287 

 288 

2.4 Mapping of soil water holding capacity 289 

 290 

Ordinary kriging available on the ARCGIS 9.2 geostatistical module was used to 291 

predict SWHC” values at unsampled locations using estimates on NFI plots (Matheron, 292 

1963). It is one of the most used interpolation methods, providing the best linear 293 

unbiased estimates (Brus et al., 1996; Mueller T.G. et al., 2004). Effectiveness of 294 

kriging is known to depend on the representativeness of the observations (Rosenbaum 295 

and Söderström, 2003). The calculation is based on spatial dependence, proximal 296 

observations being supposed to be more similar than distant ones. The modelling of 297 

spatial autocorrelation is summarized by an experimental semivariogram, which 298 
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represents the dissimilarity of values as a function of their distance. In order to perform 299 

the calculation, sample points are grouped in pairs, separated by a distance called the 300 

lag. In our analysis, a semivariogram was visually fitted with an exponential model and 301 

no anisotropy was considered. We used the SWHC” predicted for the 100,307 plots of 302 

the NFI database. Lag spacing was chosen at 2000 m and experimental variograms were 303 

calculated up to distances of 120 km. A limit search radius of 60 km, the distance 304 

beyond semivariogram showed lower spatial autocorrelation, and the values of 40 305 

neighbour plots were the parameters chosen to calculate values in the grid according to 306 

the kriging procedure. These parameters ensure that the root mean square prediction 307 

errors calculated by cross validation with Arcgis software are minimised.   308 

The kriging procedure enables the generation of output surfaces for different cell 309 

size or resolution. The resolution can affect the map quality. A large resolution is 310 

quicker to build and easier to handle, because the file size is smaller, but local 311 

information can be averaged and the map can be less efficient at predicting local 312 

heterogeneity. At the opposite extreme, a small resolution can contain no more 313 

information than a higher one, due to the input plot density and errors in measurements. 314 

We built different grids according to the kriging procedure with a resolution varying 315 

from 100 m to 50 km grid spacing. We thus considered 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15, 316 

25 and 50 km mesh sizes. We estimated the quality of map predictions for these various 317 

resolutions by comparison with the SWHC” calculated on 20,595 independent NFI 318 

plots. The largest cell size showing no degradation of prediction was selected to 319 

produce the final map. 320 

 321 

2.5. Validity of the map according to its scale  322 

 323 
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The elaborated map was validated for the whole of France using an independent 324 

dataset of 20,595 validation plots. The difference between SWHC” estimated on these 325 

plots and values extracted from the map has been calculated and interpolated using 326 

ordinary kriging to produce a bias map over the whole country. We evaluated map 327 

validity when considering reduced surfaces, a local use representing an evident interest. 328 

We divided France in decreasing areas ranging from 200 km to 5 km side length (with 329 

intermediate analysis at 10, 25, 50 and 100 km), corresponding to 6 levels of analysis. 330 

For all the squares of each level of analysis, we compared predicted values extracted 331 

from the map with SWHC” calculated on the independent NFI plots included in the 332 

area. The calculation was not carried out for areas with less than 10 plots. The quality of 333 

map predictions was then averaged for each level of analysis. 334 

 335 

 2.6. Ability of soil water holding capacity to predict species production  336 

 337 

We examined the ability of SWHC’ and SHWC”, calculated on plots by using the 338 

different class PTFs or extracted from the map, to predict potential productivity of three 339 

frequent tree species in Europe: one coniferous (Picea abies) and two broadleaf species 340 

(Fagus sylvatica and Quercus petraea). Picea abies and Fagus sylvatica are mainly 341 

located in mountain areas or in elevated atmospheric moisture areas. Quercus petraea is 342 

at present mainly established in the lowlands of France and is a species more tolerant to 343 

drought than Fagus sylvatica. We used 3762 NFI plots with site information about 344 

productivity and independent from the soil dataset used to establish the SWHC” map 345 

(Fig. 1c). Site index values were calculated on even age and pure stands on 2068 plots 346 

for Picea abies, 816 plots for Fagus sylvatica, and 878 plots for Quercus petraea 347 

(Seynave et al., 2004; Seynave et al., 2008). In order to eliminate an age effect, the site 348 
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productivity index was defined as the height of the dominant trees at a reference age. 349 

The height at 70 years was chosen for Picea abies and at 100 years for Quercus petraea 350 

and Fagus sylvatica. This index has been commonly used for decades by forest 351 

managers to estimate the production of pure and even aged stands (Zeide, 1993). The 352 

height of dominant trees was supposed to be independent of competition and to vary 353 

only with site conditions and resources. Following previous studies studying site index 354 

variations in relation to ecological factors, an effect of water content was expected for 355 

each of the 3 studied species (Seynave et al., 2004; Seynave et al., 2008). We examined 356 

the performances of SWHC’ and SWHC” calculated with the different class PTFs at 357 

predicting spatial variations of site indices for Picea abies, Fagus sylvatica and Quercus 358 

petraea and we compared SWHC” predictive ability estimated on plots or extracted 359 

from the map. 360 

 361 

2.7. Statistical analysis 362 

 363 

The coefficient of determination (R²), mean error (ME), root mean square error (RMSE) 364 

and the relative RMSE (RMSEr) were used to compare PTF efficiency, to validate the 365 

map, or to estimate SWHC ability to predict potential production of forest stands. They 366 

were computed as follows:  367 

 368 
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 372 

where m is the number of recordings, jy  the observed value, jŷ  the predicted value, 373 

and jy  the average of the observed values. R² was used to assess the proportion of 374 

variance explained, ME to estimate the bias in prediction, RMSE to determine the 375 

standard deviation of error and RMSEr to know the variation of standard deviation of 376 

error around the mean expressed in %. 377 

 378 

3. Results 379 

 380 

3.1. PTF selection 381 

 382 

Water content between the wilting point and field capacity was predicted by using 383 

the 6 class PTFs selected (Table 1). The predicted and measured differences of water 384 

content between the wilting point and field capacity were compared for the 227 385 

horizons of the database, for the 6 class PTFs and for the 3 continuous PTFs selected 386 

(Fig. 2). The quality of the prediction was quantified for the 63 plots for every PTF 387 

using ME, RMSE and R² (Table 2). The Al Majou and Vereecken continuous PTFs 388 

explained the highest proportion of variance (R² = 0.40 for both sets of PFTs) but they 389 

showed a bias and RMSE higher than for the best class PTFs. The lowest RMSE was 390 

obtained with the Al Majou class PTFs (RMSE = 0.046 cm3 cm-3), with the Bruand-391 

2002 and Bruand-2004 class PTFs showing similar performances (RMSE = 0.047 392 

cm3 cm-3). These RMSEs represent 20% of the water content range recorded for the 227 393 
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horizons of the validation dataset, ranging from 0.039 to 0.25 cm3 cm-3 for a mean value 394 

of 0.114 cm3 cm-3. The Jamagne, Schaap and Wösten class PTFs, and the Verrecken 395 

and Teepe continuous PTFs showed poor performance with RMSE ranging from 0.053 396 

to 0.070 cm3 cm-3.  397 

Comparison of the PTFs performance with the 95 horizons originating from soils 398 

under forest showed similar results although PTF performances were slightly lower: the 399 

RMSE was 6% higher using the Al Majou class PTFs, 15% and 21% higher using the 400 

Bruand-2002 and Bruand-2004 class PTFs, respectively.  401 

The comparison of the 9 PTFs selected to predict SWHC for the entire soil showed 402 

that RMSE ranged from 18.5 mm with the Al Majou class PTFs to 50.1 mm with the 403 

Jamagne class PTFs (Table 2). Using the Al Majou class PTFs, we predicted 84% of 404 

SWHC variance for the soil profile and the bias was small (ME = 3.8 mm.). 405 

 406 

3.2. Mapping of soil water holding capacity  407 

 408 

The SWHC” calculated for the 100,307 NFI plots using the Al Majou class PTFs 409 

was interpolated at different resolutions over the whole of France. The performance of 410 

the interpolation procedure was evaluated by comparing the SHWC” of the 20,595 411 

independent NFI plots with its value resulting from interpolation of the 100,307 plots. 412 

The performance decreased when the cell size increased: R² varied from 0.35 to 0.15 413 

and RMSE from 33.9 to 39.9 mm for resolutions ranging from 100 to 50,000 m. (Fig. 414 

3a). The accuracy loss started beyond 1 km² cell size and increased greatly beyond 415 

5 km² resolution. With R² = 0.35 and RMSE = 33.8 mm, we selected a 1 km² resolution 416 

to map SWHC” (Fig. 3b).  417 
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The map shows a large range of values over the country. The SWHC” estimated for 418 

a maximum soil depth of 100 cm ranged from 0 to 148 mm, with an average of 78 mm 419 

(Fig. 4b) and with important variations on a local scale (Fig. 4c). A spatial structure in 420 

SWHC” distribution is visible on the map, the semivariogram realized to interpolate the 421 

100,307 plots showing a spatial autocorrelation up to 60 km (Fig. 5). The predicted 422 

SWHC” was the highest on flat areas compared to steeply inclined areas, except for 423 

massive calcareous rocks (Table 3). The highest SWHC” were found in regions H1, H2, 424 

H3 and H4 which correspond to sedimentary plains with alluvium, marl, clay or hollow 425 

silicate rocks (Fig. 4a and 4b). The predicted SWHC” was low in areas located over 426 

igneous, metamorphic or calcareous rocks (Table 3). This concerns regions L5 and L6 427 

mainly in the South East of France (Fig. 4a) and the four regions L1, L2, L3 and L4 428 

dispatched in the rest of France (Fig. 4a and Fig 4b). These regions with a low SWHC” 429 

can show an important variability with a range of SWHC” which can reach 100 mm 430 

such as on calcareous plateaux in region L2 or L5.  431 

The comparison of SWHC” between map and field values showed a difference < 20 432 

mm for 46% of the 20,595 validation plots and a difference > 40 mm for 23% of the 433 

same set of plots. The map of prediction errors shows SWHC” underestimations by the 434 

map particularly in two regions, the South of Bretagne (Fig. 4d, region A) and the 435 

South-East of the Massif Central (Fig. 4d, region B). Areas where mapped SWHC” was 436 

overestimated are mainly located on the Garonne plain and Perigord (Fig. 4d, region C). 437 

The lowest map accuracy found in the South of region A can be attributed to the small 438 

number of plots in this area, due to the limited presence of forest areas. Uncertainties 439 

located in regions B and C concern heterogeneous landscapes with important soil depth 440 

variations due to bedrocks outcropping. In these areas we expected more survey errors 441 

and lower performance of kriging due to the heterogeneity of landscape. In general, the 442 
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RMSE was higher when the area was steeply inclined and for igneous, metamorphic, 443 

massive or hollow silicate rocks (Table 3). In order to compare the quality of 444 

predictions for different rock types, we calculated the RMSEr, allowing the variations 445 

of predictions around the mean unit value to be estimated. The RMSEr highlighted an 446 

important dispersion of predictions for calcareous rocks, probably due to local 447 

heterogeneity of those units which have a globally low SWHC”: the standard deviation 448 

of errors varied from 75% around the mean in flat areas to 88% in the steep ones (Table 449 

3). At the opposite end, marls and clays, mainly located in sedimentary plains, are 450 

geological units having a good quality of prediction, in spite of their high SWHC”. 451 

Map prediction accuracy varied little depending on the size of the study site, for 452 

areas ranging from 10×10 km2 squares to the whole of France (table 4). On a local 453 

scale, using 94 10×10 km2 squares containing more than 10 plots, the mean RMSE 454 

between the SWHC” extracted from the map and the estimated values on independent 455 

plots was 32.1 mm, close to those recorded when considering the whole of France 456 

(33.9 mm.). 457 

 458 

3.3 Ability of soil water holding capacity to predict potential production of forest 459 

stands. 460 

 461 

SWHC’ and SHWC” estimated on the plots with the different class PTFs selected 462 

led to important differences in prediction quality of the site indices of the 3 species 463 

studied. SWHC’ showed globally a lower predictive ability than soil depth alone for 464 

Picea abies and Fagus sylvatica, but higher prediction for Quercus petraea (Table 5). 465 

On the other hand, SWHC” showed a much better ability than SWHC’ to predict site 466 

indices, on average 65% for Fagus sylvatica, 58% for Picea abies, and 27% for 467 
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Quercus petraea. SWHC” was more efficient than soil depth alone at predicting the 468 

potential growth of the 3 studied species for all the class PTFs studied except for the 469 

Schaap class PTFs. Compared to soil depth, SWHC” calculated from the Al Majou class 470 

PTF explained 30% more site index variance for Picea abies, 60% more for Fagus 471 

sylvatica, and 56% more for Quercus petraea. The variance of site indices accounted 472 

for by SWHC” varied from 7.2% to 20.4% for Picea abies, from 4.3% to 11.5% for 473 

Fagus sylvatica, and from 7.7% to 12.1% for Quercus petraea, depending on the class 474 

PTF used. The best results have been recorded using the Al Majou, Bruand-2002 and 475 

Bruand-2004 class PTFs, their performance being statistically different from the 476 

Jamagne and the Schaap class PTFs (p < 0.05), Wösten class PTFs showing  477 

intermediate performance. The SWHC” computed with the Al Majou class PTFs and 478 

extracted from the 1 km cell size map was less efficient than estimations based on plots 479 

at predicting the site index for Picea abies (R² = 10.7 vs. 18.6), more efficient for 480 

Quercus petraea (R² = 14.1 using the map vs. 11.7), the results being close for Fagus 481 

sylvatica (R² = 10.3 using the map vs. 11.5) (Fig. 6).  482 

, 483 

4. Discussion 484 

 485 

Among the data required to perform a water balance, the SWHC is one of the most 486 

difficult to obtain, its estimation requiring complex and costly measurements and 487 

analysis. A method for its evaluation may involve digging a soil pit at each required 488 

location, determining manually the textural class, noting the depth and proportion of 489 

stone and using a class PTF to convert soil texture into water content value. We have 490 

combined such basic soil information collected from numerous plots by forest 491 

inventories and have established a map over a large area. The accuracy of our map 492 
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depends on the original soil information (sample locations, positions, attributes), the soil 493 

water estimation based on PTFs and the mapping procedure (Carré et al., 2007a). 494 

 495 

4.1 Uncertainties linked to the initial soil information 496 

 497 

The original soil information collected to elaborate the map and to validate the 498 

results can be affected by different kind of uncertainties. Errors are expected to be found 499 

in the NFI database due to the fact that texture class, soil depth and stone content are 500 

difficult to evaluate in the field, and because numerous operators are concerned by the 501 

data survey. Errors are particularly expected for the textural classes that are manually 502 

determined and the stone content that is visually quantified, involving a part of 503 

subjectivity in their estimation. Moreover, soil depth can be under-evaluated due to the 504 

aleatory presence of stones preventing to dug the pit, particularly in calcareous and 505 

mountainous areas, explaining probably a part of the highest uncertainties founded in 506 

these areas. Despite the limitation to one meter of the maximum prospectable depth in 507 

the NFI protocol is in agreement with recommendations made in previous studies 508 

(Berges and Balandier, 2010) , it can can also lead to SWHC under-estimations, the part 509 

of the soil prospectable by roots can be more important (Breda et al., 1995). An 510 

important source of errors can be due to the influence of local soil conditions, 511 

particularly on soil depth or stone content, that can make information collected on the 512 

pit not representative of the plot area (Smithwick et al., 2005). These different errors 513 

concerning the raw data are difficult to evaluate but are expected to be one of the most 514 

important source of uncertainties at the plot scale, probably explaining a part of the 515 

important nugget effect found in the semivariogram elaborated for the kriging 516 

procedure. 517 
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 518 

4.2 Uncertainties linked to the soil water estimation 519 

 520 

The transformation of soil information collected on the plots to water content 521 

values can be another source of uncertainties, due to the choice of PTF, the method 522 

defined to estimate the storage volume free of stones, or the simplifications done to 523 

characterise the soil hydraulic properties. Indeed, we considered the soil just as a 524 

reservoir for water although it is constituted of hydraulically different soil layers whose 525 

sequence can influence soil-water storage. If the determination of the wilting point from 526 

the water retention curve at a matric suction of 15,000 hPa (4,2) is commonly accepted 527 

(Becker, 1974), the characterisation of field capacity is more ambiguous. It should be 528 

viewed as a process-based parameter of soil, determined using specifically-designed 529 

field experiments, for example as described by (Romano and Santini, 2002). However, 530 

for practical reasons, field capacity is most of the time associated with a specific point 531 

of the soil water retention curve, various potentials being suggested by different authors 532 

(Minasny and McBratney, 2003). We estimated SWHC using the available PTF based 533 

on this classical method and choose the matric suction of 100 hPa (2,0), for field 534 

capacity, in relation with previous studies carried in the same soil conditions, showing 535 

this value was the closest to in situ volumetric water content whatever the texture (Al 536 

Majou et al., 2008). A comparison with SWHC determined using matric suction of 330 537 

hPa for field capacity showed similar results, ensuring our analysis is not linked to the 538 

choice of a specific threshold. However, this classical static approach based on 539 

benchmark pressure-can be criticized, field capacity being attached to water retention 540 

values rather than hydraulic conductivity characteristics of soils. The evaluation of 541 

SWHC using field capacity values defined as the soil water content when the drainage 542 
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flux become negligeable could be a solution to overcome these limits (Twarakavi et al., 543 

2009). Improvements could also be made by using the integral energy principle, a 544 

method based on the entire soil water retention curve to evaluate the energy required by 545 

plants to remove soil water, avoiding to consider water between the two potentials is 546 

equally available(Minasny and McBratney, 2003). 547 

The comparison of available PTFs showed an RMSE recorded between estimated 548 

and measured SWHC ranged from 0.046 to 0.070 cm3 cm-3 depending on the set of 549 

PTFs used and are consistent with those gathered together by Wosten et al. (2001) or 550 

Schhap (2004) in their review of PTF performance. The relatively low efficiency of the 551 

PTFs allow nevertheless to explain an important part of SWHC variance for soils free of 552 

stone (between 72 and 85 % depending of the PTF used), showing the importance of 553 

soil depth in the SWHC calculation. Prediction of stand productivity for the three 554 

studied species showed a similar hierarchy between PTFs as in a comparison of their 555 

performance with measured SWHC: the Al Majou, Bruand-2002 and Bruand-2004 class 556 

PTFs gave the best results. The important variations in tree growth prediction illustrate 557 

the need to compare the efficiency of the available PTFs  (the worse being less efficient 558 

than soil depth alone). On the other hand, our results showed also that using class PTFs 559 

does not involve a reduction in the prediction quality when compared to more 560 

sophisticated PTFs such as continuous PTFs. Indeed both types of PTF led to similar 561 

prediction performance which is in agreement with the results recorded by Wösten et al. 562 

(1995) and Al Majou et al. (2007). This study complements those showing a lower 563 

performance for PTFs developed with large scale databases or using soils different from 564 

those of the studied area (Nemes et al., 2003). This probably explains the lowest 565 

performance recorded with the Vereecken and Teepe continuous PTFs, and the Wösten 566 

and Schaap class PTFs. We noted that the reduction in prediction accuracy for SWHC 567 



  24 

estimates based on PTF is relatively low when validating with forested soils, 568 

particularly when using Al Majou class PTFs, despite the fact that most of the soil 569 

samples used for the development of PTFs originated from agricultural soils.  570 

Our results have also shown that the proportion of surface area occupied by rock 571 

outcrops on the scale of every elementary plot was required to estimate the amount of 572 

water available for that plot. Indeed, we showed a much better prediction of the stand 573 

productivity by using SWHC” than SWHC’. In addition, its prediction performance 574 

with SWHC’ was similar when using soil depth alone. When the plot was rocky, the pit 575 

was usually dug were the rock outcrops were fewer thus leading to an underestimation 576 

of the stone content at the plot scale. Our results also highlight the significance of 577 

appropriate estimates of both stone content and proportion of surface area occupied by 578 

rock outcrop in SWHC” estimations. 579 

 580 

4.2 Uncertainties linked to mapping procedure 581 

 582 

The uncertainties linked to mapping procedure can be evaluated by comparison of 583 

SWHC’’ values extracted from the map and estimated on the plot, and by determining 584 

their respective predictive ability in regard of tree growth. With a R² of 0.35 and an 585 

RMSE of 33.9mm, the prediction errors between the map and the independent 586 

validation dataset can appear relatively important. However, this comparison is arduous 587 

because it concern information at different scales, map prediction representing a mean 588 

SWHC’’ value over a cell, and the validation plot a local measurement. SWHC’’ is 589 

know to be very heterogeneous due to variations in soil type, topography or presence of 590 

rocks for example, and the plot estimation can be not representative of the mean 591 

conditions of the area (Mummery et al., 1999). Moreover, the validation has been 592 
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realised using NFI plots collected with the same protocol as plots used for mapping, 593 

probably affected by measurement errors as described above. If this comparison allow 594 

to describe the spatial distribution of uncertainties linked to mapping procedure, the 595 

averaging of a large number of measurements recorded at different locations for a same 596 

cell of the map could provide a more realistic idea of the quality of the predictions. 597 

Despite variations with the species being considered, the map shows a global 598 

performance close to estimates based on plots for predicting tree species productivity. 599 

This surprising result can be explained by the combination of two opposing effects. A 600 

negative effect is linked to the interpolation procedure, which used an average of 601 

neighbouring values to predict SWHC” for a specified location, thereby smoothing local 602 

features of the plot. On the other hand, this smoothing can have a positive effect, by 603 

limiting the impact of field survey errors. By predicting SWHC” at un-sampled 604 

locations while considering the effect of many neighbourhood plots, the impact of 605 

survey errors is limited. These two opposing effects can be more or less important 606 

depending on location: in steeply undulating areas, map interpolation can be less 607 

efficient than estimation on plots, probably due to the high spatial variability induced by 608 

topography and geology changes. This likely explains why the productivity of Picea 609 

abies, a mountain species, is better explained by the SWHC” estimated from plots than 610 

the SWHC” extracted from the map. In contrast, Quercus petraea is principally located 611 

in sedimentary plains, where units are more homogeneous over large areas. Due to this 612 

relative homogeneity, an average of soil water content over various neighbouring plots 613 

provides a better estimate for a site than a single estimate carried out locally. This likely 614 

explains the observed higher predictive ability of SWHC” extracted from the map 615 

compared to that calculated from plots for this species. Fagus sylvatica being a species 616 

located both in sedimentary plains and in mountainous areas, the two effects probably 617 
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compensate for each other, and close predictive ability is found using SWHC” estimated 618 

from plots or extracted from the map. These results suggest uncertainties involved by 619 

the mapping procedure could be relatively low comparing to those associated to SWHC 620 

estimate, and locally the mapping procedure could compensate a part of survey errors. 621 

Uncertainties associated with mapping procedure are dependent on output 622 

resolution and interpolation method. The choice of output resolution is in general rarely 623 

discussed in studies leading to map production, despite its importance. We have shown 624 

that a maladapted resolution can lead to a significant increase in map uncertainty. The 625 

1 km² resolution selected to elaborate this map is logically close to the distance between 626 

NFI plots on the mesh (0.9 plots km-2). Uncertainties generated by kriging are more 627 

important for extreme values which are smoothed. We had greater difficulty in 628 

predicting SWHC” in areas with abrupt changes in conditions and achieved better 629 

prediction in homogeneous geomorphological or topographical conditions. The 630 

evaluation of other mapping methods could be a way to reduce interpolation 631 

uncertainties, although little is known about their validity in large area studies. For 632 

example, cokriging or regression-kriging using ancillary variables such as geology and 633 

terrain attributes have given good results in local studies in previous research, 634 

(Bourennane et al., 2000; Minasny and McBratney, 2007). Instead of interpolate the 635 

SWHC’’ value estimated on plot, an other possibility could be to interpolate first the 636 

raw properties required and after to use PTF to calculate SWHC’’ with GIS. Both 637 

procedures has already been compared at local scale (Voltz and Goulard, 1994; 638 

Sinowski et al., 1997), and they showed very small differences in comparison with the 639 

large uncertainties associated with PTF estimates (Vanderlinden et al., 2005). 640 

 641 

4.3 Interest of the SWHC’’map and its use for tree growth modelling 642 



  27 

 643 

The established maps allow to provide for the first time in the French forests 644 

relatively fine spatial information about SWHC’’ and associated prediction errors, for 645 

an area corresponding to 150,000 km². Uncertainties seems to be mainly influenced by 646 

the estimate of the soil volume prospectable by plants (linked to soil depth and stone 647 

volume estimation) and the method allowing to convert these volume in potential water 648 

content. Simple methods based on class PTFs showed near performances compared to 649 

continuous ones, demonstrating the interest of using only textural classes for large scale 650 

SWHC’’ predictions. The mapping procedure seems to have contrasted effects, 651 

increasing prediction errors in heterogeneous areas but improving the map predictive 652 

ability in homogeneous ones.  653 

The obtained digital map can be used for a large range of scales, making it an 654 

useful tool for policy makers and land managers. However, due to the forest origin of 655 

the samples used, the validity of the map has to be considered for forest areas alone. Its 656 

ability to predict SWHC” in unforested areas remains to be determined but can be 657 

assumed to be lower, the distance to sample plots being longer and the soil concerned 658 

being different. Most existing large SWHC maps are based on the use of numerical 659 

maps of soils, thus providing averaged soil property values per soil mapping unit 660 

(Batjes, 1997; Wosten et al., 1999). This approach is criticized because it does not 661 

account for variations of soil properties within soil units, and soil classification criteria 662 

cannot correspond to the soil property being mapped (Leenhardt et al., 1994; Voltz et 663 

al., 1997; Utset et al., 2000). We have shown here that the use of easy-to-collect 664 

information surveyed on numerous plots located at regular spatial intervals allow to 665 

overcome these limits, offering new perspectives for large scale digital mapping of soil 666 

parameters.  667 
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This study also highlight the potential of SWHC’’ maps for modelling tree growth, 668 

which can provide values with a comparable efficiency as data recorded on the plot, 669 

without a ground survey for each location in the space. SWHC’’ extracted from the map 670 

allow to predict between 10.3% and 14.1% of the site index variance for the three 671 

studied species, in agreement with previous results obtained for the same species by 672 

Seynave et al (2005; 2008) . She showed that climatic factors were the main drivers of 673 

growth, soil richness and soil moisture acting as complementary variables, as already 674 

shown in previous studies (Curt et al., 2001; Chen et al., 2002). Due to the lack of data, 675 

the soil moisture effect appeared in these models thought different proxies as soil depth, 676 

stone content or topographic position, or thought SWHC estimated using Jamagne 677 

PTFs. The availability of SWHC’’ values calculated using efficient methods allow to 678 

improve existing models and to progress in the understanding of three growth. By 679 

combination with climatic factors, it also offer the possibility to improve the 680 

characterisation of the soil moisture available for plants through the soil water balance 681 

estimation, thus providing indices having a direct effect on plant physiology and taking 682 

into account water fluxes determined by precipitation, actual evapotranspiration or 683 

runoff (Zierl, 2001). 684 

 685 

5. Conclusion 686 

 687 

A SWHC” map showing local variations over a large area is a useful tool as much 688 

for decision maker who generally need information over vast areas as for land managers 689 

who need descriptors for more local studies. We have demonstrated the potential of 690 

using basic information that already exists or can be collected through national or 691 

international networks, for characterizing water content properties on numerous plots 692 
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with appropriate PTFs, thus allowing the derivation of maps by interpolation 693 

procedures. In this study the site indices selected appeared to be appropriate biological 694 

indicators to compare soil water holding capacity estimation methods or to evaluate 695 

map predictive ability, showing concordant results with those obtained with water 696 

content measurements for comparison of PTFs. The SWHC” values extracted from the 697 

map can be used alone or can be combined with climatic factors to estimate spatially-698 

distributed soil water balance. Those indices which have a physiological significance 699 

can be used to characterize the relation between water available for plants and to 700 

improve plant productivity or distribution models. This knowledge is particularly 701 

important in the current climate change context to determine and to monitor the 702 

potential impacts of global warming on vegetation.  703 

 704 
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 924 

Figures  925 

 926 

Figure 1 : Location of the 100,307 plots used to establish the map (a),  the 20,595 plots 927 

used to its validation (b), and the 3,762 plots with site information about productivity 928 

for Picea abies (n = 2,068),  Fagus sylvatica (n = 816), and Quercus petraea (n = 878)  929 

(c). 930 

 931 

Figure 2 : RMSE (cm3 cm-3) and coefficient of determination (R²) between  soil water 932 

holding capacity (2 - 4.2) predicted  using 6 class-PTF and 3 continuous-PTF, and 933 

measured values for  all horizons (n = 227) and only for forested ones (n = 95, in 934 

bracket). 935 

 936 

Figure 3 : Relation between SWHC” estimated on plots and obtained from the map (in 937 

mm), for different resolutions (a), and  for1 km² cell size (b) ( n = 20,595).   938 

 939 

Figure 4 : Schematic view of France indicating natural regions with extreme values of 940 

SWHC” (a), SWHC” map (b), with an insert showing local variations (c), and (d) 941 

spatial distribution of prediction errors  interpolated from validation dataset ( n = 942 

20,595). 943 

 944 
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Figure 5 : semi-variogram computed with the ordinary kriging technique, using  945 

100,307 plots with SWHC” values. Each dot represent a pair of points that have a 946 

common distance (lag size) between each other, 60 lags of 2,000 m are represented, 947 

showing relationships between plots for a distance up to 120 km. 948 

 949 

Figure 6 : Picea abies (n = 2,068), Fagus sylvatica (n= 816), and Quercus petraea  (n = 950 

878) site indices variance explained by logarithm of SWHC” estimated on NFI plots 951 

and extracted from the map (in %). 952 

 953 

Tables  954 

Table 1 : Soil water holding capacity (SWHC, 2 - 4.2, in cm3 cm-3), given by different  955 

class-PFTs for the 9 NFI textural classes (STD = standard deviation). 956 

 957 

Table 2 : RMSE (mm.), mean error (ME, in mm.),  and coefficient of determination (R²) 958 

between predicted SWHC  using 6 class-PTF and 3  continuous-PTF, and measured 959 

SWHC, for a soil free of stone. Measured mean SWHC is 87 mm, ranging between 32 960 

and 215 mm. R² between soil depth and measured SWHC 0,73 (n = 63).  961 

 962 

Table 3 :  SWHC” map mean values, RMSE (in mm.) and relative RMSE (RMSEr, in 963 

%) between map and plot estimations (n = 20,551), by bedrock units and according to 964 

topography types. Flat and steep areas are determined using the NFI topography code 965 

determined by field observation.  n = number of plots.  966 

 967 

Table 4 : Average SWHC” map prediction accuracy for different study site sizes, 968 

ranging from the entire France to a mesh of 10*10 kms square. For each of the 6 level 969 



  38 

of analysis considered, number of squares used (repeats), mean number of plots per 970 

square (mean n, at least 10 records per square being required), RMSE and standard 971 

deviation between SWHC” predicted by the map and  estimations on validation plots 972 

are summarized (n = 20595). ND : not calculated. 973 

 974 

Table  5 : Picea abies (n = 2,068), Fagus sylvatica (n= 816), and Quercus petraea  (n = 975 

878) site indices variance (in %) explained by soil depth and  logarithm of SWHC 976 

estimated on NFI plots using 6 class-PFTs at pit scale (SWHC’) or at plot scale 977 

(SWHC”). 978 

 979 
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Figure 1 984 
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 988 
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Bruand‐2002 class ‐PTF  
RMSE = 0.047 (0.054) 
R² = 0.25 (0.34)

Jamagne class‐PTF 
RMSE = 0.070 
(0.065) 

Wösten class‐PFT 
RMSE = 0.053 
(0.068)

Schaap class‐PTF 
RMSE = 0.064 
(0.082)

Bruand‐2004 class‐PTF  
RMSE = 0.047 (0.057) 
R² = 0.24 (0.27) 

Al Majou class‐PTF 
RMSE = 0.046 
(0.049) 

Al Majou continuous‐
PTF 
RMSE = 0.050 (0.057) 

Vereecken continuous‐
PTF 
RMSE = 0.063 (0.078)

Teepe continuous‐
PTF 
RMSE = 0.058 (0.074)

Figure 2 
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 1028 
 1029 
 1030 

NFI Jamagne Bruand Bruand        Al Majou               Schaap Wösten MEAN STD
textural class  -2002 -2004 topsoil subsoil topsoil subsoil    

1 sand 0,07 0,08 0,06 0,11 0,09 0,06 0,04 0,0001 0,06 0,035
2 loamy sands 0,10 0,13 0,13 0,14 0,07 0,07 0,06 0,04 0,09 0,038
3 sandy clay loam 0,14 0,13 0,13 0,14 0,07 0,07 0,06 0,07 0,10 0,035
4 silt loam 0,14 0,14 0,17 0,17 0,14 0,09 0,08 0,09 0,13 0,036
5 silty clay loam 0,20 0,16 0,17 0,17 0,15 0,12 0,11 0,10 0,15 0,034
6 silt 0,18 0,16 0,21 0,17 0,15 0,12 0,11 0,10 0,15 0,038
7 silty clay 0,18 0,10 0,14 0,15 0,13 0,10 0,09 0,09 0,12 0,032
8 clay loam 0,17 0,11 0,16 0,16 0,14 0,09 0,08 0,07 0,12 0,041
9 clay  0,17 0,12 0,12 0,13 0,10 0,10 0,08 0,09 0,11 0,029

Table  1

 1031 
 1032 
 1033 
 1034 

                                           class‐PFT               continuous‐PFT

Jamagne Bruand‐2002 Bruand‐2004 AlMajou Schaap Wösten Vereecken Teepe AlMajou

RMSE 50,1 21,8 30,4 18,5 35,0 29,3 30,8 38,4 30,8

ME 41,5 8,3 20,6 3,8 ‐26,2 ‐15,3 ‐33,6 ‐22,9 23,6

R² 0,79 0,79 0,82 0,84 0,72 0,82 0,83 0,82 0,85

Table 2

 1035 
 1036 
 1037 
 1038 

                   Flat areas                   Steep area

Rock type n Mean RMSE RMSEr n Mean RMSE RMSEr

Igneous/metamorphic rocks 56 73 38 51 1783 60 35 73
Massive silicate rocks 18 86 34 43 238 65 37 74

Hollow silicate rocks 4906 93 32 32 6345 83 37 43

Massive calcareous rocks 360 46 26 75 2522 46 30 88
Hollow calcareous rocks 746 66 32 47 2919 57 34 58

Marl, clay 295 101 23 21 363 81 34 37

Table 3

 1039 
 1040 
 1041 
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 1042 
 

repeats mean n RMSE STD
France 1 20955 33,9 ND

200 km 26 853 33,8 9,1
100 km 77 267 33,6 6,4
50 km 243 84 33,6 7,6
25 km 706 27 33,0 8,9
10 km 94 11 32,1 11,7

Table 4

 1043 
 1044 
 1045 
 1046 

n Depth Formula Jamagne Bruand‐2002 Bruand‐2004 Schaap Wösten Al Majou

Picea abies  2068 14,4 SWHC ' 9,4 14,0 12,2 4,5 10,7 11,8

  SWHC" 16,1 20,4 19,0 7,2 17,5 18,6

Fagus sylvatica  816 7,2 SWHC ' 6,3 7,0 5,6 2,2 6,4 7,3

SWHC" 10,4 11,1 9,5 4,3 10,6 11,5

Quercus petraea  878 7,5 SWHC ' 6,7 9,7 9,9 6,5 8,7 9,4

  SWHC" 10,5 11,9 12,1 7,7 10,9 11,7

Table 5  1047 
 1048 
 1049 
 1050 


