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Abstract 

Organic matter is an important factor that cannot be neglected when considering global 

carbon cycle. New data including organic matter geochemistry at the small watershed scale 

are needed to elaborate more constrained carbon cycle and climatic models. The objectives 

are to estimate the DOC and DIC yields exported from small tropical watersheds and to give 

strong constraints on the carbon hydrodynamic of these systems. To answer these questions, 

we have studied the geochemistry of eleven small watersheds around Basse-Terre volcanic 

Island in the French West Indies during different hydrological regimes from 2006 to 2008 (i.e. 

low water level versus floods). We propose a complete set of carbon measurements, including 

DOC and DIC concentrations, δ
13

C data, and less commonly, some spectroscopic indicators 

of the nature of organic matter. The DOC/DIC ratio varies between 0.07 and 0.30 in low 

water level and between 0.25 and 1.97 during floods, indicating that organic matter is mainly 

exported during flood events. On the light of the isotopic composition of DOC, ranging from 

− 32.8 to − 26.2‰ during low water level and from − 30.1 to − 27.2‰ during floods, we 

demonstrate that export of organic carbon is mainly controlled by perennial saprolite 

groundwaters, except for flood events during which rivers are also strongly influenced by soil 

erosion. The mean annual yields ranged from 2.5 to 5.7 t km
− 2

 year
− 1

 for the DOC and from 

4.8 to 19.6 t km
− 2

 year
− 1

 for the DIC and exhibit a non-linear relationship with slopes of 

watersheds. The flash floods explain around 60% of the annual DOC flux and between 25 and 

45% of the DIC flux, highlighting the important role of these extreme meteorological events 

on global carbon export in small tropical volcanic islands. From a carbon mass balance point 

of view the exports of dissolved carbon from small volcanic islands are important and should 

be included in global organic carbon budgets. 

Research Highlights 

Source of DOC is mainly controlled by saprolite groundwaters, except for flood events. 
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 The mean annual yields exhibit a non-linear relationship with slopes of watersheds.  

 The flash floods account for 60% of the annual DOC flux and 40% of the DIC flux.  

The DOC input of small volcanic islands is similar to the Amazon flux to the ocean. 
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1. Introduction 

At the Earth's surface, a suite of chemical, physical and biological processes are closely 

combined to transform bedrock into soil. This complex engine regulates the rates of soil 

production through chemical weathering and organic productivity, and the rates of soil 

destruction through physical erosion at all temporal and spatial scales. Then it exerts a major 

control on the transport of the dissolved and particulate products of mechanical erosion and 

chemical weathering from continents to the oceans and influences the biogeochemical cycles 

of many elements, including carbon. As shown in pioneering works (Berner et al., 1983), 

chemical weathering of silicate rocks converts atmospheric CO2 into bicarbonates within the 

stream. This process then strongly affects carbon cycle and many studies have focused on 

river geochemistry to quantify and characterize silicate weathering fluxes and associated 

inorganic carbon fluxes (e.g. [Stallard and Edmond, 1983], [Dupré et al., 1996], [Drever, 

1997], [Gaillardet et al., 1999a], [Dessert et al., 2001] and [Viers et al., 2007]). 

These previous studies mainly focus on the inorganic part of the carbon cycling and its role on 

weathering and its impact on climate change. A part of this cycle, however also concerns the 

organic carbon pool and cannot be neglected when considering the global carbon cycle at 

geological time scale. Indeed, total organic carbon flux (dissolved and particulate) from 

continents to the oceans represents globally 40% of the total carbon flux (i.e. 0.4 to 

0.9 Gt yr
− 1

; [Hedges et al., 1997], [Schlunz and Schneider, 2000] and [Aitkenhead-Peterson 

et al., 2003]). Moreover, soil organic matter with 1400 to 1500 Gt of carbon is one of the 

major pools of carbon at the Earth surface ( [Schlesinger, 1977] and [Gregory et al., 1999]). 

The soil erosion is therefore the major input of organic carbon in aquatic ecosystems. During 

its transport to the oceans, the terrestrial organic carbon can be mineralized, or deposited and 

stored in aquatic ecosystems under low discharge (i.e.: alluvial plains, mangroves; Lal, 2004). 

This terrestrial organic matter is then mineralized or preserved in continental margins, and/or 

transported offshore (Hedges et al., 1997). Actually, an average of 20% of the flux of 

terrestrial dissolved organic carbon (0.25 Gt yr
–1

) is removed in estuaries with a wide range of 

4–60% that depends of the discharged organic matter ( [Hedges et al., 1997], [Schlunz and 

Schneider, 2000] and [Burdige, 2005]). Previous works on the fate of dissolved organic 

matter have shown considerable mixing gradient and high short-term variability. In addition, 

slow photolysis and microbial degradation are major processes that will also contribute to 

dissolved organic matter removal in coastal and surface ocean waters ( [Hedges et al., 

1997] and [Benner, 2004]). Therefore, it is of major importance to understand the dissolved 

organic carbon dynamic within and along the river system (sources, fluxes and sinks) to better 

assess the global carbon cycle. 

Currently, studies concerning the organic carbon cycle and its impact on global carbon cycle 

are often focused on soil erosion ( [Lal, 2003], [Lal, 2005] and [Mills and Cowling, 2010]) 



and deposit of terrestrial particulate organic carbon in marine sediments ( [France-Lanord and 

Derry, 1994], [Goñi et al., 1998], [Galy et al., 2008] and [Hilton et al., 2010]). Recent studies 

( [Waterloo et al., 2006], [Dawson et al., 2008], [Goldsmith et al., 2008] and [Hilton et al., 

2008]) showed that the export of particulate organic carbon depends on the runoff and 

rainfalls. Indeed, during rainfalls, the top of soil profile enriched in organic carbon is 

lixiviated, and carbon is transferred into the rivers (Batjes, 1996). 

Regarding rivers, studies are generally focused on large river systems like the Mississippi ( 

[Bianchi et al., 2007] and [Duan et al., 2007]), the Ganga-Brahmaputra (Galy et al., 2008), 

tributaries of the Amazon river ( [Moreira-Turcq et al., 2003], [Johnson et al., 

2006] and [Aufdenkampe et al., 2007]), large Arctic rivers (Yenisey, Ob, Lena; [Ludwig et 

al., 1996a], [Dittmar and Kattner, 2003], [Gebhardt et al., 2004] and [Raymond et al., 2007]), 

… which integrate differences in lithologies, vegetations, soils and climates. However, it was 

underlined that the small mountainous rivers could also be very important in transporting 

organic sediments to oceans, fluxes being inversely proportional to the watershed area ( 

[Milliman and Meade, 1983], [Walling, 1983], [Degens and Ittekkot, 1985] and [Milliman 

and Syvitski, 1992]). 

Moreover, it is difficult for studies about large rivers to constrain the different processes 

(natural vs land use; Amiotte-Suchet et al., 2007) influencing the organic carbon cycle as well 

as the weathering engine. For instance, the dissolved organic carbon can influence the 

bedrock weathering, since organic acids produced by microbially communities may accelerate 

mineral dissolution ( [Bennett et al., 1988], [Drever, 1994], [Pittman and Lewan, 1994], 

[Drever and Stillings, 1997], [Viers et al., 1997], [Oliva et al., 1999], [Welch and Ullman, 

2000] and [Millot et al., 2003]). The major sources of organic carbon in rivers are: soil 

organic matter, generated by the partial or total decomposition of living organisms (plants, 

animals and microorganisms); primary production in the river; the decomposition of living 

organism in the river (algae and aquatic animals); and groundwater (Battin et al., 2008). The 

organic carbon quality and concentrations in rivers depend therefore on different parameters 

(i.e. temperature, soil types, vegetation types and bedrock) controlling the distribution of these 

different sources. The recent study of Raymond et al. (2007) showed that arctic watersheds 

show a marked increase in dissolved organic carbon concentration with flow. 

Wet tropical regions are ideal targets to study the organic carbon cycle. They have optimal 

climatic conditions for the volcanic rock weathering, including high temperatures and high 

runoff, promoting the transformation of rocks into soils ( [Stallard, 1988], [Benedetti et al., 

1994], [Louvat and Allègre, 1997], [Dessert et al., 2001], [Dessert et al., 2003], [Rad et al., 

2006] and [Goldsmith et al., 2010]). Wet tropical regions also host the largest stock of organic 

carbon since 26% of the total global carbon in soils (depth from 0 to 200 cm) is found in these 

regions (Batjes, 1996). Moreover, the export of inorganic and organic carbon is estimated to 

be the highest in wet tropical regions ( [Ludwig et al., 1996a], [Ludwig et al., 1996b], 

[Gaillardet et al., 1999b] and [Dessert et al., 2003]). Different authors have demonstrated the 

importance of oceanic ―high standing‖ islands (HSIs) for sediments and total organic carbon 

export, for example in the southwest Pacific (i.e. 33% of total sediment entering the world's 

oceans annually, Milliman and Syvitski, 1992) and Oceania's small mountainous rivers (i. e. 

21–38% of the total oceanic organic carbon inputs, Schlunz and Schneider, 2000). Therefore, 

these small mountainous rivers and HSIs are ideal settings to study geochemical fluxes. 

Moreover, previous studies on weathering rates of HSIs have shown some of the highest 

observed rates of chemical weathering and CO2 consumption ( [Jacobson et al., 

2003] and [Lyons et al., 2005]). The Guadeloupe Island (French West Indies) is an ideal 



location to study geochemical fluxes and the organic carbon geochemistry because its 

monolithologic volcanic composition helps to constrain the influence of other factors such as 

climate, soil composition, and age of the bedrock. In addition, its location in a wet tropical 

area implies that rates of chemical weathering and mechanical denudation are high ( [Louvat, 

1997], [Louvat and Allègre, 1997], [Dessert et al., 2001], [Dessert et al., 2003], [Rad et al., 

2007] and [Goldsmith et al., 2010]). Previous works of [Rad et al., 2006] and [Goldsmith et 

al., 2010] were focused on stream geochemistry, weathering and CO2 consumption in rivers 

of andesitic terrains without addressing the effect of the hydrological variability. Moreover, 

due to their small size, and steep slopes, the Guadeloupean rivers present a characteristic flash 

flood hydrological regime ( [Ibiza, 1984–1985] and [Pagney, 1994]). The dynamic of carbon 

export could be different from one hydrological regime to another (i.e. low water level vs 

flood level). Our overarching goal is to obtain new data that will help to elaborate more 

constrained coupled modeling of biological and chemical weathering processes at the 

continental scale such as B-WITCH (Roelandt et al., 2010), that mostly focus on inorganic 

carbon. The collected data will also help to constrain the residence time of carbon in tropical 

soils and to understand the fate of terrestrial DOC in the ocean. 

The aims of this paper are, with major elements, dissolved inorganic (DIC) and dissolved 

organic (DOC) carbon concentrations, (1) to calculate the DOC and DIC yields and fluxes in 

Guadeloupean rivers, (2) to characterize and identify the different sources of the organic 

carbon exported under different hydrological regimes (i.e. low water level vs flood level) and, 

(3) to evidence spatial and/or temporal variations. The comparison between two hydrological 

regimes is therefore needed for a better assessment of weathering processes and carbon fluxes 

and we emphasize the importance of DOC fluxes in the carbon mass balance in small 

mountainous tropical rivers. 

2. General settings of Basse-Terre Island 

The Basse-Terre Island is the volcanic part of the Guadeloupe archipelago, French West 

Indies, with an area of 950 km
2
 (Fig. 1). The Lesser Antilles arc volcanism is generated by the 

subduction of the Atlantic seafloor beneath the Caribbean plate at a rate of about 2 cm yr
− 1

 

(e.g. [Jordan, 1975], [Hawkesworth and Powell, 1980], [Wadge, 1984] and [DeMets et al., 

2000]). The major part of the volcanic material of the Island is andesitic. The geology of the 

Basse-Terre was described by [De Reynal de Saint-Michel, 1966], [Westercamp and Tazieff, 

1980] and [Boudon et al., 1988], and Westercamp (1988) and the ages of geological 

formations were recently reevaluated by Samper et al. (2007). The North of the island is 

characterized by a Pliocene volcanism (2.7–1.5 Myrs), with the series following: volcanic 

formations (lapillis, basaltic breccias…) and residual cover of red and ochre clays. Its center 

is characterized by volcanism occurring after a marine transgression between 1.6 and 

0.9 Myrs, with volcanos imbricated into each other with different composition (labradoritic 

and andesitic flows versus dacitic and basaltic breccias). The East and the West of the island 

are composed by andesitic and labradoritic flows, andesitic breccias, andesitic pumices and 

pyroclastic sediments dating to Plio-Quaternary (900–550 kyrs). Two main massifs were 

identified in the southern part of the island. The Monts Caraïbes massif construction was 

initiated 500 kyrs ago by intensive effusive submarine activity. The Grande-Découverte 

Complex volcano construction ( [Boudon et al., 1987] and [Boudon et al., 2008]), the 

youngest volcanic complex of Basse-Terre was initiated 205 kyrs ago, following three main 

stages: Grande-Découverte (200–42 kyrs), Carmichaël (42–11.5 kyrs) and La Soufrière 

(8.5 kyrs to present). 



 

Fig. 1. Sampling location on Basse-Terre Island. The substratum ages range from 2.7 to 

1.2 Myrs above the dotted line and are ≤ 900 kyrs below this line (Samper et al., 2007).1. 

Desbonnes River, 2. Deshaies River, 3. Moustique Sainte-Rose River, 4. Bras-David River, 5. 

Corossol River, 6. Grande Rivière à Goyaves, 7. Lostau River, 8. Beaugendre River, 9. 

Grande Rivière de Vieux-Habitants, 10. Moustique Petit-Bourg River, 11. Grande Rivière de 

la Capesterre. 

The Guadeloupe Island is characterized by a wet tropical climate, with a mean annual 

temperature and humidity around 23 °C and 75%, respectively. The average annual 

precipitation ranges from 1200 to 8000 mm yr
− 1

, depending on the topography (the highest at 

the top of La Soufrière massif). The island is characterized by a wet rainy season, 

corresponding to the maximum of precipitations and notably extreme meteorological events 

(i.e. tropical storms and cyclones, Zahibo et al., 2007), from June to November, and a drier 

season from December to May. The spatial distribution of precipitations is controlled by the 

orographic effect. Thus, the East coast receives high precipitations because of the strong 

influence of the Easterly and conversely, the West coast, protected by the topography, 

receives less water. 

The steep slopes and the abundant precipitations generate a dense river network flowing 

through the volcanic substratum of Basse-Terre Island into the Atlantic Ocean or the 

Caribbean Sea. The island has about 55 independent rivers with watershed areas greater than 

1 km
2
 (25 on the East coast and 30 on the West coast), the largest river (130 km

2
) 

corresponding to the ―Grande Rivière à Goyaves‖. Valley slopes, resulting from the younger 

volcanic relief, exceed 49% in the southern part of the island, while they are smaller in the 

northern part of the island (Plaisir et al., 2003; Table 1). In the North, the water stocks are 

smaller than in the Center and in the South and during the dry season most of the northern 

rivers do not flow. Since 1950, discharges of major rivers have been monitored first by the 



IRD (formerly the ORSTOM, French Research Institute for the Development) and now by the 

DIREN (French Water Survey agency) and data in Table 1 were obtained at the following 

web site: http://www.hydro.eaufrance.fr. 

Table 1. Watersheds characteristics: sampling point geographic position (latitude and 

longitude), elevation above sea level, surface area and slopes of the watershed. 

Hydrologic characteristic: operating dates of gauging stations, discharges and runoffs 

during low water and flood levels calculated from DIREN data, and mean annual 

runoff, rainfalls and evapotranspiration. 
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North 

Desbon
nes 

N16°19′
34.4″ 

W61°44′
48.0″ 

136 5.50 34 59 7 0 
1979–
1986 

0.07 ± 
0.05 

400 ± 2
90 

0.72 ± 
0.56 

4130 ± 3
200 

780 ± 5
80 

1790 ± 
450 

2.3 ± 
1.4 

Deshai

es 

N16°18′

05.3″ 

W61°47′

29.8″ 
30 4.38 46 50 4 0 

1979–

1982 

0.04 ± 

0.02 

260 ± 1

40 

0.28 ± 

0.16 

2030 ± 1

170 

430 ± 2

50 

1750 ± 

440 

4.0 ± 

2.1 

Mousti

que 

Sainte-
Rose 

N16°17′

54.9″ 

W61°42′

38.8″ 
114 6.16 52 45 3 0 

1983–
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0.19 ± 

0.10 

970 ± 5

30 

1.47 ± 

0.93 

7530 ± 4
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1620 ± 

950 

2290 ± 
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1.4 ± 
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Bras-
David 

N16°10′
33.6″ 
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34.8″ 
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0 

38 48 14 0 
2001–
2010 

0.59 ± 
0.27 

1680 ± 
770 

3.06 ± 
1.27 

8770 ± 3
640 

2390 ± 
1050 

3410 ± 
850 
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0.6 
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ol 

N16°10′

48.8″ 

W61°40′
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12.5

2 
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940  
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4690    
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s 

N16°11′
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0 
48 28 23 1 
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0.68 ± 

0.51 

1480 ± 

1120 

5.59 ± 

2.61 

12240 ± 

5730 

2560 ± 

1580 

3450 ± 

860 

1.3 ± 

0.7 

West 

Lostau 
N16°09′

34.1″ 

W61°45′

35.9″ 
108 8.04 9 41 49 1 

1979–
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0.29 ± 

0.16 

1130 ± 

620 

1.71 ± 
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860 

2740 ± 
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1.6 ± 
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N16°06′
27.6″ 

W61°44′
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225 8.17 6 37 53 4 
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0.31 ± 
0.26 
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2.71 ± 
1.32 

10450 ± 
5100 

2120 ± 
1400 

2720 ± 
680 

1.3 ± 
0.7 
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nts 

N16°05′

11.8″ 

W61°43′

31.3″ 
257 

19.1

0 
13 32 51 4 

1980–

2009 

1.50 ± 

0.90 

2480 ± 

1490 

9.81 ± 

4.18 

16190 ± 

6900 

3850 ± 

2030 

3830 ± 

960 

1.0 ± 

0.5 

East 

Mousti
que 

Petit-
Bourg 

N16°09′

41.8″ 

W61°37′

37.8″ 
100 

11.5

0 
27 41 31 1 

1984–

2010 

0.72 ± 

0.42 

1970 ± 

1150 

4.44 ± 

1.85 

12160 ± 

5080 

2990 ± 

1550 

3990 ± 

1000 

1.3 ± 

0.6 

Capest

erre 

N16°04′

18.0″ 

W61°36′

34.1″ 
208 

16.2

0 
13 32 45 5 

1983–

2010        
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The climatic conditions promote the growth of abundant vegetation on Basse-Terre. The 

vegetation cover depends both on the meteorological conditions and the elevation (Rousteau, 

1996). The vegetation on the island is represented by four levels from lower altitudes to 

higher altitudes: 1) a semi-deciduous forest on volcanic terrain, 2) a seasonal evergreen forest, 

3) a mountain and sub-mountain rainforest and, 4) an altimountain forest. 

Different soil types have developed on the volcanic andesitic basement, depending on rock 

age, precipitations and topography ( [Colmet-Daage, 1969], [Colmet-Daage and Bernard, 

1979] and [Buss et al., 2010]). In the North, vertisols are characterized by high contents of 

montmorillonite and kaolinite typical of such old formations under tropical climate. The 

central part of the island is characterized by ferralitic soils with halloysites and iron oxides. 

East, West and South are characterized by andosols with allophanes, typical of volcanic rocks 

and wet tropical regions. Locally paleosols may occur. 

The choice of the rivers was govern by their geological substratum, the pedology and the 

exposure to rainfalls. The water samples were collected during dry and wet seasons from 2006 

to 2008, in order to assess the influence of the hydrological regime on surface water 

chemistry. In the South of the Basse-Terre, rivers were not sampled, because their chemistry 

is influenced by hydrothermal inputs, due to the Soufrière volcanic activity. They are 

characterized by high sulfate and cations concentrations (ex. Rivière Noire, Rad et al., 2007) 

and are not all perennial. This study focuses on 11 rivers located in the North (n = 3), the 

Center (n = 3), the West coast (n = 3) and the East coast (n = 2) (Fig. 1). The northern 

watersheds are characterized by less steep slopes (slope < 49%), rock older than 1 Myr and 

thick ferralitic soils and weak rainfalls; center watersheds have quite the same characteristics 

but higher rainfalls; western watersheds are characterized by steeper slopes (slope > 49%), an 

age less than 800 kyrs, thin andosoils, weak rainfalls; eastern watersheds have also steep 

slopes, an age less than 800 kyrs, thin andosoils and are subject to strong rainfalls. 

3. Sampling and analytical methods 

3.1. Hydrological data and calculation of rates and yields 

The discharge was measured at gauging stations installed by the IRD or more recently by the 

DIREN. The water level is measured at gauging stations with a pressure detector. Gauging 

campaigns are regularly conducted to adjust the calibration curves relating discharge with 

water level (i.e. given by gauging scale). The different discharge values are available at: 

http://www.hydro.eaufrance.fr. 

As some rivers are no longer equipped by gauging station (Table 1) discharge data at the time 

of sampling for all rivers is not available. We need however discharge values to calculate the 

riverine export rates. Based on the DIREN discharge dataset, we estimated, for each river a 

mean discharge value for low water and flood conditions. In Fig. 2, representing the discharge 

versus frequency for the Bras-David River, two hydrological periods are evidenced. The first 

part (before the break), corresponding to 90% of the annual flux is characteristic of low water 

level. The second part (after the break), corresponding to 10% of the annual flux, is 

characteristic of flood conditions. The distribution between both hydrological conditions is 

the same for all rivers, even if mean daily values vary from one river to the other. For rivers 

where present day gauging data were not available, their average discharge values 

corresponding to low water and flood conditions were calculated with the help of historical 

records of the DIREN. 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=00092541&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.hydro.eaufrance.fr


 

Fig. 2. Plot of frequency vs discharge (m3 s− 1) for the Bras-David River (ORSTOM-IRD and DIREN data, 

Table 1). The lines represent the fits for the low water and flood periods. The flood regimes 

represent around 10% of the annual discharge. This trend is observed for all Guadeloupean rivers. 

The runoff (in mm yr− 1) is defined by the following formula: 

 

The mean annual runoff is calculated with the following formula: 

mean annual runoff=RLWL⁎0.9+RFL⁎0.1 

with RLWL = mean runoff during low water level, and RFL = mean runoff during floods. 

The associated errors have been calculated with the minimal and maximal values during low 

water level or flood level. Using the rainfalls data from French meteorological survey agency 

(Météo-France), we estimated the mean annual rainfalls for each watershed. The mean annual 

evapotranspiration factor is the calculated ratio between rainfalls and runoff. 

3.2. Sample collection 

Pristine water samples were collected, upstream of the anthropogenic activities like the sugar 

cane and banana crops (Fig. 1). The sampling of surface water was done manually from 2006 

to 2008 at different hydrological stages corresponding to low water levels (LWL) and flood 

levels (FL). Water samples used for the measurement of dissolved major ions concentrations 

were filtered through 0.2 μm cellulose acetate filters. For cations measurements, samples were 

acidified to pH = 2 with distilled nitric acid. Non-acidified samples were stored at 4 °C in the 

dark for the measurements of anions and dissolved silica concentrations. Samples used for the 

measurement of dissolved organic carbon concentrations and δ
13

C were filtered through glass 

fiber filters (GF/F Whatman® by Schleicher & Schuell cut off 0.7 μm) acidified with 

concentrated H3PO4 in pre-cleaned and pre-burned Grasse amber glass bottles and stored at 

4 °C in the dark. A few sampled (n = 25) were collected in 2008 for the measurements of δ
13

C 

of dissolved inorganic carbon in sealed glass vials. 



3.3. Analytical methods 

Temperature, pH and conductivity were measured in the field (Table 2). The precision of pH 

measurements was 0.05 pH units. Conductivity was measured with a Hanna HI9835 probe. 

The precision was 1%. Alkalinity values were measured in the laboratory with an automatic 

acid-base titration stand (Radiometer TIM840 with Schott probe) by the Gran method with a 

precision of 1%. 

Table 2. Physico-chemical parameters and organic matter characteristics of water 

samples recovered on the Basse-Terre during low water levels and flood levels, *data 

calculated, NICB (Normalized Ionic Charge Balance), TDScat and TDSw. 
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Laboratory measurements of major ions concentrations were done by ionic chromatography 

(Dionex DX120, precision 5%). The detection limits for Ca, Mg, Na and K were respectively 

12.5 μM, 20.6 μM, 0.9 μM and 0.5 μM. The detection limits for SO4, Cl, NO3 and F were 

respectively 4.2 μM, 8.5 μM, 3.2 μM and 5.2 μM. Dissolved silica concentrations were 

determined calorimetrically, with a Seal QUAATRO analyzer (detection limit 5 μM and 

precision 2%). 

Dissolved organic carbon (DOC) concentrations were measured using a Shimadzu TOC-

VCSH analyzer (Sugimura and Suzuki, 1988). The detection limit was 20 μM and the 

precision was 2%. The δ
13

CDOC was measured at the ―Institut des Sciences de la Terre 

d'Orléans‖ (ISTO). The measurements were done with an IR-MS Delta V Advantage coupled 

with a LC-Isolink interface (both Thermo Scientific) and a HPLC system serving as a pump 

for the carrier flow (100 μL of filtered and acidified sample water were directly injected in 

bulk mode and monitored in continuous flow) (Albéric et al., 2010). The standards used for 

the δ
13

CDOC measurements were the internal standard from ISTO (NaHCO3, − 4.3‰), the 

benzoic acid (− 25.7‰), the USGS-40 (L-glutamic acid, − 26.389‰), the IAEA-C8 (oxalic 

acid, − 18.3‰) and the IAEA-C6 (sucrose, − 10.8‰). The precision of the isotopic 

measurements was 0.3‰. The δ
13

CDIC was measured at the Stable Isotopes Laboratory of 

IPGP. The measurements were done with a GC/IR-MS (Analytical Precision) (Assayag et al., 

2006). The standards use for the δ
13

CDIC measurements were the Rennes II (CaCO3 powder, 

− 9.766‰), the Merck (CaCO3 powder, − 8.65‰), the Across (CaCO3 powder, 0.264‰) and 

the NaHCO3 (− 4.4‰). The precision of the isotopic measurements was 0.5‰. 

Spectrophotometric analyses of samples were conducted with a dual beam Evolution 600 

UV–Vis — Thermo Scientific spectrophotometer. An aliquot of acidified water sample taken 

for the DOC measurements was used for the spectroscopic characterization of the dissolved 

organic matter. Samples were placed in a 1 cm quartz window cuvette and scanned from 200 

to 600 nm, with 1 nm resolution (Chin et al., 1994). 

4. Results 

4.1. Major elements 

pH and concentrations of major elements are presented in Table 2. pH values are relatively 

homogeneous, according to the spatial location or hydrological regime of rivers and range 

from 6.72 to 8.10. Low water level samples have a higher ionic charge (from 1200 to 

2300 μM) than flood level water samples (< 1200 μM), with ionic charge is the sum of anions 

(Σ
−
) and cations (Σ

+
) concentrations. The normalized ionic charge balance values 

(NICB = ((Σ
+
− Σ

−
)/Σ

+
) ⁎ 100) are generally close to 8%. 

The dissolved silica concentrations vary between 110 and 631 μM. These concentrations are 

evenly distributed around the Basse-Terre. The dissolved silica concentrations are 

systematically higher during the low water level than during flood events and are similar to 

results acquired previously by Rad et al. (2007) in Guadeloupe (from 391 to 654 μM), Rad et 

al. (2006) in Mont Serrat and by Goldsmith et al. (2010) in Dominica (from 135 to 1048 μM 

during wet season and from 365 to 2110 μM during dry season). Moreover, similar silica 

concentrations for rivers flowing over basaltic rocks in the Deccan Traps, the Mount 

Cameroun and the Réunion Island were reported by [Louvat and Allègre, 1997], [Dessert et 

al., 2001] and [Benedetti et al., 2003]. 



The alkalinity is given by the following simplified formula: 

Alk=[HCO3
−]+2⁎[CO3

2−]+[OH−]−[H+] 

Within the pH range (from 6.72 to 8.10) of the rivers, the dominant ion in the alkalinity is 

HCO3
−
. Alkalinities range from 148 to 755 μM, and do not vary spatially. They are higher 

during low water level than during floods, and they are both similar to results obtained for the 

Guadeloupe (Rad et al., 2007), Mont Serrat and the Dominica (Rad et al., 2006), and to the 

lowest values measured in Mount Cameroun rivers (Benedetti et al., 2003) and the Réunion 

rivers (Louvat and Allègre, 1997). 

HCO3
−
is the dominant anion under low water level conditions, while during floods Cl

−
 

becomes the dominant anion, followed by SO4
2−

 and F
−
 (Table 2). The high concentrations of 

NO3
−
 for Deshaies (23rd September 2007) and Beaugendre (10th September 2007) are likely 

due to the lixiviation of soil horizons enriched in nitrates. The Cl
−
 concentrations increase 

from the southern part to the northern part of the island, and are the highest during low water 

level. 

Among major cations, Na
+
 is dominant (from 140 to 450 μM). Ca

2+
 and Mg

2+
 concentrations 

vary between 55 and 290 μM and 19 and 172 μM, respectively. K
+
 concentrations range from 

11.8 to 31.2 μM. The cations concentrations distribution is the same around the Basse-Terre. 

These concentrations are smaller during flood level than during low water level. These cations 

are in the range of those measured by [Rad et al., 2007] and [Goldsmith et al., 2010]. Cationic 

concentrations are systematically smaller than the ones reported for rivers flowing through 

basaltic rocks of the Réunion Island, the Deccan Trap or the Mount Cameroun ( [Louvat and 

Allègre, 1997], [Dessert et al., 2001] and [Benedetti et al., 2003]). 

4.2. Dissolved inorganic carbon 

Calculated concentrations of DIC are reported in Table 2. The calculations are done with field 

pH, temperature values and with alkalinity and ionic strength measurements made in the 

laboratory. The calculated DIC values are obtained with the following simplified formula 

(neglecting concentrations of OH
−
 and H

+
): 

 

with Alk = alkalinity, γ1 and γ2 = activity coefficients of ions mono-charged or bi-charged respectively, 

KA1 and KA2 corresponding to the first and second acidity constants of carbonate system, respectively. 

DIC values range from 149 to 850 μM of C. The distribution of DIC concentrations is 

homogeneous around the Basse-Terre. DIC concentrations are systematically the highest 

during low water level, and are similar to results obtained by Rivé (2008) in rivers of 

Martinique (from 319 to 978 μM), of Guadeloupe (from 292 to 817 μM) and of Dominica 

(from 235 to 962 µM) islands. The calculated partial pressures of the CO2 (pCO2) vary 

between 32 and 299 Pa. The pCO2 variations are not related with hydrological regimes 

changes since for the northern rivers the values are the highest during low water level and for 

eastern rivers the values are the highest during floods. Guadeloupean rivers are oversaturated 

with respect to the atmospheric CO2 according to NOAA (i.e. 39 Pa from 2006 to 2009, 



www.noaa.gov). These results are similar to values obtained for rivers of Hawaii (Paquay et 

al., 2007) or for the Xijiang River characterized by a subtropical monsoon (Yao et al., 2007). 

The isotopic compositions (δ
13

CDIC) are obtained for the same rivers but sampled at different 

dates. δ
13

CDIC ranges from − 16.7 to − 6.8‰, with an average value of − 11.4‰ (n = 20) 

during low water level and from − 24.4 to − 9.6‰, with an average value of − 15.8‰ (n = 16) 

during floods. δ
13

CDIC values are similar to the one measured previously for the Guadeloupean 

rivers (i.e. from − 17.2 to − 7.3‰) by Rivé (2008). 

4.3. Dissolved organic carbon 

DOC concentrations fall into the range 43 to 601 μM of C. DOC concentrations are higher in 

the northern part than in the rest of the island. DOC concentrations are systemically the 

highest during flood levels. They are similar to the one measured for small mountainous rivers 

of New Zealand (from 8 to 630 μM, mean 30 μM for the Southern Alps and 200 μM for the 

southwestern North Island; Carey et al., 2005) and for tropical mountainous rivers of Puerto 

Rico (mean from 110 to 180 μM; Mcdowell and Asbury, 1994). 

The isotopic compositions of DOC (δ
13

CDOC) in studied rivers are given in Table 2. The 

δ
13

CDOC ranges from − 32.8 to − 26.2‰. The distribution of the isotopic composition of DOC 

is the same around the Basse-Terre. The δ
13

CDOC values are systematically more negative 

during low water level than during floods (Table 2). These values are characteristic of organic 

matter derived from Guadeloupean tropical forest C3 type plants (Deines, 1980). 

The parameters like aromaticity, weight (Mw) and number (Mn) average molecular weight 

and number and hydrophobic fraction can be estimated from the UV–Vis absorbance data, 

with empirical relationships (Chin et al., 1994). Different wavelengths are selected (254, 270, 

and 280) to underline the markers of organic matter. The absorbance at these different 

wavelengths defined as SUVA (Specific UV absorbance) is calculated with the following 

formula: 

 

 

The percentage of aromatic dissolved organic carbon or ―aromaticity‖ is calculated by 

averaging the values obtained with the relationships proposed by [Chin et al., 1994], 

[Peuravuori and Pihlaja, 1997] and [Weishaar et al., 2003]. The percentage of aromatic carbon 

varies between 31 and 75% (Table 2). The weight averaged molecular weights (Mw) are 

calculated by averaging the data obtained with the relationships of [Chin et al., 

1994] and [Zhou et al., 2001]. The Mw varies between 2521 and 5165 D. The values of the 

aromaticity and Mw are relatively similar for all rivers, but these values are higher during low 

water level than during floods. The percentages of aromatic carbon are similar to results 

acquired in water samples collected in 16 states of the USA by NASQAN sampling program 

(Weishaar et al., 2003) and in natural humic-water samples collected from two lakes in 



Finland (Peuravuori and Pihlaja, 1997) using an identical spectroscopic approach. The weight 

averaged molecular weight values are similar to results obtained for colloidal organic matter 

from rivers of Amazonian basin (between 1126 and 2230 D, Alasonati et al., 2010). The 

polydispersity index calculated with ratio Mw on Mn was close to 2.0 ± 0.1 for all samples, 

and is identically for all rivers and during low water level and floods. 

5. Discussion 

The following discussion supported by the results presented above will first focus on the role 

of parameters included in models of watersheds weathering such as average slopes, 

precipitation and age of the geological substratum on the fluxes of both inorganic and organic 

carbon. Then the discussion will address the question of the sources of the dissolved organic 

carbon and their characteristics. Finally, we calculate average annual yields of both organic 

and inorganic carbon taking into account the spatial and temporal variability on the various 

studied watersheds the results of these calculations will emphasize the role of islands such as 

Guadeloupe in the overall global carbon budget. 

5.1. Chemical composition 

Considering our studied area, the global chemical composition of river waters mainly derives 

from water–rock interaction processes, soil lixiviation and atmospheric inputs. Indeed, 

samples have been collected upstream of agricultural areas and away from the active volcanic 

area (South) strongly impacted by hydrothermal springs. 

The atmospheric inputs to the rivers can be classically estimated by looking at chlorine 

concentrations, which are mainly derived from rainwater in areas non-impacted by 

anthropogenic and geothermal inputs. We have plotted in Fig. 3 sodium concentrations as a 

function of chlorine concentrations for the different rivers. The Na/Cl ratios of rivers are 

systematically higher than those of rainwater, symbolized by the straight line with a slope of 

0.8 (Na/Clrain), emphasizing the additional sources of sodium coming from water–rock 

interactions. 



 

 

Fig. 3. Sodium concentrations as function of chlorine concentrations expressed in μM. The rainfall 

ratios were obtained from the average concentrations of rainwater sampled in the Southern part of 

Basse-Terre (Dessert, personal communication). The open and closed symbols correspond to low 

water level floods, respectively. 

 

Northern rivers present higher concentrations than in the South, due to the highest 

evapotranspiration factor in the North (Table 1). The sea salt aerosols transported by the 

Easterly are scavenged by rainwater, which lead to a mean chlorine concentration about 

200 ± 110 μM in Guadeloupe (Dessert, personal communication). With evapotranspiration 

factor (fevap) varying between 1 and 4 (Table 1), we estimate that the concentration of cyclic 

chlorine in rivers varies between 200 μM in the southern part and 800 μM for the Deshaies 

River in the northern part of the island ([Cl]river = [Cl]rain ⁎ fevap). We can thus assume that all 

the chlorine content has mainly an atmospheric origin. The content of other solutes having an 

atmospheric origin is determined using riverine chlorine concentrations and rainwater molar 

ratios (Na/Cl = 0.8, Mg/Cl = 0.09, SO4/Cl = 0.08, Ca/Cl = 0.06, K/Cl = 0.03, Dessert, 

personal communication). 

The remaining solutes are coming from water–rock interaction processes and are used in the 

determination of the different chemical weathering rates. TDScat (cationic total dissolved 

solid) is the sum of concentrations of major cations (Ca, Mg, Na and K) corrected for 

atmospheric inputs. TDSw (weathering total dissolved solid) values are calculated from the 

concentrations of the major dissolved elements originating from andesitic weathering (SiO2, 

Ca, Mg, Na, K and SO4) and corrected for atmospheric inputs. TDScat values vary between 3.7 

and 21.4 mg L
− 1

 and TDSw concentrations range from 11.8 to 57.5 mg L
− 1

 (Table 2). The 

TDS values are quite uniform from one area to the other and they are systemically lower 

during floods, because of a partial dilution effect. TDScat and TDSw calculated for 

Guadeloupean Rivers are similar to those reported in Dessert et al. (2003) for Columbia 

Plateau, Hawaii, Iceland, the Massif Central and Sao Miguel. 



With mean annual runoff, HCO3
−
 (alkalinity), TDScat and TDSw (Table 2) of each rivers, we 

estimate the mean annual regional rates of CO2 consumption, cationic weathering and 

chemical weathering for each regions of Guadeloupe. 

 

 

with [HCO3
−
]region = mean regional concentration in HCO3

−
 and Rregion = mean regional 

runoff; 

 

mean regional cationic weathering=TDScat/region*Rregion 

 

with TDScat/region = mean regional TDS and Rregion = mean regional runoff; 

 

mean regional chemical weathering=TDSw/region*Rregion 

 

with TDSw/region = mean regional TDSw and Rregion = mean regional runoff and the regions 

correspond to the Northern, the Center, the Western and the Eastern part of the island. 

The rates of CO2 consumption, ranging from 0.26 to 1.36 10
6
 mol km

− 2
 year

− 1
 (Table 3), are similar to 

the data reported in Rad et al. (2006) for Guadeloupe and Martinique Rivers and in Goldsmith et al. 

(2010) for the Dominica Rivers. But they are different from the one reported for the Réunion Island 

(1.3–4.4 10
6
 mol km

− 2
 year

− 1
; Louvat and Allègre, 1997) under similar climatic conditions. This is 

most probably due to the different nature of parent rock (andesitic versus basaltic). The cationic 

weathering and chemical weathering rates, based on a compilation of TDScat and TDSw, ranged from 

7.8 to 34.0 and 38.9 to 114.5 t km
− 2

 year
− 1

 respectively (Table 3). These values are similar to those 

previously established for the andesitic terrains of Guadeloupe and Martinique (100–

120 t km
− 2

 year
− 1

) by Rad et al. (2006) and Dominica (6–106 t km
–2

 year
–1

) by Goldsmith et al. (2010) 

and for the basaltic terrains under similar climatic conditions of Reunion Island (63–

170 t km
− 2

 year
− 1

) by Louvat and Allègre (1997). These rates vary with geographical location around 

the Basse-Terre. Furthermore, all Guadeloupean watersheds had chemical weathering rates well in 

excess of the global mean value of 24 t km
− 2

 year
− 1

 (Gaillardet et al., 1999b). Such a difference is 

expected as large river systems integrate weathering processes occurring on different lithology, 

different runoff as well as temporary carbon storage or CO2 consumption and production in 

floodplains ( [Walling et al., 2006], [Bonnet et al., 2008], [Engle et al., 2008] and [Guyette et al., 

2008]). The northern rivers of the Guadeloupe Island have the smallest rates compared to the rest of 

the Island. The smaller rates of the northern part could be due to lower annual precipitations combined 

with less steep slopes, related to oldest bedrocks. The central, western and eastern parts have higher 

rates than the northern part, reflecting the high rainfall inputs and the effect of the age of the 

geological substratum (Gislason et al., 1996). Moreover, for the eastern and western part of the island, 

the lack of soils will promote faster and stronger weathering as CO2 acid interacts directly with fresh 

or physically eroded parent rocks. 



 

Table 3. DOC and DIC yields for the two hydrological stages, and mean annual DOC 

and DIC yields, as well as calculated mean annual rates of CO2 consumption, cationic 

weathering and chemical weathering for different part of the Guadeloupe. 

  

Low water level 

 

Flood level 

 

Mean annual 

 

Site 
Are

a 
YDOC YDIC YDOC YDIC YDOC YDIC 

CO2 

consumpti

on rate 

Cationic 

weatherin

g rate 

Chemical 

weatherin

g rate 

 
km2 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

106 mol 

km− 2 year− 

1 

t 

km− 2 year
− 1 

t 

km− 2 year
− 1 

North 

Desbonne
s 

5.50 0.4 ± 0.3 2.1 ± 1.5 
    

0.26 ± 0.16 7.8 ± 4.9 38.9 ± 22.6 

Deshaies 4.38 0.5 ± 0.3 1.7 ± 0.9 11.3 ± 6.6 7.3 ± 4.2 1.6 ± 0.9 2.3 ± 1.3 
   

Moustique 
Sainte-

Rose 

6.16 0.7 ± 0.4 3.0 ± 1.6 25.4 ± 16.1 21.9 ± 13.9 3.2 ± 2.0 4.9 ± 2.9 
   

Center 

Bras 

David 

11.0

0 
1.1 ± 0.5 11.0 ± 5.0 15.1 ± 6.3 32.8 ± 13.6 2.5 ± 1.1 13.2 ± 5.9 

0.95 ± 0.51 20.8 ± 11.0 69.7 ± 37.0 Corossol 
12.5
2 

0.8 ± 0.5 9.4 ± 5.6 25.5 ± 11.4 40.3 ± 18.0 3.3 ± 1.6 12.5 ± 6.8 

Goyaves 
14.4

0 
1.1 ± 0.8 9.3 ± 7.0 21.1 ± 9.9 44.3 ± 20.7 3.1 ± 1.7 12.8 ± 8.4 

West 

Lostau 8.04 2.1 ± 1.2 8.5 ± 4.7 
    

1.36 ± 0.76 34.0 ± 19.0 
114.5 ± 64.

1 

Beaugend

re 
8.17 1.3 ± 1.1 11.6 ± 9.7 31.0 ± 15.1 75.7 ± 36.9 4.2 ± 2.5 18.0 ± 12.4 

   

Vieux-
Habitants 

19.1
0 

1.4 ± 0.8 14.6 ± 8.8 27.2 ± 11.6 65.2 ± 27.8 3.9 ± 2.0 19.6 ± 10.7 
   

East 

Moustique 

Petit-

Bourg 

11.5
0 

1.1 ± 0.7 11.5 ± 6.7 24.5 ± 10.2 43.2 ± 18.0 3.5 ± 1.6 14.6 ± 7.8 1.11 ± 0.59 24.7 ± 13.1 84.8 ± 44.9 

Capesterre 
16.2

0 
1.7 ± 1.1 14.8 ± 9.4 42.4 ± 16.9 47.1 ± 18.8 5.7 ± 2.6 18.0 ± 10.4 

   

 

5.2. The dissolved carbon: spatial and temporal distribution 

DIC concentrations are systematically the highest during low water level (Table 2), and 

represent more than 75% of the total dissolved carbon in rivers. During floods, the DIC is 

partially diluted by rainfall inputs as the lowest calcium and magnesium concentrations 

cluster in the lower part of Fig. 4. Moreover, the different δ
13

CDIC values for the two 

hydrological stages reflect the variable contribution of two end-members. The first one with 

less negative δ
13

CDIC corresponds to atmospheric CO2 inputs (− 5 to − 10‰, Trumbore and 

Druffel, 1995), and the second one corresponds to depleted biogenic CO2 produced during the 

decomposition of soil organic matter as decomposers used preferentially 
12

C (Lichtfouse et 

al., 1995). In Guadeloupean rivers, the major source of the riverine DIC is the CO2 from soils 

(respiration of plant roots and the decay of organic matter) and atmospheric CO2, both 

consumed during rock weathering processes (Worall et al., 2005). This hypothesis is 

supported by the good correlation between divalent cations (Ca and Mg) concentrations and 

DIC concentrations given by the Fig. 4. Elementary ratios of rocks are 0.13 for K/Si, 0.40 for 



Ca/Si, 0.30 for Mg/Si, 1.33 for Ca/Mg, 3.00 for Ca/K and 2.30 for Mg/K for the 1440 AD 

eruption of the Soufrière (Poussineau, 2005). In the river waters corrected by the rainfall 

inputs, the average ratios are 0.03, 0.31, 0.14, 2.23, 9.80 and 4.43 for K/Si, Ca/Si, Mg/Si, 

Ca/Mg, Ca/K and for Mg/K, respectively. The differences between water and rock element 

ratios can be explained by the plant uptake for nutrient elements like potassium (Hinsinger et 

al., 2001) or by the mixing between of solutions seeping from the weathered soil horizons and 

the geological substratum. Indeed, the soils have elementary ratios smaller than those of 

parent rocks (Buss et al., 2010). Moreover, field observations show that the northern and 

center rivers flow on the soils and not directly on the parent rocks. In addition changes could 

also be due to the incorporation of Si in secondary minerals such as kaolinite, halloysite, 

allophane or montmorillonite during incongruent reactions of silicate minerals weathering ( 

[Colmet-Daage, 1969] and [Colmet-Daage and Bernard, 1979]). 

 

Fig. 4. 2 ⁎ (Ca + Mg) concentrations as function of DIC concentrations expressed in μM. The 1:1 line 

corresponds to a control of both Ca and Mg by weathering processes. DIC is also controlled by the 

weathering processes of the parent rocks. 

 

Conversely to DIC, DOC concentrations are systematically higher during the flood level than during 

low water level (Table 2). For the later, the DOC represents from 10 to 30% of the total carbon, while 

during floods it accounts for more than 50% of the total carbon concentration. An input of water 

enriched with DOC is therefore needed to account for this difference. In Fig. 5, a general negative 

trend between δ
13

CDOC versus 1/DOC could correspond to the mixing between two end-members. Data 

points cluster reasonably along a mixing line with the highest concentrations characterized by less 

negative δ
13

CDOC corresponding to flood level and the lowest concentrations associated to the most 

negative δ
13

CDOC corresponding to low water level. Variable sources and weathering processes might 

have obscured that broad relationship between quality and quantity of DOC. One hypothesis would be 

that during low water level, the rivers could be fed in DOC by autochthonous algal development ( 

[Kuserk et al., 1984], [Romani et al., 2004], [Sachse et al., 2005] and [Liang et al., 2008]) or by 

saprolite groundwater ( [Sachse et al., 2005] and [Liang et al., 2008]). Conversely, the high DOC 

concentrations (116–601 μM, Table 2) during floods, could reflect an intense desorption or 

solubilisation of soil organic matter and its transfer into rivers by surface runoff during these extreme 

hydrological events. The values of δ
13

C of litter obtained by Rivé (2008), vary between − 30.4 and 

− 27.8‰ and are in agreement with those obtained for refractory soil organic carbon (Lichtfouse et al., 

1995). In fact, during the decomposition of the C3 plants (δ
13

C = − 20 to − 35‰, Deines, 1980), the 



soil organic matter is enriched by 1.5 to 4.3‰ in 
13

C (Lichtfouse et al., 1995). The δ
13

CDOC of flood 

level was in the range of soil litter carbon indicating that the rivers were therefore probably fed by 

litter layers. 

 

 

Fig. 5. Isotopic composition of dissolved organic carbon as function of 1/DOC. The general trend 

suggests a mixing process between two end-members. 

 

Organic matter characteristics (i.e. aromaticity and molecular weight) are reported in Table 2. The 

DOC aromaticity and the molecular weight estimated for the low water level are higher than the ones 

corresponding to flood level. These observations are valid for all rivers except the Deshaies river that 

was not perennial. These parameters combine with isotopic data can help us to decipher between the 

two potential sources of DOC under low water level conditions (i.e. autochthonous vs saprolite). The 

trend observed in Fig. 6, between the δ
13

CDOC and aromaticity has been previously reported (Violleau, 

1999). The δ
13

CDOC decreases as DOC aromaticity increases. In the saprolitic horizons, longer water 

residence time and smaller saprolite–solution ratio prevail. Under such conditions, the more aromatic, 

more hydrophobic and heavier organic carbon pool could also be desorbed (Muller et al., 2009). In 

addition at large water fluxes after heavy rainfall events DOM contains more carbohydrates, is less 

aromatic and more hydrophilic than at small water fluxes (Kaiser and Guggenberger, 2005). 

Moreover, the autochthonous organic matter production (algal or bacterial production) has, according 

to Croue (2004), a molecular structure similar to the hydrophilic fraction of natural organic matter. 

This autochthonous organic matter is generally enriched in 
13

C and less aromatic. 

 



 

Fig. 6. Isotopic composition of dissolved organic carbon as function of the calculated average % of 

aromatic organic carbon. Percentages were obtained by averaging the values calculated with the 

relationships proposed by [Chin et al., 1994], [Peuravuori and Pihlaja, 1997] and [Weishaar et al., 

2003]. 

 

In Fig. 7, we summarize the various processes accounting for the observed trends between low water 

level and floods. During low water level, the rivers are fed by ground flow from the saprolite. The 

ground flow is depleted in DOC. The organic matter molecules are larger (Mw), more aromatic, less 

hydrophilic, 13C depleted and less mobile (Cabaniss et al., 2000). Conversely, during floods, the 

rivers are fed by surface runoff of solutions enriched with DOC. These DOC molecules are smaller, 

less aromatic, more hydrophilic, 13C enriched and more mobile (Cabaniss et al., 2000). 

http://www.sciencedirect.com/science/article/pii/S0009254110003785#f0035
http://www.sciencedirect.com/science/article/pii/S0009254110003785#bb0125
http://www.sciencedirect.com/science/article/pii/S0009254110003785#bb0125


 

 

Fig. 7. Summary of the dissolvedorganiccarbon characteristics and potential flowpath in the 

weathering profile developed on andesitic bedrock of the Basse-Terre Island. During flood events the 

quick flowpath dominates and the freshly deposited organiccarbon is feeding the rivers. Under low 

water conditions the ground flowpath is the major source of organic matter for rivers. 

The ratio DOC/DIC varies between 0.09 and 0.29 during low water level and between 0.37 and 1.97 

during floods (Table 2). The increase of the DOC/DIC ratio for the flood water level is related to the 

massive input of rainwater that will modify the chemical equilibrium established during the low water 

level conditions. Both the lower ionic strength of the rainwater and the decrease of soil to pore water 

ratio will favor the desorption of soil organic matter and its release into the soil solution (Arnarson and 

Keil, 2000). Under conditions where mineral surfaces become limited and competitive anions are 

present, such as in surface horizons, newly formed mineral–organic associations are weaker and the 

OM is more susceptible to desorption. In contrast, once the availability of mineral surfaces increases 

in deeper soil horizons, the stabilization of OM upon sorption will increase and only a small portion of 

dissolvedorganic matter will eventually feed the rivers. This scenario will prevail under low water 

level conditions and justify the lower DOC/DIC ratios. In Fig. 8, the DOC/DIC values are plotted as 

function of the percentage of the total watershed area with slopes higher than 49% (Plaisir et al., 

2003). The figure shows that there is a non-linear relationship between the two parameters for both 

water level conditions. The DOC/DIC ratio decreases as the watershed area is dominated by surfaces 

with slopes steeper than 49%. The steep slopes will prevent the development of deep soils on the 

geological substratum and therefore the accumulation of organic matter in the upper horizons that 

would generate higher DOC in the soil solutions. In addition beyond a threshold value of 10%, the 

decrease of the DOC/DIC is much smaller. The unknown distribution of organic matter in the soils of 

the studied watershed might however obscure that broad relationship. 



 

Fig. 8. [DOC]/[DIC] ratio as a function of percentage of the total area of watersheds with slopes 

> 49%. The open symbols correspond to low water level of rivers and the closed symbols to flood 

level. Curves are trend lines that correspond to the best fit (R > 0.8) between the average slopes of 

the watersheds. The best fits were obtained for slope above 49%. 

 

5.3. DOC and DIC yields 

The yields of carbon have been calculated from the mean runoff values and mean carbon 

concentrations for each river (Table 3). During low water level, the carbonyield varies 

between 0.4 and 2.1 t km
− 2

 year
− 1

 for the DOC and between 1.7 and 14.8 t km
− 2

 year
− 1

 for 

the DIC. The carbonyield during floods varies between 11.3 and 42.4 t km
− 2

 year
− 1

 for the 

DOC and between 7.3 and 75.7 t km
− 2

 year
− 1

 for the DIC (Table 3). 

The mean annual yields of DOC and DIC were calculated using the following equation: 

 

where YLWL is the yield during low water level (related to 90% of the annual discharge; Fig. 2), and YFL 

is the yield during floods (related to 10% of the annual discharge). 

The mean annual yields range from 2.5 to 5.7 t km
− 2

 year
− 1

 for the DOC and from 4.8 to 

19.6 t km
− 2

 year
− 1

 for the DIC (Fig. 9). The actual yields of DOC and DIC to the ocean could 

be different from these calculated yields because our estimation does not take into account 

extra organic matter inputs from cultivated soils and mangroves located below our sampling 

points. The erosion of cultivated soils will release organic matter into rivers ( [Bellanger et al., 

2004], [Quinton et al., 2006], [Martinez-Mena et al., 2008] and [Gilles et al., 2009]). The real 

inputs to the ocean are even more difficult to forecast because mangrove can favor the 



accumulation of organic matter from rivers (sink) as well as contribute to the flux of the later 

by degradation of organic residues issued from the mangrove itself (source) ( [Chen and 

Twilley, 1999], [Bouillon et al., 2003], [Bouillon et al., 2008], [Chmura et al., 

2003] and [Marchand et al., 2006]). The DOC and DIC yields are the most important in the 

South of the Basse-Terre (Fig. 9). This is likely due to the exposure to rainfalls and steep 

slopes (related to the younger age of the substratum) which implicate that the erosion of soils 

is more intense in the southern part than in the northern part of the island. The DOC yield is 

the most important for the Capesterre River with 5.7 t km
− 2

 year
− 1

. The Capesterre watershed 

is the most exposed to rainfalls and therefore its soils were prone to the erosive power of the 

extreme meteorological events. The DIC yield is the highest for the Vieux-Habitants River, 

due to higher weathering rates. The dissolvedcarbonyield is mainly in the form of DIC 

(DOC/DIC < 1). However, if we could take into account the particulate organiccarbon then 

the yield of organiccarbon would be higher than the yield of inorganiccarbon. For instance, 

the particulate organiccarbon represents about 10–30% of the total organiccarbon in the 

Puerto Rico rivers (McDowell and Asbury, 1994). If similar percentages are applied to our 

samples, the yield of organiccarbon in the Basse-Terre could represent between 18 and 47% 

of the total carbonyield. Noteworthy, more than 60% of the DOC export and 25–45% of the 

DIC export occurred during flash floods. 



 

Fig. 9. Average annual DOC and DIC yields (t km2 year− 1; Table 3) for 8 watersheds in the Basse-Terre 

Island. R = [DOC]/[DIC]. 

 

The DOC yields are close to the yields calculated at Puerto Rico (Mcdowell and Asbury, 

1994) and the yields of New Zealand rivers under temperate climate (Carey et al., 2005). 

Moreover, the DOC yields are also similar to the yields determined for the large rivers under 

wet tropical climate like Zaire with 2.5 t km
− 2

 year
− 1

 (Nkounkou and Probst, 1987), Parana 

with 1.4 t km
− 2

 year
− 1

 (Depetris and Cascante, 1985), Changjiang with 5.7 t km
− 2

 year
− 1

 

(Gan et al., 1983), Orinoco with 4.8 t km
− 2

 year
− 1

 (Lewis and Saunders, 1989). The DIC 

yields calculated for the Guadeloupean rivers are more important than the yields determined 

for the large rivers under wet tropical climate like Zaire with 9.9 t km
− 2

 year
− 1

 (Probst, 1992), 

Parana with 2.0 t km
− 2

 year
− 1

 (Cai et al., 2008), Changjiang with 11.2 t km
− 2

 year
− 1

 (Cai et 

al., 2008), Orinoco with 5.5 t km
− 2

 year
− 1

 (Cai et al., 2008). The large rivers integrate the 

yields of several watersheds which present different lithologies and therefore different 



chemical weathering rates and DIC yields. The DIC yields calculated for the Guadeloupean 

rivers could be the analogue of one kind of sub-catchment in the large rivers systems. 

The surface area of volcanic arc islands under wet tropical climate was calculated ( [Louvat, 

1997] and [Dessert et al., 2003]) and would represent about 3.29 · 10
6
 km

2
. We assume that 

the DOC and DIC yields of Guadeloupean Rivers (1.6–5.7 t km
− 2

 year
− 1

 and 2.3–

19.6 t km
− 2

 year
− 1

, respectively; Table 3) are representative of DOC and DIC yields export 

for volcanic arc islands and we estimate therefore the annual DOC and DIC exports of these 

islands. The DOC and DIC exports from volcanic arc islands under wet tropical climate are 

about 0.005–0.019 Gt yr
− 1

 and 0.008–0.065 Gt yr
− 1

 respectively. The DOC export is similar 

to the DOC export calculated for large tropical rivers like the Amazon (0.034 Gt yr
− 1

; 

Moreira-Turcq et al., 2003), the Orinoco and the Parana (0.005 and 0.004 Gt yr
− 1

, 

respectively; Ludwig et al., 1996b and references there in) or for the whole African continent 

(0.025 Gt yr
− 1

; Lal, 2003). The DIC export is close to the DIC export calculated for Africa 

(0.009 Gt yr
− 1

; Lal, 2003) or South America (0.059 Gt yr
− 1

; Lal, 2003). Therefore, the 

exports of dissolvedcarbon from small volcanicislands are important and should be included 

in global carbon budget budgets. 

6. Conclusion 

This study examined the rivers of the volcanicGuadeloupeIsland (FWI) to characterize the 

yields of dissolvedorganic (DOC) and inorganic (DIC) carbon during weathering in a tropical 

context. The small rivers present a characteristic hydrological regime where flash floods 

explain around 10% of the annual water flux. Dissolvedcarbonyields were constrained by 

taking into account this hydrological variability with samples collected during both low water 

and floods for eleven rivers distributed over the island. 

– 

Differences in carbon origin during the two hydrological stages were confirmed with 

DOC and DIC concentrations as well as DOC characteristics and isotopic 

compositions. During low water level the rivers were mainly fed by soil ground flow 

while during floods level the rivers were fed by runoff and quick flow. 

– 

DOC and DIC yields were estimated with data acquired for both hydrological stages 

of rivers. Noteworthy, more than 60% of the DOC export and 25–45% of the DIC 

export occurred during flash floods. Neglecting these flash floods leads to an 

underestimation of the global carbon export from these islands. 

– 

A spatial variation of DOC and DIC yields is evidenced around the Basse-Terre 

Island. Indeed, the DOC and DIC yields are higher in the southern part of the island 

where the bedrock is younger and the slopes are steeper than in the northern part. 

Moreover, the southern part receives the maximum of precipitations. 

– 



Therefore, for a carbon mass balance perspective, the exportation of organiccarbon by 

small tropical rivers can no longer be neglected. 

As the particulate organiccarbon represent a non negligible fraction of the total 

organiccarbonyield in other similar hydrological systems (Puerto Rico), future studies should 

include particulate organiccarbon characterization from samples taken along the whole year to 

obtain a full mass balance for the carbon and a better estimation of the organiccarbonyields. 

In addition organic matter from soils and soil solutions should be characterized to validate the 

organiccarbon pools proposed in this study to account for the trends between the two 

hydrological periods. 
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