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Abstract 
 

Regional-scale deformation taking place in a strongly anisotropic, yet homogeneous 
metapelitic protolith during an apparently single tectonic event was systematically 
investigated as a function of the distance to the main tectonic contact (i.e., the Filabres 
shear zone, a major detachment in the Betic Cordilleras, Spain). 
C3' shear bands (or extensional crenulation cleavage) reworking the earlier S2 
schistosity increase steadily towards the contact, in parallel with the decrease in the size 
of the shear domains. Systematic variations in angles and shape ratios are also reported. 
Shear band density decreases exponentially as a function of the distance to the 
detachment. Deformation and age patterns, however, suggest that this spectacular trend 
does not correspond to a perfectly fossilized shear strain gradient but at least partly 
results from a progressive localization of the deformation through time. Such shear strain 
patterns nevertheless provide a mean to constrain the rheological properties for such 
weak lithologies and a mean to better understand crustal deformation. 
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1. Introduction 

 

Ductile shear zones and shear band geometries have been studied extensively over the 

past 40 years (e.g., Ramsay and Graham, 1970; Burg and Laurent, 1978; Berthé et al., 

1979; Ramsay, 1980; Gapais et al., 1987; Dutruge et al., 1995; Carreras, 2001; Battacharya 

and Hudleston, 2001; Arbaret and Burg, 2003; Michibayashi and Murakami, 2007). These 

studies focused on geometrical patterns (Passchier, 1998), on determining the respective 

contributions of simple and pure shear (Ramsay and Huber, 1983; Tikoff and Fossen, 1993), 

or on retrieving the history of deformation (Druguet et al., 1997; Carreras et al., 2010). So far 

most of them dealt with individual structures at the outcrop scale (eg., Arbaret and Burg, 

2003; Pennachioni and Mancktelow, 2007) or on their organization as networks (particularly 

on the Cap de Creus area; e.g., Druguet et al., 1997; Carreras, 2001; Fusseis et al., 2006).  

Fewer, however, attempted to trace finite deformation on a regional scale, for example as 

a function of the distance to a major crustal shear zone (Stipp et al., 2002; Gueydan et al., 

2005; Marques et al., 2007), although such patterns bear important information on the 

rheological evolution of strain localization. This is particularly important for the weaker, 

phyllosilicate-rich, schistosed lithologies, which will tend to predominantly focus deformation 

and thus control mid-crustal deformation (e.g., Shea and Kronenberg, 1993; Handy and Brun, 

2004; Le Pourhiet et al., 2004 and references therein). Initially homogeneous, isotropic rock 

volumes with round or spherical initial markers, such as deformed granites or gabbros 

transformed to mylonites or ultramylonites (Choukroune and Gapais, 1983; Arbaret and Burg, 

2003), commonly develop C-S and C'-S structures (Berthé et al., 1979; Ramsay, 1980; 

Hippert, 1999) and exhibit some periodicity in the localization of shear strain (Cobbold and 

Ferguson, 1979; Dutruge et al., 1995; Dutruge and Burg, 1997; Gueydan et al., 2003). In 
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contrast, phyllosilicate-rich lithologies deformed through bulk simple shear, or with the 

principal strain oriented at high angle to the plane of anisotropy, will tend to develop spaced 

shear bands termed extensional crenulation cleavage (ECC, Platt, 1979; or shear band 

cleavage: White et al., 1980).  

How these multi-scale shear fabrics progressively develop in anisotropic rocks with 

increasing shear strain is still unclear, with constrating evidence of strain localization or 

network widening (Passchier, 1984; Platt, 1984; Fusseis et al., 2006; Handy et al., 2007; 

Michibayashi and Murakami, 2007; Scholz, 2007), and even caution as to whether they reflect 

the overall sense of shear (Behrmann, 1987; Passchier, 2001; Grasemann et al., 2003; Lexa et 

al., 2004). Important pending questions are: is it therefore possible to derive an empirical law 

relating the regional-scale shear strain gradient to deformation patterns in metapelitic shear 

zones (which could, in turn, be used as a way to constrain their hardening/softening behaviour 

or strain rates; e.g., Means, 1995; Sassier et al., 2009)? How much deformation is taken up 

near a major contact at the hm- to km-scale, and how much tectonic thinning is involved? Can 

we quantify the amount of ductile deformation and provide constraints for numerical models 

attempting to reproduce rheological behaviours as seen in rocks (e.g., Jessell et al., 2009)? 

The area investigated here, where ECCs were first defined (Betic Cordilleras, Spain; 

Platt, 1979; Platt & Vissers, 1980), exhibits a stack of rocks exhumed below a major 

detachment. This regional-scale detachment, with a strike > 150 km, separates the Alpujarride 

from the Nevado-Filabride complexes and is well known in terms of deformation and P-T-

time history (Platt & Vissers, 1980; Platt et al., 1984; Garcia-Dueñas et al., 1992; Martínez-

Martínez et al., 2002; Augier et al., 2005a). Importantly, the shear band network investigated 

here can be thought to result from a single deformation event exhuming these rocks at 350-

480°C (D3 stage; Augier et al., 2005b), hence essentially from below the frictional-to-viscous 

transition (Handy et al., 2007). Rocks found below the contact are strongly anisotropic 
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metapelites with shear cleavages superimposed on an earlier, pervasive, flat-lying schistosity 

and are chemically and structurally homogeneous at the km-scale (i.e., Paleozoic dark schists 

with an ubiquitous, upper greenschist facies garnet-chloritoid-chlorite-phengite assemblage 

aligned along the S2 schistosity).  

This area thus provides a unique opportunity to study the deformation of a strongly 

anisotropic yet homogeneous body with well-exposed XZ sections on a regional-scale, a clear 

deformation gradient (Platt et al., 1984) and asymmetric tectonic patterns (Augier et al., 

2005a). We herein characterize the distribution of shear bands and shear geometries as a 

function of the distance to the Filabres shear zone through systematic, statistically significant 

measurements. The strategy adopted here is closely related to the one outlined by Choukroune 

et al. (1987), who stated that « useful approaches could perhaps involve statistical studies of 

geometric features (e.g. orientations, length, spacing and population density of structures) and 

of their correlations with the amount of bulk shear strain. » 

 

 

 

2. Geological setting and deformation style 

 

2.1. The Nevado-Filabride complex within the Betic orogen 

 

The Betic-Rif orogen results from the closure of the westernmost part of the Tethys ocean 

between Africa and the Iberian Peninsula (Fig. 1a). Subduction and crustal thickening leading 

to the formation of HP-LT metamorphic units took place from the Eocene to the Oligocene 

and were followed by late-orogenic extension starting after c. 35-30 Ma in the western 

Mediterranean (Platt et al., 1998; Jolivet & Faccenna, 2000). Lithospheric-scale causes of late 
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orogenic extension are still debated, with contrasting models based on slab retreat (Royden, 

1993; Lonnergan & White, 1997; Jolivet et al., 2008), delamination of subcontinental 

lithosphere (Martínez-Martínez & Azañón, 1997; Calvert et al., 2000) or convective removal 

of thickened crust (Platt & Vissers, 1989; Vissers et al., 1995). 

The internal zones of the Betic Cordilleras correspond to the initial stacking of the 

Nevado-Filabride, Alpujarride and Malaguide complexes (from bottom to top; Fig. 1b), 

currently separated from each other by major crustal-scale extensional shear zones: the 

Filabres Shear Zone (hereafter FSZ: García-Dueñas et al., 1992; BMZ in Platt and Vissers, 

1989) and the Malaguide-Alpujarride Contact (MAC, Vissers et al., 1995), respectively. The 

age of the peak of pressure for the Nevado-Filabride (NF) complex is not precisely known but 

recent age constraints place it at around 30 Ma and possibly older (Augier et al., 2005b). 

Exhumation of the NF complex took place through a roughly E-W regional penetrative 

ductile extension from ~30 to 18-14 Ma (García-Dueñas et al., 1992; Martínez-Martínez et al., 

2002; Augier et al., 2005b).  

 

2.2. Deformation history of the Nevado-Filabride complex  

 

The Nevado-Filabride complex is composed of three main tectonic units which are, from 

bottom to top (Fig. 1c; Martínez-Martínez et al., 2002 and references therein), the Ragua, 

Calar Alto and Bédar-Macael units, with respective structural thicknesses of 4000, 4500 and 

600 m (García-Dueñas et al., 1988; the latter two being also refered to as the Mulhacen 

complex). These three units present a roughly similar lithostratigraphic succession (as for the 

Alpujarride units) with a thick and monotonous sequence of presumably Palaeozoic dark, 

graphitic micaschists and microturbidites topped by light coloured Permo-Triassic micaschists 

and quartzites and Triassic carbonate rocks (Lafuste & Pavillon, 1976; Platt et al., 1984). 
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These units are separated by major (i.e. > 500 m thick) ductile to ductile-brittle shear zones 

(Platt et al., 1984; García-Dueñas et al., 1988; González-Casado et al., 1995). The most 

complete section of the NF complex can be found in the Sierra de los Filabres where it is 

bounded by the FSZ (Fig. 1a,b; Platt et al., 1984).  

The Nevado-Filabride complex primarily shows a succession of deformation phases 

during exhumation (here labelled D2 and D3) interpreted as a continuum of strain 

localization, with a progressive evolution from the ductile to the brittle D4 regime across the 

frictional-viscous transition (Augier et al., 2005a; Handy et al., 2007). While the burial D1 

stage is only preserved in the core of the NF complex, D2 is characterised by the development 

in most of the NF complex of a generally gently dipping, planar-linear fabric (S2-L2), axial-

planar to F2 folds (Fig. 2a). The S2 foliation carries a strong and penetrative E-W stretching 

lineation (L2) which is more intense toward the major extensional contacts, in particular the 

FSZ, and marked by the progressive disappearance of S0 and S1 features (Augier et al., 2005a; 

Fig. 2a). Kinematic indicators (absent or rare in the core of the complex) also increase near 

the FSZ and indicate an overall top-to-the-west sense of shear (e.g., González-Casado et al., 

1995; Martínez-Martínez et al., 2002).  

The combination of metamorphic petrology and in situ laser 40Ar/39Ar dating on phengite 

(linking time of growth, compositions and P-T conditions; Agard et al., 2002) enabled us to 

identify a detailed P-T-d-t path for the Nevado-Filabride complex (Fig. 2c; Augier et al., 

2005b). Data show an isothermal decompression (at 550°C) from 18-20 kbar for the Bédar-

Macael unit and 14 kbar for the Calar Alto unit down to approximately 3-5 kbar for both units 

at exhumation rates of ~2.8 mm.yr-1.  

 

 

2.3. Shear band (ECC) formation during the D3 stage 
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All previous structures, particularly in the highest part of the NF complex, are affected by 

a late D3 shear cleavage (or ECC; Platt & Vissers, 1980; Platt, 1984) noted C3' hereafter. 

Finite strain and the degree of non-coaxiality increase near the Filabres shear zone (FSZ)  

detachment, where this D3 cleavage is highly pervasive and previous structures are 

overprinted (Fig. 2b). Synthetic, top-to-the west C3' shear bands largely dominate in the field. 

The incentive for our study came from the observation that the spacing of these C3' shear 

bands apparently evolved as a function of the distance to the detachment. 

 In much the same way as D2, the D3 deformation stage shows marked top-to-the-west 

shear sense indicators (Augier et al., 2005a). The relationship between these deformation 

patterns and the regional-scale tectonic setting detailed elsewhere (Augier et al.; 2005a,b; 

Jolivet et al., 2008). Following D2 (22-18 Ma), this D3 stage took place from ~18 Ma to 14 

Ma at pressures of 3-5 kbars for a temperature range of 350-480°C (see Fig. 2d for details), 

and is thought to mark the transition from syn- to post-orogenic exhumation (Jolivet et al., 

2008). This second part of the exhumation shows exhumation rates on the order of 0.6 mm.yr-

1 along a HT-LP gradient of ~60°C.km-1. The transition from ductile to brittle occurred later at 

around 14 Ma. 

The final exhumation, from ~14 to 9 Ma, was constrained by fission-track ages on zircon 

and apatite (Johnson et al., 1997) and accommodated by brittle deformation along the FSZ 

(D4 stage, not studied here; Fig. 2a; Augier et al., 2005a). It was accompanied from 12 to 8 

Ma by the formation of adjacent extensional basins, mostly infilled from the Serravallian-

Tortonian boundary (c. 11.6 Ma) to the Plio-Quaternary, with evidence of syn-tectonic infill 

related to the exhumation of the NF complex. From the late Miocene (c. 8 Ma) onwards, the 

area has been under a roughly NS compression, which refolded the FSZ (and the Filabres 

ridge) into an open to locally overturned anticline (Martinez-Martinez et al., 2002). 
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Overall vertical shortening estimates during D3, though probably not homogeneous 

throughout the rock pile, can be crudely bracketed: since maximum pressure differences 

between samples taken close to the contact and others taken c. 700 m away amount to 0,3-0,5 

kbar (c. 1-1,2 km difference; Augier et al., 2005b), the section investigated here has therefore 

been shortened by a factor of ~ 1,5 at the most. In the absence of constraints for horizontal 

displacement, deformation rates can not be estimated, unfortunately.  

 

 

3. Tracking deformation as a function of the distance to the Filabres shear zone 

 

The increase in the number of C3' shear bands towards the contact is the main focus of 

this paper and is most visible at the scale of the outcrop, i.e. at the meter scale. This is 

consistent with previous reports of a deformation gradient decreasing away from the contact 

in the NF complex down to ~400 m (e.g., Platt et al., 1984).  

To ensure that our report on meter-scale structures was representative of the overall strain 

partitioning and was not omitting deformation from possibly larger structures (see Lister and 

Williams, 1979), foliation strike and dip were systematically measured (for the sake of clarity, 

about half only of the values are plotted on Fig. 3a) and the whole of the area was carefully 

inspected. No larger-scale (i.e., km- or hm-scale) shear bands have been detected on the field, 

either by field inspection or from schistosity variations (see Fig. 3) . Only few late brittle 

faults, typically 50 m long, crosscut the area with an irregular spacing on the order of c. 100-

150 m. 

 

3.1. Outcrop selection 
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Twenty-two outcrops were selected carefully at various distances to the shear zone (Fig. 

3c; Table 1). The best exposures are found along the roughly E-W Filabres ridge (Fig. 3d), 

which exhibits an almost flat-lying, gently N- to NE-dipping schistosity with well aligned EW-

trending lineations throughout, and provides excellent XZ exposures. In order to outline the main 

correlation trends in the data, our sites are grouped according to five zones, I to V, for 

distances comprised between > 500 m, 500-250 m, 250-100 m, 100-30 m and 30-0m, 

respectively. 

Distances to the contact between the NF and Alpujarride units were directly measured on 

foot for sites 4-7 (e.g., Fig. 4a). For other sites, the distance was calculated by interpolating 

the geometry of the detachment (isohypses from the detachment are shown on Fig 3c). This 

geostatistical approach (using ArcGIS software; e.g., Isaaks and Srivastava, 1989) allows to 

predict spatial patterns of variables and attribute values at non sampled locations, assuming 

here (1) the most simple interpolation for the detachment between the various Alpujarride 

klippens of the area (Fig. 1) and (2) that the detachment is involved in a gentle, roughly E-W 

anticline parallel to the Filabres ridge (whose axial trace fits the dome axis; see Figs. 1, 3). 

Distances and corresponding uncertainties are listed in Table 1.  

The twenty-two sites were chosen because of their representative average density of shear 

bands (i.e., with respect to outcrops a few tens of meters apart). The choice of a representative 

area is critical and requires further justification. This was only done after a very careful 

inspection of several possible XZ exposures. Areas were finally chosen so that (1) their 

dimensions would be larger than the average length of the shear bands, (2) the shear band 

density looked "average" with respect to other outcrops and (3) as homogeneous as possible. 

Schrank et al. (2008) have proposed an elegant way, using auto-correlation techniques (their 

Fig. 2a and Appendix), to ensure the representativeness of the areas chosen. Their method is 

unfortunately not applicable to our outcrops, since the deflection of initial markers can not be 
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assessed reliably from image analysis of field photographs. Our method was nevertheless 

validated by both the internal consistency of the results and the similar values of the shear 

band density obtained for neighbouring sites (see below). In any case, one should be aware 

that none of these methods unfortunately prevents from choosing "wrong" outcrops (i.e., 

irrelevant outcrops which would not be representative). 

All chosen surfaces correspond to XZ planes with minimum vegetation: they are parallel 

to the L2-3 lineation and perpendicular to the S2 and C3' shear bands. Note, incidentally, that 

mostly synthetic C3' shear bands are visible in the field. Most measurements were performed 

across E-W vertical cliffs, with the strikes of S2 and C3' thus close to horizontal. The only 

exception is for sites 4a,b, where S2 and C3' were overturned by the late Miocene compression 

and are now close to vertical (Jolivet et al., 2006; Do Couto et al., 2010). We finally stress 

that the garnet-chloritoid-phengite-chlorite assemblage is well-preserved in all outcrops (Figs. 

4b, 6c). 

 

3.2. Meter-scale deformation patterns 

 

We briefly describe in the following the evolution of the style of deformation at the meter 

scale at increasing distances from the contact (see Figs. 4,5):  

- Zone V (e.g., sites 6, 7A: < 30 m away from the contact): 

This domain is represented by extremely deformed phyllonites (mylonites to, locally, 

ultramylonites) with shear bands < cm on average. This intense deformation precludes 

measuring reliably shear band dimensions and angles, and only the characteristic shape ratios 

of the shear domains (see § 4.1) were measured. 

- Zone IV (e.g., sites 4A-B: 50 m away from the contact; Fig. 4a):  
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C3’ shear bands dominate and are completely transecting the S2, only preserved in the 

microlithons and appear as the main macroscopic fabric of the outcrops. These structures are 

strongly pervasive and homogeneous (Fig. 4b-e). Shear bands longer than 0,5-1 m were not 

found (Fig. 4b), nor any evidence for a relative chronology amongst them. D3 deformation is 

also intense at the cm-mm scale (Fig. 4f), yet exclusively in sites located < ~100m below the 

Filabres shear zone. Structures are very similar for site 4C (70 m away from the contact; zone 

IV; Fig. 4g,h), with less impressive C3’ bands however, which is probably due to site 4C 

surfaces being vertical and less weathered than those of sites 4A,B.  

- Zone III (e.g., sites 3A-B: 145 and 180 m away from the contact, respectively, Figs. 

5a,b):  

These outcrops show larger-scale shear bands partly anastomosing (Fig. 5a). Unlike zone 

IV, cm-scale and smaller shear bands are not observed. The minimum spacing between the 

shear bands is on the order of 4-5 cm. Early cm-scale veins formed during D1 are flattened 

and folded. The shear band spacing may in part be controlled by the late Qtz-Cc+-Chl veins 

(right side of Fig. 5a), which formed between D2 and D3. In site 3B, which is slightly farther 

away from the contact but also more quartz-rich than 3A (compare Fig. 5a,b), fewer shear 

bands are found. 

- Zone II (e.g., sites 2A-C, > 250 m away from the contact; Figs. 5c-e): 

The five sites of this zone were chosen at distances 10-100 m apart on the field. Once 

again shear bands are rather evenly distributed, with a characteristic spacing of ~30-50 cm. 

More greenschist veins are found in site 2A. Site 2C is cut across by a somewhat larger shear 

band than the other two sites on which shear band cleavages were measured. 

- Zone I (e.g., site 1: ~700 m away from the contact; Fig. 5f): 

At such distances, D3 deformation is almost unnoticed, with a dominant, conspicuous D2 

foliation. There are so few C3’ shear bands that the choice of a representative area is difficult. 
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Spacing of the shear bands is typically on the m-scale and the representative area extends over 

more than 10 m2. The angle between shear band cleavage and S2, α (Fig. 6a), was clearly 

lower than elsewhere. 

 

 

4. Field measurement procedure 

 

4.1. Data collection  

 

More than 2000 objects were measured, focusing on shear bands and shear domains, 

during two field data collection campaigns. Measurements were performed as shown on 

Figure 6a and, for the sake of consistency, by the same team for all outcrops. 

C3' shear band length, width, and angle with the adjacent S2 schistosity (α) were 

systematically measured for sixteen outcrops (Table 1; Fig. 6a). The surface occupancy of the 

shear bands, referred to below as the shear band density (SBD, which varies between 0 and 

1), is defined as: 

 δ =SBD = wi .L
c

i

Si=1

n

∑ ,  

where wi and Lc
i represent the width and length of each shear band, respectively, and S 

represents the delineated surface area over which shear bands were exhaustively measured. 

Given the increase in shear band density, smaller and smaller S surfaces were measured when 

approaching the detachment (Table 1). 

Areas were delineated by crosses (Figs. 6a,b), major shear bands were numbered and then 

all the minor shear bands in between were measured. The total surface, S, was estimated in 
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the laboratory by image analysis of field photographs taken perpendicular to the outcrop, so 

that results are fraught with a maximum 5% uncertainty. 

Shear bands are commonly linear or slightly curvilinear, so that their length can be 

measured easily and reliably. Shear band width was taken as the maximum width along the 

shear band (as in Schrank et al., 2008), but is apparently almost constant along strike. Width 

was measured only for sites 1-4, during our first campaign. Indeed, measuring widths is far 

less reliable than lengths, since the width of the shear bands can be widened artificially by 

vegetation or surface weathering (especially for sites 4AB, where both shear bands and the 

schistosity are verticalized). Another potential bias comes from very small shear bands, for 

which measurement uncertainty is huge: a default shear band width of 1mm was 

systematically given to them. 

Several corrections were thus applied to derive a 'best', plausible thickness-length 

relationship (see below and the inset of Fig.7b). Average results by site and zone (I to V) are 

shown in Table 1. In order to minimize the impact of this correction, we finally choose to 

calculate SBD using the average of all corrections performed (see below). 

Shear domains (which, at the cm-scale, can be thought of 'microlithons') were measured 

with a particular care to avoid welded veins. These shear domains represent areas, generally 

sandwiched between the C3' shear bands, where S2 is deflected and boudinaged in places 

(Fig. 6a). They can be approximated by roughly elliptical, lens-shaped domains, with long 

(Lp
i) and short (li) axes, allowing determination of their aspect ratio (R=Lp

i/li). They can 

generally be thought of belonging to C-S structures, but can also correspond to boudinaged 

sections of schistosed domains lacking shear bands. 

 

 

4.2. Internal consistency 
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Our measurement procedure thus provides a way to evaluate the consistency of the 

measurements since not all of them are independent, as shown in Fig. 6d-f. One should expect 

the following correlations: 

 (1) There is an obvious relationship between the average length of the shear bands ( Lc ) 

and the average shear domain length ( Lp ): Lp = Lc .cosα  (Fig. 6d). 

 (2) Similarly, the shear band density (SBD) can be predicted to vary as a function of 1
Lc

 

(or 1
Lp

, Fig. 6e) since: 

δ = SBD = wi .L
c

i

Si=1

n

∑  = n.w.Lc , where n , w , Lc are the average number, width and length 

of the shear bands, respectively. 

Note that n  can be expressed as n =
S

Lc .d
 , where d  is the average spacing between the 

shear bands, which is equal to Lp .sinα  (Fig. 6e).  

Finally, substituting for Lp = Lc .cosα , the shear band density rewrites as: 

δ = SBD = w
Lc .cosα.sinα

 , and is therefore inversely proportional to 1
Lc

. 

 

(3) Given our geometrical description, α can be approximated by α* through the 

following relationship (Fig. 6f): α* = arctan x/R, where x is proportional to the shear domain 

width, l. Note that the value of α should decrease with increasing R (i.e., flatter shape ratios; 

as in Ramsay and Graham, 1970), and that x ≥ 1/2. 

 

 

5. Discussion 
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5.1. Major trends of the dataset 

 

The distributions of shear band length and of C3'-S2 angles are shown in figure 7a for 

zones II, III and IV. Small shear bands (length < 5 cm) are only found in zone IV and 

intermediate ones (5-25 cm) are preferentially represented in zone III. C3'-S2 angles give 

average values for zones IV, III and II, respectively, of 28.8° (thus close to the 29° reported 

by Platt and Vissers, 1980 on 75 measurements), 23.9° and 27.1°. These angular values show 

a strong dispersion, however, with several peaks (zone IV) or none (zones II and III). All 

three zones evidence a common peak near 33 ±2°, but this peak is mostly apparent for zone 

IV (Fig. 7a). 

We focus in the following on average values per site (Table 1). The evolution of the shear 

band density (SBD) is shown in figure 7b. Our data shows (1) that SBD values are 

comparable for sites taken next to each other and (2) reveals a clear trend of increasing SBD 

when nearing the detachment (whether considering raw data or the average of all corrections 

performed for shear band width). While the trend is unambiguous, the correlations vary 

strongly, however, depending on the type of correction chosen for the relationship between 

shear band width and length (inset, Fig. 7b). The data with the average correction is best fitted 

by an exponential curve (or, at least at distances < 150 m from the contact, by a cubic 

polynomial; Fig. 7b):   

  SBD=12.5*exp-0.01d + 0.55   (1), 

 where d is the distance expressed in meters. 

A marked difference is observed for sites 5, which correspond to significantly more 

quartz-rich PermoTriassic protoliths and fall off the trend to lower SBD values (Table 1). 
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The evolution of the dimension of the shear domains is presented in Figure 8. There is a 

decrease of shear domain dimensions: the closer to the detachment the smaller the ellipses, 

whether considering median, minimum or maximum values (Fig. 8a-c). No difference, this 

time, is observed for sites 5. Despite some scatter in the measurements, the regression fit for 

Lp  values is close to the expected value Lc .cosα   (Fig. 9a). Figure 9b further demonstrates 

the consistency of our measurements by showing the inverse correlation between SBD and 

1
Lc

 (or 1
Lp

). 

Other variations in aspect ratio of the shear domains (R) and C3'-S2 angles are shown in 

Fig. 10. There are strong variations in R as a function of the distance to the detachment (Fig. 

10a). This is also best seen in the log-log plot by zone (Fig. 10a, inset). One could either 

interpret figure 10a as an overall decrease of the R value with increasing strain (when getting 

closer to the contact), with some sites falling off the trend (the oscillation being perhaps due 

to subtle protolith changes), or as no trend at all. More data are clearly needed. In any case, 

there is likely one outlier value (site 3B, which is actually more quartz-rich). 

There is a general increase in the C3'-S2 angle values, α, when approaching the contact, 

across zones I to V (Fig. 10b). One exception is zone II, which in addition shows a strong 

scatter. As expected, α decreases with increasing R (Fig. 10c).  

Figure 10c also shows that the dependency of α to R can be roughly fitted by an Arctan 

function, as suggested in figure 6f. Values of α* were thus calculated by iteration for several 

values of x (Fig. 6f) so as to minimize the difference between α and α* for all sites. The best 

fit (Figs. 10b,c) is found for x=0.84. Comparison between the two values for each site also 

allows to see which ones are rounder than the average (α > α*; e.g., sites 4 and 3B; Figs. 

10b,c), or flatter (α < α*; e.g., sites 1 and "2-3"). Finally, we note that our values for α and R 
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plot in the field defined as simple shear by Marques et al. (2007), which confirms our earlier 

statement that the D3 event is dominated by deformation along the Filabres shear zone. 

 

 

5.2. Increase of strain intensity towards the contact 

 

This study demonstrates that, for a strongly anisotropic metapelitic material, there are 

clear correlations as a function of the distance to the detachment of (1) the shear band density 

(SBD; Fig. 7) and of (2) the characteristic size of the shear band domains (Fig. 8). This is 

further supported by the internal consistency of our measurements, as shown by the 

correlations between Lc and Lp (Fig. 9a), between SBD and 1
Lc

 (Fig. 9b),  or by the 

correlation between α C – S and R (Fig. 10b,c). Contrary to the deformation of homogeneous, 

isotropic protoliths such as granites (e.g., Dutruge and Burg, 1997; their figure 7), no 

periodicity in shear band development was recognized away from the detachment itself (nor 

away from the larger, individual shear bands measured in the various sites). 

This densification of the deformation is schematically depicted in figure 11a: idealized 

boxes for each zone (I to V) emphasize the trend documented in this study. In the absence of 

larger, km- or hm-scale deformation patterns formed during D3 on the one hand, and in the 

absence of other modes of internal deformation of the rock on the other hand (e.g., obvious 

crystalline creep evidenced by quartz ribbons, strong boudinage), this SBD pattern (Fig. 7b) 

can thus be taken as reflecting the overall finite strain for a given outcrop, hereafter noted γ∗ 

(Fig. 11a).  

It is therefore possible to derive an empirical law based on SBD (i.e., equation 1) for the 

shear strain gradient across the nappe stack. This is consistent with the conclusions of Platt et 

al. (1984) on the existence of a gradient away from the FSZ detachment, and may in turn, in 
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principle, be used to evaluate the distance to the contact. This exponential dependency recalls 

the one reported for the Pinet laccolith, Southern France, by Dutruge and Burg (1997), or 

recent correlations found in fault damage zones (e.g., Mitchell and Faulkner, 2009). One 

should keep in mind, however, that the exact dependency of SBD with the distance to the 

detachment depends on the relationship between shear band width and length (Fig. 7b, inset).  

Figure 11b shows schematically how the densification of shear bands, as observed in our 

study area (Figs. 5, 6, 11a) will favor the relative displacement on numerous shear planes and 

thereby induce an increase in the overall finite shear strain γ∗ (despite an increase of α when 

approaching the contact). Note, however, that if significant volume loss and mass transfer 

take place near the contact, this contrast in γ∗ may not be so important since for the same 

apparent angle α, γ∗ will in fact be less in that case (Fig. 11c; Burg and Laurent, 1978). 

 

 

5.3. Distributed shear gradient or progressive strain localization with time ? 

 

We critically discuss below two distinct, possible interpretations of our dataset (Fig. 12), 

which can be viewed as end-member situations: 

(1) one in which shear bands are assumed to form coevally through time in the whole NF 

complex and thus represent the response of these metapelites to a steady-state deformation 

and strain rate gradient through time and space (scenario 1; Fig. 12a; for a discussion on 

mechanical steady state in shear zones, see Handy et al., 2007). If these assumptions hold, the 

shear bands we measured relate to one single tectonic event (D3 stage) and the SBD and our 

correlations can be interpreted in terms of cumulative strain (γ∗) and/or variations in 

deformation rates. The spacing of the shear bands could be internally (eg, by the strongly 
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anisotropic, phyllosilicate-rich rheology; see Le Pourhiet et al., subm.) or externally 

controlled (i.e., by the size and morphology of the greenschist-facies veins). 

 (2) one in which this SBD increase towards the contact in fact corresponds to a 

diachronous, progressive localization of deformation (scenario 2, Fig. 12b): the deformation 

(and strain rate) gradient changed with time so that more and more deformation was taken up 

near the contact and portions located beyond a given distance/depth from it at tn were no 

longer deformed during the next deformation step tn+1 (see the black dots in Fig. 12b). Such a 

progressive localization of the deformation can be expected a) from cooling on exhumation 

(as the P-T-t-deformation history for these rocks suggest: Fig. 2c), b) from a rheological 

weakening near the contact (for example in response to enhanced deformation and fluid 

circulation) and/or c) from a change of boundary conditions and deformation rates. In any 

case, scenario 2 implies that the overall width of the Filabres shear zone effectively decreased 

with time as the rocks were progressively exhumed and deformation became focused in a 

narrower deformation band/volume (as in type II shear zones of Means, 1995; see also 

Herwegh et al., 2008). The comparison between the γ∗ values recorded at various distances 

away from the contact (i.e., finite deformation as deduced from SBD; Fig. 11a) cannot be 

used as a straightforward rheological proxy in this case, since deformation during the D3 

stage did not span the same time interval at the various sites. 

In order to assess which scenario prevails, radiometric 40Ar/39Ar ages from four Permo-

Triassic samples of the upper part or the Calar Alto unit (Augier et al., 2005b), located at 

various distances below the Filabres shear zone, are shown in figure 12c. This plot shows an 

apparent younging of c. 2 Ma towards the contact in zones IV-V, suggesting that the D3 stage 

is better recorded close to the contact. This age pattern could suggest that deformation was 

active later closer to the contact (in support of scenario 2), but could also be explained by the 

fact that less reequilibration/recrystallization occurred in the less deformed parts, away from 
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the contact (as in scenario 1). These two scenarii are in fact not mutually incompatible and 

deformation patterns may well correspond to a combination of them. 

Another indication in support of scenario 2, however, comes from the evolution of 

angles. At first sight, there is a rather surprising increase of α towards the detachment (and a 

correlative decrease of R; Figs. 7a, 10a,b), since α should decrease with increasing strain (as 

shown, in a first approximation, by the following dependency:  γ=2/tan2α; Ramsay and 

Graham, 1970). This increase in α, best seen in the marked peak at 32° (Fig. 7a, zone IV), is 

readily understood, however, if deformation was progressively localised with time, with more 

brittle deformation near the contact steepening the shear bands in zones IV and V. As the 

upper part of the nappe stack evolved towards cooler temperature, D3 deformation indeed 

probably evolved into somewhat more brittle conditions before entering the brittle D4 

stage along the FSZ (Augier et al., 2005a; see also Mehl et al., 2005). Increasing angular 

values towards the contact could also in part be the result of densifying the shear band 

network and increasing pressure-solution and volume loss (since this would preferentially 

remove the deflected parts of the S2 near the C3' planes and visually steepen the α angle; Fig. 

11c). 

The above discussion suggests that scenario 2 (Fig. 12b) prevailed over scenario 1 (Fig. 

12a), although their respective contributions can not be precisely assessed at present. If this 

interpretation is correct, the network of shear bands narrowed with time (e.g., Ben-Zion and 

Sammis, 2003; as opposed to network widening: e.g., Schrank et al., 2008), indicating that 

significant mechanical softening occurred near the FSZ detachment.  

 

 

6. Concluding remarks  
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Our study documents the spatial distribution of extensional crenulation cleavage and 

shear band networks (Platt, 1979; Platt & Vissers, 1980; Carreras, 2001; Fusseis et al., 2006) 

formed during a single, greenschist facies deformation episode (D3) below a regional-scale 

detachment (i.e., the Filabres shear zone; Platt et al., 1984; García-Dueñas et al., 1988). Shear 

band density (SBD), as well as the shear angles and the size of shear domains, in these 

strongly anisotropic, homogeneous and mechanically weak metapelites, all evidence clear 

trends as a function of the distance to this major contact. In particular, SBD shows an 

exponential decrease away from the contact.  

The observed patterns suggest that, at least as a first approximation, SBD is 

representative of the finite shear strain gradient accompanying the D3 stage (γ∗, Fig. 11a). 

Yet, the comparison of tectonic and radiometric age patterns (Fig. 12c), as well as the 

steepening of α angles near the contact (Fig. 7a, zone IV), suggest that finite deformation was 

not fully coeval throughout the rock pile. Part of the finite strain gradient γ∗ recovered here is 

thus probably diachronous and points to a narrowing of the shear band network with time 

during D3. Our results therefore support the view that deformation got progressively localised 

with time in the vicinity of the contact (as for type II shear zones of Means, 1995), most likely 

as a result of temperature decrease on exhumation, as rocks approached the frictional-to-

viscous transition (Handy et al., 2007; and possibly, near the contact, as a result of a change in 

deformation rates too; e.g., White et al., 1980). In-depth additional microscopic work and in-

situ laser dating of specific phyllosilicates (e.g., Fig. 2d; Augier et al., 2005b) is now needed 

to unravel the rheological evolution of some individual shear bands over time (i.e., with 

increasing deformation) and determine whether and how they did grow and rotate. 

Future research should aim at strengthening these conclusions in other settings and their 

applicability to similar, mechanically weak rock-types. In principle, this could help constrain 

the amount of deformation and/or the distance to the contact (which may prove especially 
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useful if this contact was later eroded). Microscopic measurements of porphyroblast shape 

ratios (e.g., Dutruge and Burg, 1997) or grain size reduction (Stipp and Tullis, 2003; Gueydan 

et al., 2005) could also help constrain deformation mechanisms and how much deformation is 

taken up, in these very phyllosilicate-rich rocks, by sliding along shear bands v. grain 

boundary sliding or crystal dislocation creep (e.g., White et al., 1980; Rosenberg and Stünitz, 

2003; Song and Ree, 2007). Better assessing the dependency between progressive 

deformation and shear band formation will, in any case, be an important step towards 

estimating rheological parameters and strain rates (e.g., Fusseis and Handy, 2008; Jessell et 

al., 2009) for these critical rocks. 
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Figure captions 
 

 

Table 1 

Summary of average values for measurements performed on the field, listed by site and zone (first two columns). 

The distance to the detachment is indicated (Dist.).  

Different estimates of the average shear band density per site (SBD), taken here as the surface occupancy of a 

given area (column 'Surf.'), are given here (and in Fig. 7b): SBD° corresponds to raw data, whereas SBD1-3 are 

corrected by a length-width relationship (see text and the inset of Fig. 7b). 'average' is the average of these four 

estimates. 

Note that the number of measurements for shear bands (nSB), shear domains (nSD), uncertainties related on the 

distance to the detachment (+-d), the surface considered on each site (Surf.) and GPS coordinates are given in the 

far right. 

Other abbreviations: alpha correspond to measured angles between C3' and S2 given in degrees (alpha* 

corresponds to a fitted value: see text and Fig. 6f for details); Lmed, mean: median and mean values for shear 

band length; Ratios: R: shape ratio of shear band domains (L/l= length over width); Sigm: standard deviation of 

R values.  

 

Fig. 1 

Location of the studied area: 

(a) at the western termination of the Alpine belt, within the Betic-Rif orogen 

(b) in the Nevado-Filabride complex of the internal zones of the Betic Cordilleras, east of the Sierra Nevada. 

(c) NW of the Mio-Pliocene Tabernas sedimentary basin. Boxes correspond to maps shown in Fig. 3a. Stretching 

lineations associated with the exhumation of the Nevado-Filabride and Alpujarride units are compiled from the 

litterature (see references in Augier et al., 2005a). Permo-Triassic protoliths of the Nevado-Filabride units 

previously dated by Augier et al. (2005b) are also shown: samples 9,7,4 and 8 are located at increasing distances 

from the contact. 

 

Fig. 2 

(a) Location of C3' shear bands (or extensional crenulation cleavage; Platt and Vissers, 1980; Plat, 1984) in the 

nappe stack and aim of this study 

(b) Schematic meter-scale tectonic patterns showing the evolution (through time and space) of deformation: the 

dominant, flat-lying schistosity is transposed into a new planar anisotropy defined by C3' shear bands. 

(c) P-T-time-deformation constraints for these Nevado-Filabride units (after Augier et al., 2005b) 

(d) Radiometric age constraints for D2 (S2) and D3 (C3') deformation events, as seen from samples CA9 

(located in Fig. 1c; Augier et al., 2005b) 

 

Fig. 3 
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(a-b) Kilometer-scale patterns of the S2 foliation and D(2-)3 stretching lineations. Sites (given as numbers) were 

measurements were performed are indicated (see also Table 1). White lines: interpolated isohypse distances to 

the main contact (see text for details) 

(c) Schematic section showing how distances to the main tectonic contact (i.e., the detachment separating the 

Alpujarride and Nevado-Filabride complexes) were estimated. See § 3.1 for details. 

(d) View across the Filabres ridge looking north, on the road between Tabernas and Velefique, showing the 

location of the XZ exposures selected for measurements. 

 

Fig. 4 

(a) View across the Filabres detachment in the southern part of the study area (sites 4A,B; Fig. 3a). The Filabres 

detachment is visible below the basal unconformity of the Mio-Pliocene Tabernas basin (see also Platt et al., 

1984, Fig. 6). Sites 4a,B are located 50 m below the detachment. Sample CA9 (Figs. 1,12) was collected in the 

upper, Permo-Triassic part (PTr) of the Nevado-Filabride unit. ALP: Alpujarride unit; NF: Nevado-Filabride 

unit; Pz: Paleozoic. 

(b-h) Outcrop-scale views of deformation patterns across XZ sections.  

(b-c) Typical aspect of shear bands around sites 4A,B: penetrative shear bands, or extensional crenulation 

cleavage crop out over distances several tens of meter thick.  

(d-e) Distributed, cm-scale shear bands deflecting and partly cutting across the earlier S2 schistosity in sites 4A 

and B, respectively. 

(f) Microscopic, thin-section view (in plane polarized light) of a representative sample from site 4B. In addition 

to the shear bands, note the presence of boudinaged chloritoid crystals, pressure shadows around garnet and 

highly deformed quartz ribbons. 

(g-h) Distributed, cm-scale shear bands in site 4C. 

 

Fig. 5 

Outcrop-scale views of deformation patterns across XZ sections at increasing distances from the Filabres 

detachment (sites 3, 2 and 1, respectively). Arrows point to some of the markers used to delineate the surface 

area (white crosses) and label larger shear bands (white dots). 

(a) Site 3A, cross-cut by a few meter-long and predominantly 20-40 cm long shear bands: see the drawing of Fig. 

6b.  

(b) Meter-scale view of site 3B. This site is slightly more heterogeneous than site 3A in terms of lithology: 

Paleozoic metapelites with more quartz-rich portions crop out as stretched limbs of larger-scale recumbent folds 

in herited from stages D1 (and partly D2). 

(c-e) Pictures of sites 2. Note the presence of a somewhat larger, yet more localized shear band network in site 

2C. 

(f) Site 1A: only few D3 shear bands are recognized. 

 

Fig. 6 

(a) Measurement strategy: α, l, Lc and Lp were systematically measured on the field (average values are given in 

Table 1; all measures are available on request). Thicknesses (t) were only measured for sites 1-4. The shear band 
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density, δ, is taken as the surface occupancy (i.e., lengths times thicknesses) of the shear bands over the 

measured area. 

(b) Sketch illustrating how measurements were performed, after carefully drawing to scale the outcrop and 

numbering the major shear bands. 

(c) Close-up view of the upper right corner of site 3A. Garnet and chloritoid crystals are readily visible (compare 

with Fig. 4e from site 4B). 

(d-f) Internal consistency in the measurements due to geometrical relationships. See text (§ 4.2) for details 

 

Fig. 7 

(a) Histograms of the measurements of shear band lengths and C3'-S2 angles, grouped by zone. See text for 

discussion. 

(b) Plots of shear band density as a function of the distance to the detachment, for different width-length 

relationships (see Table 1 and inset). The average of all values (grey squares) is fitted by an exponential or a 

power law function (at least for zones II-IV; see text). Inset: width-length relationship for shear bands from sites 

1-4. A general trend is noticeable but there is considerable scatter.  

 

Fig. 8 

Plot of median, minimum and maximum lengths of shear domains, respectively (Med., Min., Max.), as a 

function of the distance to the detachment. 

 

Fig. 9 

(a) Plot of median lengths of shear bands and shear domains, respectively (Lc, Lp), as a function of the distance 

to the detachment. Despite the scattering, regression lines for each set are shown. The dotted line, which 

corresponds to the regression line for Lc times the cosinus of the average angular value of all sites, lies close to 

the regression line for Lp as expected (Fig. 6d). 

(b) Plot of the average shear band density (Fig. 7b) as a function of median lengths of shear bands and shear 

domains (Lc, Lp). As expected, this relationship trends as an hyperbolic function (see Fig. 6e). 

 

Fig. 10 

(a) Evolution of average shape ratio values, R, per site as a function of the distance to the detachement. Possible 

trends are indicated, yet most values plot between 2.9 and 3.4. Table 1 also points to large deviations. Inset: 

further insights are provided by variations per zone. 

(b) Evolution of average angular values per site (α) as a function of the distance to the detachement. For α*, see 

Figs. 10c and 6f. 

(c) Evolution of average angular values per site (α) versus average shape ratio values (R). Values of α* 

(α*=arctan x/R, Fig. 6f) were calculated by iteration for several values of x (Fig. 6f) so as to minimize the 

difference between α and α* for all sites. 

 

Fig. 11 
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(a) Summary of observations: schematic sketches depicting deformation patterns throughout zones I-V (boxes) 

and evolution of the shear band density (SBD) as a function of the distance to the main tectonic contact (Fig. 7b). 

This SBD pattern reflects the finite shear strain (γ*) for a given outcrop for the D3 stage. See text for discussion. 

(b) Simple sketches illustrating how the densification of shear band network will result, through the cumulative 

displacement on each shear band (and even if α is equal in both cases), in an increase of the finite shear strain γ*. 

Line markers AB (are taken as representing the initial S2 schistosity) are deflected to A'B' for reference. 

(c) In the case of simple shear accompanied by significant some volume loss, the increase in finite shear strain 

(γ*) seen in Fig. 11b will be reduced.  

 

Fig. 12 

Two totally different interpretations may account for the evolution of shear band densities (SBD) throughout the 

Nevado-Filabride units shown in Figs. 7b and 11a: 

(a) shear bands formed coevally through time in the whole nappe stack and thus represent the response of this 

nappe stack to a constant deformation gradient through time and space 

(b) the SBD increase towards the contact corresponds to a diachronous, progressive localization of deformation, 

as a result of cooling on exhumation and/or of rheological weakening near the contact (or a change in 

deformation velocities).  

(c) Plot of radiometric 40Ar/39Ar ages from four Permo-Triassic samples of the upper part or the Calar Alto unit, 

located at various distances below the Filabres shear zone (see Fig. 1c; Augier et al., 2005). This plot shows that 

the D3 stage is better recorded close to the contact, in what corresponds to zones IV-V. This age pattern indicates 

that deformation was active later closer to the contact, and thus rather supports scenario 2 (Fig. 12b). See text for 

details.  
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