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[1] Interfaces between contacting rocks of the Earth’s crust are shown to be unstable and
corrugating and develop roughness at various scales when submitted to nonhydrostatic
stress. This instability may occur in various geological settings as long as a coherent
deformation of the interface is allowed and the bodies that the interface separates have
different material properties (i.e., viscosity, density, or elastic moduli). Relevant examples
include fault planes, dissolution interfaces, or grain boundaries. Performing a two‐
dimensional linear stability analysis, we consider two cases: one solid in contact with a
viscous layer and two solids separated by a thin viscous layer. In both cases either shear
and/or normal loads are imposed on the interface and thermodynamical conditions for
the initiation of roughening are established. Applied on several geological systems such as
grain contacts and fault planes, we propose that our analysis can explain how complex
patterns may emerge at rock‐rock interfaces. Finally, we provide an analysis of the
evolution of the static friction coefficient along sheared interfaces. The evolution is shown
to depend solely on Poisson’s ratio of the solid and the ratio of the shear and
compressional stresses along the interface.

Citation: Angheluta, L., J. Mathiesen, C. Misbah, and F. Renard (2010), Morphological instabilities of stressed and reactive
geological interfaces, J. Geophys. Res., 115, B06406, doi:10.1029/2009JB006880.

1. Introduction

[2] In the rocks of the Earth’s crust, interfaces between
stressed solids with different material properties are ubiq-
uitous at all scales; grain‐grain contacts, interfaces between
sedimentary layers, dissolution interfaces (i.e., pressure
solution seams and stylolites), and fault mirrors are well‐
known examples. It is also known, now for more than
30 years in the geophysics community, that solid‐solid or
solid‐liquid interfaces can become morphologically unstable
when submitted to deviatoric stresses. Such instability has
been described theoretically for coherent grain‐grain con-
tacts [Fletcher, 1973], for liquid‐crystals interfaces [Misbah
et al., 2004], or for stylolites [Schmittbuhl et al., 2004;
Koehn et al., 2007]; see also Figure 1. The nonequilibrium
thermodynamics of mass transport by intracrystalline dif-
fusion under nonhydrostatic stress has been considered in a
number of works [Shimizu, 1997; Ghoussoub and Leroy,
2001]. Moreover, roughness instability of stressed solids
has also been observed in laboratory experiments on salt

crystals [den Brok and Morel, 2001; Dysthe et al., 2003; de
Meer et al., 2005; Bisschop and Dysthe, 2006; van Noort et
al., 2007] and in helium crystals [Torii and Balibar, 1992].
[3] In the physics community, the morphological stability

of material interfaces is also widely studied. It has been
proposed that the interface between a solid and its melt is
unstable when the solid is nonhydrostatically loaded [Asaro
and Tiller, 1972; Grinfeld, 1986, 1992;Misbah et al., 2004].
The surface of a solid in contact with its solution corrugates
and develops parallel grooves when the solid is stressed.
The instability is controlled by a competition between
mechanical forces that favor a roughening of the interface
and a stabilizing force due to surface tension. In cases of
relatively low surface tension, the grooves may in a non-
linear regime concentrate large stresses and lead to crack
nucleation [Yang and Srolovitz, 1993; Kassner and Misbah,
1994]. Obviously, the interface grooves and micro‐crack
formation can strongly modify the mechanical properties of
the solid. More recently, it has been shown that for solid‐
solid interfaces a similar instability is triggered by a finite
jump in the free energy density across the interface and that
the instability leads to the formation of fingerlike structures
aligned with the principal direction of compressive stresses
[Angheluta et al., 2008]. The instability turns out to be very
sensitive to small variations in density and elastic para-
meters (in particular Poisson’s ratio) across the interface of
the two solids [Angheluta et al., 2009].
[4] A rich morphology or roughness, universal to most

fracture surfaces, is also observed on fault planes. The
characteristic scale‐free roughness of faults is often ascribed
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to mechanical abrasion and fault branching following from
the cycles of abrupt slip and arrest [Power et al., 1987,
1988; Ben Zion and Sammis, 2003; Renard et al., 2006;
Sagy et al., 2007]. Moreover, along some faults a slow
aseismic creep is observed (for a review on slow earth-
quakes, see Schwartz and Rokosky [2007]; for a review on
postseismic slip, see Pritchard and Simons [2006]), indi-
cating that the motion of the fault somehow overcomes the
roughness of asperities on the fault surface. One possible
explanation for this nontrivial rheology could be the pres-
ence of a stress‐controlled dissolution‐precipitation alter-
ation of the contact surface. In general, reactive fluids are
present at the fault plane and act as a medium that accom-
modates the dissolution of asperities in regions of high stress
and possible precipitation in regions of low stress [Gratier et
al., 2003]. The dissolution‐precipitation processes may
modify the morphology and may invoke an effective creep
deformation where the external loading is dissipated through
small‐scale alteration. Finally, such processes, when oc-
curring at the grain scale, may have an effect on the atten-
uation of seismic waves [Ricard et al., 2009].
[5] We shall here consider geological systems where mass

diffuses along a sharp interface by dissolution‐precipitation

or other transport mechanisms. The rate of mass transfer is
determined from the chemical potential of a single soluble
component. We consider two‐dimensional (2‐D) model
systems (see Figure 2) composed of either a linear elastic
solid in contact with a viscous liquid or two solid bodies
separated by a thin viscous interface. Stresses applied to
both types of systems far away from the interface give rise
to morphological alterations at the surface(s) of the solid
phase(s). In the solid‐liquid system, one elastic solid occu-
pies the lower region y < h(x, t), where h(x, t) represents the
interface profile as shown in Figure 2 and is in contact with
an incompressible fluid extending over the upper region.
Both model cases are analyzed below using various
boundary conditions. When two solids are in contact
through a thin fluid film we impose a normal load that
balances the hydrostatic fluid pressure at the interface. For a
static fluid, the limit of zero thickness for the fluid layer is
well defined and, in that limit, the effect of fluid is through
the force balance conditions at the interface. In the case of a
liquid‐solid interface, we study the nonequilibrium response
due to a uniform shear stress t0 and compressional load s0.
In the absence of applied forces, the solid is assumed to be
in chemical and mechanical equilibrium with a fluid phase
at hydrostatic pressure P0.
[6] We perform a stability analysis in 2‐D by first cal-

culating the chemical potential along a flat interface in a
mechanically loaded system. Then we deform the interface
(keeping the system loaded) by a small size perturbation and
calculate by an expansion in the height the corresponding
change in chemical potential. Finally, based on the chemical
potential we derive amplitude equations that determine if anFigure 1. Geological rough interfaces. (a and b) Fault sur-

face in cherts showing small‐scale striations (Corona
Heights Fault, San Francisco, California). (a) Coin or
(b) pen are shown for scales. (c) Stylolite interface in
marl from the Kimmeridgian limestones in the Paris Basin.
(d) Three‐dimensional view of a stylolite in limestone (coin
for scale), Northern Israel. (e) Grain‐grains rough interface
in a limestone from Mons, Belgium.

Figure 2. Model setup for geological interfaces. Two
materials, with different properties, either both elastic with
different parameters (elastic, density) or one elastic solid
and one viscous layer. This latter setup could correspond to
a fault zone, with a viscoelastic core and an elastic damaged
zone. A compressional or shear force is applied at the margins
in the vertical direction.Wewill consider several cases: either
the interface has a negligible thickness (corresponding to e.g.,
a fracture, dissolution seam, grain boundary) or the interface
has a finite thickness and contains a viscous material (e.g.,
stylolites or a fault zone).
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instability is thermodynamically favored. Such an analysis
provides a thermodynamic criteria for the development of
roughness or for the flattening of the interface.

2. Chemical Potential of a Stressed Interface

[7] When a stressed solid is in contact with a saturated
solution, the change in chemical potential at the interface
equals the work required to move a soluble component from
a stressed configuration to a hydrostatic configuration
[Paterson, 1973; Sekerka and Cahn, 2004]

�½x; hðx; tÞ� ¼ Fðx; hðx; tÞÞV0 � �nn½x; hðx; tÞ�ðV � V0Þ þ ��V0;

ð1Þ

where g is the surface tension and h(x, t) is the interface
height or the vertical coordinate on Figure 2. The curvature
is taken to be positive for a concave interface � = −h″(1 +
h′2)−3/2, where h′ = ∂xh(x, t). V − V0 is the change in molar
volume across the interface. For simplicity, we assume that
at equilibrium the component in the solid phase has the
same molar volume V0 as in the fluid phase. Thus, in the
stressed configuration the molar volume changes due to
elastic volumetric expansion or contraction, i.e., V = V0(1 +
�kk), where �kk is the trace of the elastic strains (summation
over repeating indices is implied). F is the Helmholtz free
energy per unit volume, and snn is the normal component of
the stress vector. For a free surface snn = 0, while if the
surface is in contact with a fluid (gas, aqueous liquid, melt),
then snn = −p with p being the hydrostatic pressure in the
fluid.
[8] The surface gradients in the chemical potential pro-

duce a drift of surface atoms with a flux given by Mullins
[1957]

J ¼ � Ds

kTV0

@�

@s
; ð2Þ

where Ds is the surface diffusion coefficient and kT is the
Boltzmann’s constant times temperature and s is the inter-
facial arc length. Note here that, depending on the system,
Ds could represent diffusion along the solid surface (Coble
creep) or along a thin water film located at the interface
(dissolution precipitation creep); in both cases the existence
of an instability does not depend on the transport mecha-
nism [Misbah et al., 2004], but the kinetics of the process
does. The divergence of the mass flux gives the change in
the number of atoms per unit area per unit time and can be
directly related to the normal velocity of the interface via

Vn ¼ �V0a
2 @J

@s
¼ M

@2�

@s2
; ð3Þ

where a is the surface density of atoms and M = DsaV0/kT is
a positive mobility coefficient.
[9] For small morphological perturbations [i.e., h(x, t)� 1],

the time derivative of h(x, t) is given by the normal velocity,
and the spacial derivative along the interface arc is
approximated by the x derivative. There, we have that

@hðx; tÞ
@t

¼ M
@2�½hðx; tÞ�

@x2
: ð4Þ

The above equation describes the morphological evolution
of the interface due to mass transport by diffusion. A linear
stability analysis was carried out for free surfaces in
[Srolovitz, 1989], as well as for surfaces in contact with a
hydrostatic fluid [Gal et al., 1998; Cantat et al., 1998],
where the solid was stressed on the lateral boundaries normal
to the interface. The nonlinear morphological evolution leads
to cusplike singularities in finite time [Yang and Srolovitz,
1993; Xiang and E., 2002]. These previous analyses con-
sidered systems where normal forces are present at the
interface but did not consider the effect of shear forces.

3. Interface Between a Solid and a Viscous Layer
Under Nonhydrostatic Shear Stress

3.1. Definition of the Equilibrium Configuration

[10] Under the assumption that the system is instanta-
neously relaxing to its equilibrium configuration, we con-
sider the steady state of the momentum equations both for
the elastic solid and the viscous fluid. In the solid phase the
stress of an elastostatic two‐dimensional configuration is
conveniently solved in terms of the Airy stress function, U
(x, y) [Muskhelishvili, 1953], which satisfies the bi‐Laplace
equation D2U = 0. We have here introduced the Laplace
operator D = @2

@x2 + @2

@y2. Once the stress function has been
found, the stress tensor components readily follow from the
relations

�xx ¼ @2U

@y2
; �yy ¼ @2U

@x2
; �xy ¼ � @U

@x@y
: ð5Þ

The viscous flow is described in terms of Stokes’ equation.
That is, away from the interface, the combined equations for
the viscous layer and solid take the form

D2Uðx; yÞ ¼ 0; �Dw�rpðx; yÞ ¼ 0; r � w ¼ 0; ð6Þ

where p(x, y) is the pressure in the viscous layer, and w(x, y)
is the velocity vector field of the viscous layer with com-
ponents w = (u, v). The second equation relates the velocity
in the viscous layer to the pressure gradient. The last
equation represents the continuity of the velocity field in the
viscous layer. Note that the equations are not directly cou-
pled, however, in the following, we shall introduce a cou-
pling of the equations via the boundary conditions. That is
the phases interact only at their boundaries.
[11] At the fluid‐solid interface, we require force balance

and a no‐slip condition formalized in the following relations

�nn ¼ �pþ 2�@nwn; �nt ¼ � @nwt þ @twnð Þ;
wn ¼ 0; wt ¼ 0; ð7Þ

where (nx, ny) ≈ (−∂xh, 1) is the local unit vector pointing
into the viscous phase and (tx, ty) ≈ (1, ∂xh) is the tangent
vector, in the limit where the interface amplitude is small
enough. The surface tension effect on the normal stress
vector has a contribution that is smaller than the surface
energy, and thus, for the sake of simplicity, we have
neglected it.
[12] In addition, we need to specify the far‐field boundary

conditions. We study the linear response away from the
hydrostatic configuration in the presence of an applied
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compressional load s0 and shear stress t0 as sketched in
Figure 2. In a more general formalism than the Asaro‐Tiller‐
Grinfled instability [Asaro and Tiller, 1972; Grinfeld,
1986], we allow the fluid to flow at a constant shear rate, t0.

3.2. Flat Interface

[13] For a flat interface [i.e., h(x, t) = 0], the viscous flow
is decoupled from the elastic deformations and the solution
is the same as for a flow past a planar wall, namely

uð0Þðx; yÞ ¼ �0
�
y; vð0Þðx; yÞ ¼ 0; pð0Þðx; yÞ ¼ P0; ð8Þ

where the upper index refers to the order of the morpho-
logical perturbation expansion. From the force balance at the
interface and the far‐field applied load, we can determine
the stress components as given by

�ð0Þ
yy ðx; yÞ ¼ �P0; ð9Þ

�ð0Þ
xy ðx; yÞ ¼ �0; ð10Þ

�ð0Þ
xx ðx; yÞ ¼ �P0 þ �0; ð11Þ

and the Airy’s stress function is given as

U ð0Þðx; yÞ ¼ �P0
x2

2
þ ð�0 � P0Þ y

2

2
� �0xy: ð12Þ

The constant stress field implies a constant chemical
potential along the interface. In the absence of gradients, no
mass diffusion will occur. However, when the interface has
a nonzero curvature, the stress vector and the elastic energy
vary along the interface and induce mass transport.

3.3. Perturbed Interface

[14] For an undulating interface, the field variables are in
general altered from their counterparts around a flat inter-
face. We consider a small amplitude perturbation on the
form h(x, t) = �h(1)(x, t), where � � 1 is the expansion
parameter and h(1)(x, t) is the first order correction to a flat
interface. A field variable F(x, y), which is a solution to the
perturbed interface, can be expanded to the leading order in
terms of the solution to a flat interface as follows:

Fðx; yÞ ¼ Fð0Þðx; yÞ þ �Fð1Þðx; yÞ þ Oð�2Þ; ð13Þ

where F(x, y) denotes any of the field variables, U(x, y),
p(x, y), u(x, y), v(x, y). F(0)(x, y) is the solution to a planar
interface, and F(1)(x, y) is a first order correction due to a
shape perturbation. Evaluated at a point on the interface
y = �h(1)(x, t), the expansion becomes

Fðx; �hð1ÞÞ ¼ Fð0Þðx; 0Þ þ �hð1Þ@yFð0Þðx; yÞjy¼0

þ �Fð1Þðx; 0Þ þ Oð�2Þ:

For example, the stress at the interface is evaluated by
expanding around its constant value at a planar interface

�ijðx; �hð1ÞÞ ¼ �
ð0Þ
ij ðx; 0Þ þ ��

ð1Þ
ij ðx; 0Þ þ Oð�2Þ: ð14Þ

Inserting these perturbations into the interfacial conditions
from equations (7) and retaining the first order terms, we
obtain the following relations

�ð1Þ
yy ðx; 0Þ ¼ �pð1Þðx; 0Þ þ 2�@yv

ð1Þðx; 0Þ;
�ð1Þ
xy ðx; 0Þ ¼ � @xv

ð1Þðx; 0Þ þ @yu
ð1Þðx; 0Þ

h i
;

vð1Þðx; 0Þ ¼ 0;

uð1Þðx; 0Þ ¼ �hð1Þ
�0
�
: ð15Þ

The linear perturbation fields are determined from equations (6)
combined with the above state interfacial conditions. The far‐
field boundary conditions are satisfied by the zeroth‐order
terms, thus we require that the perturbations decay to zero
at infinity. Assuming periodic boundary conditions along the
x axis, we can decompose the interface amplitude and the
field perturbations into a superposition of Fourier modes as
h(1)(x, t) =

R
dkhk

(1)(t)eikx and F(1)(x, y) =
R

dkFk
(1)(y)eikx.

Solving the governing set of equations combined with the
interfacial boundary conditions in the Fourier space, we
obtain the following solutions

U ð1Þ
k ðyÞ ¼ hð1Þk ð��0 þ 2i�0Þy½ �eky; ð16Þ

pð1Þk ðyÞ ¼ 2ihð1Þk �0ke
�ky; ð17Þ

uð1Þk ðyÞ ¼ hð1Þk �0ðky� 1Þ
�

e�ky; ð18Þ

vð1Þk ðyÞ ¼ ihð1Þk �0
�

kye�ky: ð19Þ

The fields are computed in the real space by integrating up all
the Fourier modes,

Fðx; yÞ ¼ Fð0Þðx; yÞ þ �

Z
dkFð1Þ

k ðyÞeikx: ð20Þ

However, in the linear regime, the modes are decoupled, and
therefore it is possible to study their stability independently.

3.4. Stability Analysis

[15] We can now return to the evolution of a morpho-
logical perturbation by mass diffusion along a chemical
potential gradient as in equation (4), where

�ð1Þðx; 0Þ ¼ Fð1Þ � �ð1Þ
nn �

ð0Þ
kk � �ð0Þ

nn �
ð1Þ
nn � �@2

x h
ð1Þ

� �
V0: ð21Þ

From the definition of the Airy’s stress function given in
equation (16) we determine the perturbation stresses
required to evaluate the chemical potential at the interface
by using equation (5). Hereby, we perform the calculations
in the plane strain approximation. A similar analysis can be
performed in the plane stress limit.
[16] We consider an isothermal mass diffusion process

such that the Helmholtz free energy is determined by the
elastic energy of deformation, which is defined as

Fðx; yÞ ¼ 1

4G
ð1� �Þð�2

xx þ �2
yyÞ � 2��xx�yy þ 2�2

xy

h i
; ð22Þ
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where G is the shear modulus and n is the Poisson’s ratio.
The elastic strain energy is a superposition of the reference
energy associated with a planar interface and the energy due
to a morphological perturbation

Fðx; �hÞ ¼ Fð0Þðx; 0Þ þ �Fð1Þðx; 0Þ; ð23Þ

where

Fð0Þ ¼ ð1� �Þ�2
0 þ 2�20 � 2ð1� 2�Þð�0 � P0ÞP0

4G
;

Fð1Þ ¼ 1

2G
½ð1� �Þ�0 þ 2�P0��ð1Þ

xx � ½��0 þ ð1� 2�ÞP0��ð1Þ
yy

n

þ 2�0�
ð1Þ
xy

o
:

The normal stress vector in the solid phase is expanded as

�nnðx; 0Þ ¼ �P0 þ � �ð1Þ
yy ðx; 0Þ � 2�0@xh

ð1Þ
h i

: ð24Þ

Also, the volumetric change expressed by the trace of the
strain field is related to stresses as follows,

�kk ¼ 1� 2�

2G
ð�xx þ �yyÞ ¼ 1� 2�

2G

� ð�0 � 2P0Þ þ � �ð1Þ
xx þ �ð1Þ

yy

� �h i
:

Now, inserting these expressions into equation (21) and
decomposing the linear perturbation of the chemical
potential into a superposition of Fourier modes as m(x, 0) =R
dk mk

(1)eikx, where k is an arbitrary wave number, we obtain
that the Fourier coefficient mk

(1) is given by

�
ð1Þ
k ¼ 	þ i
; ð25Þ

where

	 ¼ �ð1� �Þ�2
0 � 2�20

G
khð1Þk þ k2hð1Þk �


 ¼ �2ð1� 2�Þ�0P0 þ 4ð1� �Þ�0�0

G
khð1Þk :

For an exponential growth hk
(1) = exp(wt), the linearized

interfacial dynamics from equation (4) reduces to a disper-
sion relation w = w(k). The morphological stability is
determined from the sign of the real part of the growth rate,
which is given by

<ð!Þ ¼ MV0
ð1� �Þ�2

0 � 2�20
G

k3 � k4�

� �
: ð26Þ

There exists a crossover in stability at a finite wave number
kc given by

kc ¼ ð1� �Þ�2
0 � 2�20

G�
; ð27Þ

when the applied stresses satisfy the inequality

ð1� �Þ�2
0 > 2�20 : ð28Þ

The interface is therefore predicted to be linearly unstable at
wave numbers k > kc. The shear stress adds an imaginary

component, which may be related to waves, and a stabiliz-
ing term to the real part of the growth rate. In the absence of
shear stress, the classical Asaro‐Tiller‐Grinfeld instability
above a critical wave number kc = (1 − n)s0

2/Gg is obtained.
[17] We have so far assumed no‐slip conditions at the

interface. The important question is then, if the morpho-
logical instability is present at shear loads close to the onset
of slip. According to Coulomb’s friction law, the critical
shear stress of slip snt is linearly proportional to the normal
load snt = mssnn, where ms is the static friction coefficient.
For s0 = P0 the elastic solid is effectively compressed by the
fluid hydrostatic pressure in the normal direction to the
interface. Hereby, the instability arises from the competition
between the magnitude of the shear stress and the effective
normal load (i.e., the interface is linearly unstable if the
system is dominated by the pressure/normal load P0 and
stable if the shear stress t0 dominates). At the onset of slip,
the stability criterion given in equation (28) with P0 as an
effective normal load is equivalent to

�s <

ffiffiffiffiffiffiffiffiffiffiffi
1� �

2

r
: ð29Þ

From this inequality, we see that the stability depends cru-
cially on the value of Poisson’s ratio. For rocks, Poisson’s
ratio is in the range [0.2–0.4], indicating that the transition
to roughening instability should occur for ms < [0.5–0.6].
Note that when the system is unstable, the interface
roughness grows rough in time and thereby the static friction
coefficient increases, whereas when ms >

ffiffiffiffiffiffiffi
1��
2

q
the interface

becomes less rough and the static friction coefficient should
decrease.

4. Two Solid Materials Separated by a Thin
Viscous Layer

[18] We now consider a system composed of a thin vis-
cous layer at hydrostatic pressure P0 sandwiched between
two identical linearly elastic solids. In the absence of
externally applied stresses, the solids are in equilibrium with
each other and with the fluid film and the systems in
hydrostatically stressed. We bring the system out of equi-
librium by applying a compressional load s0 along the
interface, and, in particular, for s0 = P0, the solids effec-
tively sustain a normal load from the fluid pressure. For a
finite thickness one can study the case where the fluid film is
flowing at a constant shear rate. However, the limit of zero
thickness is singular, in the sense that the strain rate be-
comes infinite. For simplicity, we therefore assume that the
fluid is at rest (i.e. t0 = 0) and consider the limit where the
fluid thickness is infinitely small compared to the size of
the solid bodies (see Figure 2). In this case, the fluid film acts
through the boundary condition at the solid‐solid interface,
by setting the tangential stress vector to zero and the normal
stress vector equal to the hydrostatic pressure, namely

�nn;j ¼ �P0; ð30Þ

�nt;j ¼ 0; ð31Þ

where j = 1, 2 is the phase index. One could also include the
surface tension effects into the interface boundary conditions
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without much difficulty. Under these conditions, a similar
perturbation technique is carried out as in the previous sec-
tion. The bi‐Laplace equation is solved for each solid phase j
= 1, 2 and the Airy’s stress functions Uj(x, y) are determined
from the interfacial boundary conditions. The zeroth order
solution associated with a flat interface is given by

U ð1Þ
j ¼ �P0

x2

2
; ð32Þ

and the linear order terms due to a small morphological per-
turbation h(x, t) = �h(1)(x, t) are obtained as

U ð1Þ
1 ðx; yÞ ¼ �P0ye

kyhð1Þðx; tÞ; U ð1Þ
2 ðx; yÞ ¼ P0ye

�kyhð1Þðx; tÞ: ð33Þ

The stress components are then evaluated by inserting the
Airy’s stress functions into equation (5). We find that the
linear perturbation in the chemical potential calculated in
the plane strain approximation, is given by

�ðx; 0Þ ¼ 1� �

4G
P2
0 � �

1� �

G
P2
0

Z
dkkhð1Þk eikx: ð34Þ

Inserting this expression into the interfacial evolution
equation (4) and assuming an exponential growth h(1)k =
exp(wt), we obtain that the growth rate is

! ¼ MV0
ð1� �ÞP2

0

G
k3: ð35Þ

The above dispersion relation implies that the interface is
unstable due to mass diffusion under a normal load. That
being said, the only difference, to the viscous‐solid system
presented in the previous section, is that when the viscous
layer is at rest, the stabilizing shear stress is no longer
present. It should therefore be emphasized that the boundary
conditions are quintessential for the stability of the interface.
Note that a similar setup with finite size elastic bulk parts
has been studied recently in Bonnetier et al. [2009]. Here, a
minimum energy criteria and variational calculus for shape
perturbations were employed and revealed along the lines of
the above calculation that the interface is linearly unstable
when the fluid is at rest and for wave number smaller than
the surface tension cutoff.

5. Discussion

5.1. Grain‐Grain Contacts

[19] If the viscous layer separating the two solid materials
is removed such that we have perfect stress transmission at
the interface and the system can undergo dry recrystalliza-
tion (i.e., we have a transport of mass across and normal to
the interface), then the morphological stability of the inter-
face depends on the complete set of material parameters of
both solid phases. The corresponding stability diagram in
this case becomes slightly more complex. In a previous
work [Angheluta et al., 2009], we have considered the
dynamics of dry recrystallization between stressed solids.
Similar to the derivations carried out for the solid‐viscous
layer system, the rate of mass transport across the interface
is proportional to the gradients (jump) in the local chemical
potential. In general, it turns out that contrasts in referential

densities of the two solids often lead to the formation of
fingerlike structures aligned with the principal direction of
the far‐field stress. In cases where the referential densities
are identical the stability depends on the “compressibility”
of the material. Like for the viscous‐solid system, Poisson’s
ratio plays a crucial role in the stability.

5.2. Slow Displacements on Faults

[20] Most large earthquakes are followed by postseismic
deformation, which can last for several years. Such defor-
mation is usually thought to be localized directly on the
rupture plane and often described as afterslip whose
amplitude could be equivalent to coseismic slip (see
Pritchard and Simons [2006] for a review). Such slow slip is
also related to the increase of the elastic wave velocity in the
fault zone after an earthquake [Brenguier et al., 2008]. The
slow relaxation of the fault is interpreted as the creation of
new solid‐solid contacts, related to an increase of the
cohesion of the fault material. In the present study, we
propose that the small roughness evolution of a fault plane
by a dissolution precipitation instability could be a possible
mechanism to explain observations of fault healing pro-
cesses. Indeed, in fault zone, the state of stress is such that
the ratio between the shear stress snt and the normal stress
snn, which defines the friction coefficient ms =

�nt
�nn
, varies in a

range [0.1–0.2] for weak faults to [0.6–0.8] for stronger
seismic faults. In the present study, we have demonstrated
that the transition from stability to instability depends on
Poisson’s ratio such that if ms �

ffiffiffiffiffiffiffi
1��
2

q
the interface is

unstable. For typical crustal rocks n varies in the range
[0.2–0.4], indicating that the transition occurs for ms �
[0.5–0.6] (i.e., for static friction coefficients smaller than
those deduced for most strong faults).
[21] In Figure 3, we presented a stability diagram that

relates the static friction coefficient with the morphological
stability of the interface. It was seen that the interface, if the
stress is close to the level of slip, in general would evolve by
surface diffusion in such a way that ms →

ffiffiffiffiffiffiffi
1��
2

q
. However,

the static friction coefficient ms may never evolve toward
such a value, either because the time needed for surface
diffusion is much larger than the characteristic time of stress
build up and relaxation or because the system is always
loaded far below the critical stress needed for slip.
[22] The striations shown on the fault plane of Figure 1

are due to several processes such as mechanical abrasion,
gouge fragmentation, creation and destruction of fault
topography during seismic slip, and healing during the
interseismic period. The anisotropy of the surface comes
from the fact that mechanical abrasion in the direction of slip
creates grooves at all scales (in fact, high‐resolution analy-
ses of fault surface roughness demonstrate the presence of
scaling relationships [Renard et al., 2006; Sagy et al.,
2007]). Other studies have shown that the presence of
large‐scale bumps, perpendicular to the direction of slip, are
interpreted as a viscous instability during seismic slip [Sagy
and Brodsky, 2009]. In the present study, we focus on
contact formation and restrengthening of the interface.
Clearly such effect overlies other deformation processes and
would be difficult to isolate using high‐resolution topography
measurements. However, the roughening restrengthening
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effect should be an important ingredient of the long‐term
evolution of active fault zone mechanical properties.

6. Conclusion

[23] Using an analytical approach we have shown that
geological interfaces can be unstable under morphological
perturbations when submitted to particular states of stress
and when mass transfer is allowed across or along the
interfaces. Previous studies have mostly considered the
stability of interfaces of solid materials under compression,
here we have analyzed systems where both a shear and
compressive load is applied. Our analysis reveals an intricate
relationship between the stability of a sheared interface and
Poisson’s ratio of the bulk material. In summary, we have
shown that when a solid is in contact with a viscous layer at
rest, the interface is always unstable for wavelengths larger
than the critical length set by the surface tension. However,
when the viscous layer flows or finite shear stresses are
transmitted across the interface we observe that the interface
becomes stable. It therefore follows that the stability of an
interface is controlled by the ratio between the normal and
shear load. We applied our analysis to the stability of faults
and established a relationship between the static friction
coefficient and Poisson’s ratio. In general the faults interface
corrugates in such a way that ms →

ffiffiffiffiffiffiffi
1��
2

q
. Further investiga-

tions (e.g., from field observations, to check this behavior
are encouraged).
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