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Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone

A novel experimental setup was used to measure in-situ variations of electrical conductivity (EC) during deformation in torsion (simple shear) at 300 MPa confining pressure and temperatures between 873 and 1473 K. This setup is designed to test if deformation of partially molten systems can produce electrical anisotropy. The motivation for this study comes from the observation that the Lithosphere-Asthenosphere Boundary (LAB) at mid ocean ridges and in particular at the East Pacific Rise is strongly electrically anisotropic.

In an initial set of calibration experiments, the variation of EC with temperature (873-1473K) was determined for Carrara marble, Åheim dunite and basalt-bearing olivine aggregates. EC was then monitored during deformation experiments at 1473 K and measured in the frequency range between 6 MHz and 1 Hz. The electrical response of the different materials tested as a function of frequency, changes significantly depending on the presence, absence, proportion and distribution of melt contained in the specimen.

Melt-free samples show a single conduction mechanism whereas melt-bearing samples display two conduction mechanisms linked in series, reflecting the contribution of isolated and connected melt. Impedance was measured along the sample radius, in a direction parallel to the shear gradient inherent in torsion experiments. During the tests, increasing values of the impedance measured suggest that the long range melt connectivity decreases radially, and melt drains from low to high shear stress regions.

The conductivity, calculated from impedance measurements, is low and comparable to values measured along Mid-ocean ridges. We suggest that electrical anisotropy of the LAB reflects an alternation of melt-enriched and melt-depleted channels elongated in the spreading direction possibly induced by spreading velocity gradients along the ridge. This implies that the observed electrical anisotropy reveals larger scale processes than straininduced generation of crystallographic preferred orientations. Such large-scale processes could influence the distribution of seamounts and chemical variations of mid-ocean ridge basalts.

Introduction

Magneto-telluric investigations at the East Pacific Rise (EPR), a fast spreading mid-ocean ridge (MOR), have shown that the LAB is characterized by high electrical conductivity (EC) in the direction of spreading (10 -1 S m -1 ), and lower EC parallel to the ridge (10 -2.5 Sm -1 ; [START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF][START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF]. To explain this characteristic, two main hypotheses have been proposed: a) the lattice preferred orientation (LPO) of olivine (the main constituent of the upper mantle), but the experiments of [START_REF] Yoshino | Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[END_REF] shown this explanation to be very unlikely b) the presence of a small amount of melt anisotropically distributed [START_REF] Yoshino | Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere[END_REF][START_REF] Gaillard | Carbonatite Melts and Electrical Conductivity in the Asthenosphere[END_REF]. In this second scenario, the melt-phase is required to be highly connected in the direction of spreading and arranged with reduced connectivity in the ridge parallel direction in order to account for the observed anisotropy of the LAB [START_REF] Evans | Geochemistry Carbon in Charge[END_REF][START_REF] Gaillard | Carbonatite Melts and Electrical Conductivity in the Asthenosphere[END_REF]. At present, deformation of partially molten rocks have been shown to affect grain boundary wetting [START_REF] Zimmerman | Melt distribution in mantle rocks deformed in shear[END_REF][START_REF] Hier-Majumder | On grain boundary wetting during deformation[END_REF]Holtzman et al., 2003), but the anisotropy this would produce in the inferred flow regime of the LAB cannot explain the electrical anisotropy observed. Recently, [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF] showed that melt redistribution can be triggered by shear stress gradients. The analysis of a global dataset of spreading rates reveals that the spreading velocity, in the ridge parallel direction, in mid ocean ridge sectors contained between transform faults is not constant [START_REF] Muller | Age, spreading rates, and spreading asymmetry of the world's ocean crust[END_REF], which may result from shear stress gradients in the LAB [START_REF] Turcotte | Geodynamics[END_REF]. Here, we test the effect of simple shear deformation, in presence of a stress gradient, on the variation of electrical conductivity (EC) of partially molten rocks by performing the first in-situ EC measurements during deformation of melt-bearing olivine aggregates. Alternating current measurements of electrical conductivity at variable frequencies are highly suited to characterize the in-situ melt topology in a partially molten system, since the electrical conductivity of partially molten rocks is strongly dependent on the geometrical distribution of the melt [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF].

Considering basalt-bearing olivine aggregates, if the melt (in our case Kilauea basalt at 1473 K with EC ~0.8 Sm -1 , see [START_REF] Pommier | Methodological reevaluation of the electrical conductivity of silicate melts[END_REF] forms a fully interconnected path along wetted grain boundaries and in three grain edges, olivine and basaltic liquid constitute independent parallel circuits, and the bulk EC is about 1 to 2 orders of magnitude higher than that of pure olivine (~0.8•10 -3 Sm -1 at 1473K, see [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF][START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Gaillard | Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition[END_REF]. Whereas, if the melt is only connected over short length scales (ca. grain size) being in triple junctions and isolated melt pockets, the two phases are arranged in series, and the EC will approach that of olivine [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF].

Experimental and analytical techniques

Sample preparation

Experiments were performed on Carrara marble, Åheim dunite and San Carlos olivine aggregates containing 4 (4B) and 8 wt.% (8B) basaltic melt (STV 315; see [START_REF] Pichavant | Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc[END_REF]. As STV315 is nearly saturated in olivine at 1473K (temperature at which most of the deformation experiments were performed) very little reaction occurred between the olivine and the melt during the experiments. Therefore variation in temperature only results in very small changes in melt fraction. Cylindrical samples of 10 mm external diameter were drilled from natural specimens of Carrara marble and Åheim dunite. Basalt bearing olivine aggregates were synthesised before measuring electrical conductivity, but in one experiment the measurements were performed during sintering.

Grains of San Carlos olivine were reduced in size, using an agate sphere-mill and agate mortar, down to an average size of 20-40 mm. Fine-grained basaltic glass (5-10 mm) and powdered olivine were thoroughly mixed and hot-isostatically pressed (HIP) in a Paterson apparatus [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF] at 300 MPa and 1473 K for 6 hours. The sample was isolated from the contact with the iron jacket and the ceramic pistons using nickel foil. NiO (a greenish powder) was visible between the sample surface and the residual nickel foil at the end of the syntheses, indicating that the oxygen fugacity was buffered near to the Ni-NiO reaction. Cylindrical samples of 10 mm in diameter and 5-9 mm in length were cored from the hot-pressed material. The nickel disks initially present between the starting powders and the ceramic pistons, on both ends of the samples, were removed, and finally, the ends of the samples were ground to obtain parallel ends to within 0.001mm. A 4mm hole was subsequently drilled in the centre of the cylindrical specimens, in order to place a central electrode for impedance measurements.

Electrical conductivity measurements

The conventional experimental assembly, used to measure rheological properties in an internally heated Paterson-type deformation apparatus [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF], was modified to measure electrical properties both in static conditions and during deformation experiments at high pressure and temperature (Fig. 1). While all the details about the Paterson apparatus can be found in [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF], we detail below the modifications applied to the experimental assembly to measure EC.

Nickel cylinders 4 mm in diameter and the same length of the samples were placed in the core of the specimens and used as the central electrode (Fig. 1). A nickel foil was placed on the external surface of the samples and it was used as the second electrode. The samples were placed in the centre of a symmetric assembly composed, on each side, of cylindrical ceramic pistons. The top ceramic piston (both PSZ and alumina) had a central hole of 2 mm in diameter (Fig. 1). The hole in the ceramic piston placed on top of the sample was enlarged to 4 mm using a diamond drill bit and filled with a stainless steel cylinder of 3 mm in length. The thermocouple was passed from outside the vessel and put in contact with this stainless steel insert (i.e. 3 mm away from the top of the sample; Fig. 1). The steel served to prevent the extrusion of the sample and the nickel central-electrode (pressurized by the confining pressure) through the thermocouple hole (at ambient pressure) and to bridge the contact between the central-electrode, placed in the centre of the sample, and the shield of the thermocouple that was connected to the impedance spectrometer [START_REF] Mecklenburgh | Electrical conductivity of marbles during torsion Annual report of the Bayerisches Geoinstitut[END_REF]. Temperature in the Paterson apparatus was measured with a N-type (nicrosil-nisil) thermocouple. The temperature profile along the furnace was previously calibrated and a variation of about 5 K was measured over a 30 mm length around the sample position. Due to the length of the samples (4-9 mm), considerably smaller than the hot spot of the furnace, the temperature difference in the sample will be ca. 1-2 K.

The sample and the ceramics were inserted inside an iron jacket, which isolated the ceramics and the specimens form the argon gas that is used as confining pressure medium. The electrical conductivity (EC) was measured radially between the central nickel cylinder and the nickel foil surrounding the sample, which is in tight contact with the external iron jacket (Fig. 1).

The temperature was kept constant for at least 30 minutes before starting the impedance measurements. The electrical response of the samples was measured at frequencies between 6 MHz and 1 Hz using a 1260 Impedance Gain Phase Analyzer, (Schlumberger Co.). The electrical conductivity (s) was obtained from the resistance (R) using the following relationship [START_REF] Gaillard | Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure[END_REF][START_REF] Pommier | Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure[END_REF]

: int log 1 2 ext d e d L R σ π ⎡ ⎤ ⎣ ⎦ = (1)
where L is the sample length d ext is the external diameter of the sample and d int is the diameter of the inner electrode. The validity of Equation 2 was verified by [START_REF] Pommier | Methodological reevaluation of the electrical conductivity of silicate melts[END_REF].

In the present configuration, EC is measured along the sample radius along which in torsion deformation, there is a gradient in shear stress, which varies from zero on the axis of rotation of the sample to a maximum at the outer surface of the sample. Figure 1B shows the radial shear stress variation for a material with a stress exponent of 3 [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF]. The reproducibility of resistivity, estimated by repeated measurements at constant experimental conditions was about 5%. For olivine-basalt aggregates the variations were in some case larger, probably because of some minor differences in melt content and distribution, which, as it will be explained below, are fundamentally control the resistivity of the material.
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Frequency dependence of EC

The frequency-dependent electrical response of semi-conductive material, such as rocks and partially molten systems, can be conveniently represented in the Nyquist-plane as they have complexed impedance (e.g. [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Pommier | Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure[END_REF] since the impedance is the sum of a real in-phase (Z I ) and an imaginary out-ofphase (Z II ) impedance (Z = Z I +jZ II where 1 j = -). In the Nyquest plane, if only one conduction path is active, the electrical response as function of frequency is an arc where the intercept with the Z I -axis is the resistance and can be represented by the equivalent circuit of a resistor and capacitor in parallel (see Fig 2,3). Two or more arcs present in different frequency-ranges indicate that two or more conduction mechanisms are simultaneously active in series and the bulk resistance is the sum of the high frequency and low frequency resistance [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF]see Fig 3). In this case the electrical response can be modelled with an equivalent circuit consisting of a serial array of resistors and capacitors in parallel, each with a different frequency response. In the rest of the paper this sort of presentation will be used to relate the observed electrical response to the geometrical distribution of melt during static and deformation experiments.

Analytical techniques and imaging

Chemical analyses of minerals and glass were performed using a Cameca SX50 electron microprobe (EMP) at the Bureau de Recherche Géologiques et Minières (BRGM) in Orleans (France). The analytical conditions used for minerals were 15 keV acceleration voltage, 20 nA beam current and 1-2mm beam diameter. To analyze glasses the beam current was decreased to 5 nA and the beam diameter increased to 10-20 mm depending on the size of the glass inclusions between the minerals. Back-scattered electron images were collected using a JEOL-JXA-8200 electron microprobe at the department of Earth Sciences of ETH Zurich (Switzerland) and a Hitachi S-3500N at the Department of Earth Sciences of the University of Bristol (United Kingdom).

Results

A first set of experiments were performed on Carrara marble, Åheim dunite and olivine plus basalt samples to test the reliability of the experimental assembly and to measure the variation of the electrical response of the samples as a function of temperature and time.

At each temperature step, the measurements were repeated 3-5 for a total of 20 to 60 minutes until a constant value of resistance was obtained. All the experiments were performed at a constant confining pressure of 300 MPa. After the last measurement the experiments was terminated decreasing the temperature with a rate of about 60 K/min.

Carrara marble

Preliminary tests using the described configuration were performed on Carrara marble specimens for which an impedance dataset exists [START_REF] Heege | In situ impedance spectroscopy on pyrophyllite and CaCO3 at high pressure and temperature: phase transformations and kinetics of atomistic transport[END_REF]. The sample was kept at 873 K for 2 hours before a stable value of impedance was achieved. At this temperature a single impedance arc was observed and the stable values of resistivity was about 1650 W•m.

Åheim dunite

Energy dispersive x-ray spectroscopy (EDS) performed in a scanning electron microscope in Bristol, and observations using the optical microscope, revealed that the Åheim sample used for experiments is mainly composed of olivine with minor orthopyroxene, clinopyroxene and phlogopite. Electrical impedance measurements were performed during a heating and cooling cycle to check for eventual variations of the geometry and the physical properties of the sample. The electrical signal was characterized by the presence of a high frequency (Hf) and a low frequency (Lf) arcs in the Nyquist-plane between temperatures of 1273 and 1473 K (Fig. 2). These arcs are not perfectly semicircular they are slightly squashed parallel to the x-axis. This kind of impedance arc can be represented with an equivalent circuit of a resistor and a constant phase element in parallel. This response is thought to be a result of a distribution of timeconstants along the surface of the electrodes or perpendicular to the surface. This distribution of time constants could either be an inherent material property or due to roughness of the sample electrode interface [START_REF] Orazem | Electrochemical impedance spectroscopy[END_REF]. Electrical conductivity increases with temperature, however, the activation energies for bulk (sum of Hf and Lf conductivity) and Hf conductivity are different (Fig. 2). In particular, the activation energy for the Hf mechanism decreases significantly for temperature higher than 1373 K. Observations using an optical microscope showed that phlogopite reacted during experiments to produce a melt phase.

Impedance measurements during sintering of a basalt bearing aggregate

The conductivity was measured during the sintering of a San Carlos olivine aggregate containing 4wt.% basalt (4B). Only one arc at low frequency was visible during the first 1 hour at 1473 K in the impedance scan, while at constant temperature a second lowfrequency arc appeared and grew in diameter during the rest of the experiment (6 hours; Fig. 3). The sample is very conductive at the beginning of the experiment, while its conductivity decreases significantly after the first hour of sintering (Fig. 3). The Hf arc enlarge only slightly between the first hour and the end of the experiment while the main increase of impedance was related to the significant growth of the Lf arc. As with the Åheim dunite the impedance arcs are not perfectly semicircular probably due to either material properties of the sample or the sample electrode surface creating a distribution of time-constants.

Basalt-olivine aggregates

After sintering, the variation of EC as a function of temperature was determined on olivine aggregates containing 4 and 8wt.% basalt (8B). The impedance was measured for both sample 4B and 8B every 50 K between 1273 and 1473 K and two partially overlapping arcs were always observed. The diameters of the Hf and the Lf arcs increase with decreasing temperature (i.e. the EC of both conduction mechanisms decreases with temperature) and both the bulk and the Hf-EC is always higher for the sample with the highest amount of basalt (Fig. 4). The activation energies (Ea) of 4B and 8B for the Hf mechanism are comparable (195±10 and 221±10 kJmol -1 respectively) while the Ea related to the bulk conductivity are quite different (134±10 for 4B and 207±10 kJmol -1 for 8B). Reproducibility tests were performed at 1473 K on samples produced in different syntheses: for 4B the second measurements gave 2.1•10 -3 Sm -1 instead of 1.2•10 -3 Sm -1 , for 8B 1.3•10 -2 S•m -1 instead of 1.0•10 -2 Sm -1 (Table 1 online material). It is worth pointing out that the rate of change of conductivity with melt fraction at 4% melt will be much greater than at 8% therefore it would be expected that small variations in melt fraction between two samples with ~4% melt will show a much larger variability in conductivity than 8% melt samples with the same melt fraction difference.

Simple shear deformation

Deformation experiments were performed applying a constant strain rate and carrying out strain rate stepping tests (e.g [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF]. The torque was continuously recorded and the corresponding shear stress was calculated using the equations reported in [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF] for hollow specimens with a cylindrical core of Nickel (the electrode). The part of the measured torque supported by the Ni inner electrode, at the conditions of deformation (1473K), is likely to be small because (i) the Ni will be weak at 1473K [START_REF] Frost | Deformation mechanism maps[END_REF] and (ii) the strain rate is lower in the inner part of the sample. Using published flow-laws for Ni [START_REF] Frost | Deformation mechanism maps[END_REF] the torque supported by the Ni electrode, at 1473K for a sample strain rate of 1x10 -5 s -1 , is calculated to be 0.03Nm which is within the resolution of the torque gauge.

A first stage of elastic deformation was followed by yielding (and strain hardening) and finally sample-flow at constant stress or shear weakening in 8B (Fig. 5A). A stress exponent of 3±0.5 was obtained by strain rate stepping tests testifying deformation in dislocation creep or dislocation creep accommodated grain boundary sliding field [START_REF] Hirth | Experimental Constraints on the Dynamics of the Partially Molten Upper-Mantle .2. Deformation in the Dislocation Creep Regime[END_REF][START_REF] Hirth | Rheology of the upper mantle and mantle wedge: a view from the experimentalist[END_REF]. Deformation in simple-shear resulted in the enlargement of both the Hf and Lf arc; however, the increase in diameter of the Lf arc was much greater (Fig. 5C,D). The decrease of bulk EC was about 1 order of magnitude for sample 8B for a total applied gamma of 0.45 (Fig. 5A,C), while the EC associated to the Hf conduction mechanism decreases from about 0.025 to 0.01 S•m -1 . The decrease of bulk EC occurred mainly during at the beginning of the deformation (Fig. 5A). To measure the effect of temperature on the decrease of EC associated with deformation, the temperature was increased from 1373 up to 1473 K during a torsion experiment at constant strain rate. Figure 5B shows that the rate of decrease of EC increases with this temperature step. At the end of the experiments presented in Figure 5 the deformation was stopped and pressure and temperature were kept constant. Stress release produced an increase in bulk EC that was however much slower and less significant than the drop associated to deformation. The variation of the Hf conductivity produced by the release of stress was even less significant than that observed for bulk EC.

Microstructural observations of deformed basalt-olivine aggregates

In an attempt to characterise the 3D microstructure of the samples two sections were cut from the deformed samples (i) the tangential plane perpendicular to the shear plane containing the shear direction (perpendicular to conductivity measurement) and (ii) the diametric plane perpendicular to the shear direction (parallel to the conductivity measurement). Optical analyses of samples after deformation, showed a colour change from pale to dark green from the centre of the specimens toward the outer diameter (Fig. 6A). Chemical analyses performed with an EMP excluded the possibility of this colour change to be associated to changes in the olivine chemistry. To characterize the melt distribution back-scattered electron images (BSE) were collected using an electron microprobe, for both the tangential and diametric sections. Due to the limited back-scatter contrast between basaltic glass and olivine crystals, it was not possible to automatically separate the olivine and glass on the images. Consequently large images were printed and the glass pockets were traced manually and highlighted (Figure 6). After tracing the images were digitalized and converted into binary images (black=olivine; white=glass).

Images of diametral and tangential sections of sample 8B were analysed using ImageJ software [START_REF] Abramoff | Image Processing with Image[END_REF]. The average grey level was measured for slices of the image every micron and converted into glass percentage (Fig. 6). The amount of glass was additionally measured in intervals of different bin sizes (50-100-200 µm) along the sections to visualise better the distribution of melt content along the profiles (Fig. 6).

Figure 6A shows a general increase of glass content from the inner portion of the sample, deformed at lower strain and applied stress, to the outer portions deformed to a strain of about 0.5 and where the stress was the highest (Fig. 1B). The data show, for all the different bin sizes, an increase of about 3% glass from the centre to the external portion of the sample.

Figure 6B presents the analysis performed on a section cut parallel to the sample axis close to the outer diameter of the specimen (tangential section). The average glass content is higher than in the diametral section and an alternation of melt-enriched and meltdepleted portions of the sample is present (Fig. 6B). In general the average melt content determined by image analyses were always lower than the amount of glass that was used for the basalt-olivine aggregate. This was most probably a consequence of the relatively slow rate of temperature decrease at the end of the experiments, which resulted in olivine crystallization. This is confirmed by the presence of small euhedral olivine grains with distinctive composition (FeO~11wt.%) compared to the San Carlos grains (FeO~8wt.%).

Analyses of the glass after the experiments did not reveal significant variation in composition.

Discussion

The tests performed on Carrara marble and Åheim dunite specimens confirmed that the experimental setup used in this study is reliable and gives consistent results. The electrical response as a function of frequency and the resistivity of the Carrara marble sample are in agreement with the previously reported data on carbonates [START_REF] Heege | In situ impedance spectroscopy on pyrophyllite and CaCO3 at high pressure and temperature: phase transformations and kinetics of atomistic transport[END_REF]. In the Åheim dunite sample a variation of the impedance spectra (Fig. 2A), and a significant change of the electrical conductivity associated to the Hf mechanism were observed at temperatures between 1323 and 1373 K (Fig. 2B). This modification of the high-frequency electrical-response of the sample could be associated to the onset of phlogopite breakdown (forming melt) resulting in a switch of the conduction mechanism from grain interior in absence of melt, to conductivity associated to short-scale melt connectivity at higher temperature [START_REF] Roberts | Frequency-Dependent Electrical-Properties of Minerals and Partial-Melts[END_REF]. The temperature range of this transition is in agreement with data on fluid-absent melting of phlogopite [START_REF] Wendlandt | The Origins of Potassic Magmas .2. Stability of Phlogopite in Natural Spinel Lherzolite and in the System Kalsio4-Mgo-Sio2-H2o-Co2 at High-Pressures and High-Temperatures[END_REF].

Electrical response of basalt-bearing olivine aggregates: deciphering connected vs. non-connected melt in absence of deformation

Two impedance arcs were always observed in our experiments on melt bearing samples (Figs. 2345). The size of both arcs is dependent on melt fraction, connectivity and tortuosity, yet during deformation and sintering at constant melt fraction the size of arcs varied caused by changes in connectivity. Multiple conduction mechanisms, as deduced from multiple impedance arcs, are consistent with the theory for EC of partially molten systems [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF], but most experimental studies have failed to clearly measure more than one impedance arc for partially molten rocks (Roberts andTyburczy, 1994, 1999;[START_REF] Maumus | Electrical conductivity and partial melting of mafic rocks under pressure[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF]. In these studies, mostly performed at atmospheric pressure, the high frequency arc has been interpreted as the bulk impedance of the sample while sample-electrode polarization obliterated the second arc [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF]. For the highpressure experiments described in [START_REF] Maumus | Electrical conductivity and partial melting of mafic rocks under pressure[END_REF] (i.e. solid pressure medium), sample-electrode polarization also dominated the low frequency part of their measurements. These electrode interferences were not observed using our experimental setup probably because of the applied confining pressure and the relatively large sample size. Given that for two or more conduction mechanism that are electrically in series, the bulk low-frequency impedance (R bulk ) is given by the sum of the in-phase impedances of the different conduction mechanisms (Roberts andTyburczy, 1994, 1999), R bulk measured in our static experiments, for partially molten samples, is higher than previously reported [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Maumus | Electrical conductivity and partial melting of mafic rocks under pressure[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF]. Interestingly, the EC associated to the high frequency arc in our experiments, is comparable to the conductivity measured in previous study at Hf and reported as bulk conductivity (Figs. 5;[START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF][START_REF] Maumus | Electrical conductivity and partial melting of mafic rocks under pressure[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF].

Following previous work [START_REF] Sato | Low-Frequency Electrical-Impedance of Partially Molten Gabbro -the Effect of Melt Geometry on Electrical-Properties[END_REF][START_REF] Roberts | Frequency-Dependent Electrical-Properties of Minerals and Partial-Melts[END_REF] 

multiple arcs

must indicate that different conduction mechanisms operate at different length-scale in the material and that the electrical relaxation times of each conduction mechanism are sufficiently different (resulting in the different frequency response). As an example in polycrystalline aggregates the high frequency arc corresponds to grain interior conduction while a second arc to lower frequencies is associated to grain boundary conduction. The total impedance of this material is therefore given by the sum of the in-phase impedance of each mechanism [START_REF] Roberts | Frequency-Dependent Electrical-Properties of Minerals and Partial-Melts[END_REF]. In melt bearing aggregates, the high frequency arc, associated to grain interior conduction, is modified by the presence of melt pockets while the low frequency arc gives information on the degree of long range connectivity of melt [START_REF] Roberts | Frequency-Dependent Electrical-Properties of Minerals and Partial-Melts[END_REF].

Electrical conductivity (or impedance) of two-phase aggregates in which the constituents have different electrical properties, can be recalculated as function of the relative volumetric proportions, the EC of the single phases, and their geometrical arrangement using effective medium theory (e.g. [START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF].

The two end member configurations for the electrical conductivity of an olivine plus melt aggregate are (i) melt isolated in pockets:

σ pockets = σ ol + x m ⋅ 1 σ m -σ ol + 1 -x m 3⋅ σ ol ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ -1 (2) 
And (ii) melt fully connected along grain boundaries:

σ connected = σ m + (1 -x m )⋅ 1 σ ol -σ m + x m 3⋅ σ m ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ -1 (3) 
Where s ol is the conductivity of olivine crystals, x m is the melt fraction and s m is the conductivity of melt and the conductivity of the melt phase is significantly higher than that of olivine [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF][START_REF] Pommier | Methodological reevaluation of the electrical conductivity of silicate melts[END_REF]. Considering that the Hf arc give information on the melt distribution at the scale of few grains, while the lower frequency arc carries information on the bulk melt distribution. Let us apply the mixing models to three melt bearing olivine-aggregate systems in which the melt is arranged in different geometries but it is present in the same volumetric fraction (see Fig 3B,C,D): i) all melt is connected in the entire volume of the sample (Fig. 3B) ii) all the melt is isolated in pockets (Fig. 3C), iii) most of the melt phase is isolated in pockets and a minor volume fraction is connected in the entire volume of the sample (Fig. 3D). In the first configuration, the electrical response of the sample produces a single arc since the melt is connected in parallel with the olivine (Fig. 3 B). In the second arrangement, the melt that is isolated in pockets wetting few grains produce the Hf arc (its size increases with the amount of non-connected melt), while the impedance of the Lf arc is due to bulk sample properties and it is proportional to 1/s pocket (Fig. 3C). Finally, the third melt-olivine distribution should produce an Hf response broadly similar to the configurations 3C, but it would give lower Lf impedance because of the presence of a minor amount of melt connected at long-scale. The Lf impedance is directly proportional to 1/s connected and to the relative volume of sample in which the melt is connected at long scale (Fig. 3D). Mixing models (e.g. Archie's law) can be used to recalculate the relative proportions of sample characterized by long and short-scale melt connectivity:

σ Lf = (σ connected ) VXm connected ⋅ (σ pockets ) (1-VXm connected ) (4)
Where Lf σ is the Lf conductivity and VXm connected is the volume fraction of sample in which the melt is connected at long scale. In the following, we use these simple mixing models to quantify the distribution of melt in samples in static conditions and to characterise the variation of melt distribution associated to deformation.

To recalculate the volumetric fractions from the weight fraction of basalt bearing olivine aggregates, the density model for silicate melt proposed by Lange and co-workers was used [START_REF] Lange | Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 Liquids -New Measurements and Derived Partial Molar Properties[END_REF][START_REF] Lange | Temperature independent thermal expansivities of sodium aluminosilicate melts between 713 and 1835 K[END_REF][START_REF] Lange | A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures[END_REF]. A density of 3.3 g/cm 3 was assumed for olivine. The values reported by [START_REF] Pommier | Methodological reevaluation of the electrical conductivity of silicate melts[END_REF] for Kilauea basalt and [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF] were used for the conductivity of the basalt and olivine respectively. It is useful here to recall of the equilibrium distribution of melt and how it may detract from this equilibrium configuration. The equilibrium melt distribution is controlled by the dihedral angle which for olivine plus basaltic melt is ~30°, this will result in the melt being concentrated at three grain edges and triple junctions (e.g. [START_REF] Holness | Melt-solid dihedral angles of common minerals in natural rocks[END_REF][START_REF] Kohlstedt | Partial melting and deformation[END_REF]. The single arc observed in the first phase of the sintering experiment (Fig. 3A) is in agreement with a fully connected melt network between the electrodes (Fig. 7, Table 1 online material). The high EC recorded in this first phase of the test, was probably due to the melt being distributed evenly throughout the sample as thick films coating all grain boundaries resulting in a high connectivity of the basaltic melt. The growth of the second arc was most likely related to the attainment of a more equilibrated texture in which the melt was distributed in isolated melt pockets in triple junctions of the olivine grains, and a minor melt fraction in grain boundaries and along grain edges forming a fully connected network between the electrodes (Fig. 3D).

Noticeably, the bulk EC for the two arcs connected in series was almost one order of magnitude lower than that at the beginning of the sintering (Figs. 3,7, Table 1 online material). This translated in a strong decrease of the impedance associated to the Lf arc from 4B to 8B and also a decrease of the Hf-arc size.

In summary, we confirm that the Hf impedance arc gives information on melt distribution at the scale of few grains while the Lf impedance arc gives the melt distribution in the entire sample volume. On this bases, the variation of electrical response with deformation can be used to track the evolution of melt distribution during deformation.

Effect of deformation on the electrical response of basalt-bearing olivine aggregates

Deformation in simple shear resulted in a decrease of the bulk EC (Figs. 5,7). Impedance spectroscopy measurements and the micro-structural analyses of the samples clearly indicate that stress/strain-induced melt redistribution is responsible for the observed significant decrease of EC with deformation (Fig. 6A). Figure 5 C, D and Figure 7 show that the decrease of bulk conductivity was mostly related to a strong increase of resistivity of the low frequency arc. The high frequency arc, associated to the short scale melt connectivity, enlarged only slightly with deformation. The marked growth of the Lf arc with deformation indicates a decrease of the melt fraction that was continuously connected between the electrodes (i.e. along the sample radius; Fig. 1). Such an interruption of large-scale melt connectivity increases the volume of sample in which the liquid was only connected at short scale, and consequently increases the relative contribution of the Hf arc. Using a geometrical model (Archie's law; [START_REF] Watanabe | The Relationship between Electrical-Conductivity and Melt Fraction in a Partially Molten Simple System -Archie Law Behavior[END_REF][START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF] it is possible to recalculate the relative proportions of sample in which the melt is connected at long-range, using the EC associated to the low frequency arc. For sample 8B, these calculations give about 80 vol.% of sample in which the melt was connected between the electrodes. This proportion decreases to 0 vol.% for a strain gamma equal to 0.45 (Fig. 7), reaching a bulk EC value in agreement with that measured by [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF] for pure olivine aggregates. For sample 4B the volumetric portion of sample in which the melt is connected between the electrodes is 50 vol.% before deformation decreasing to 10 vol.% after a total strain gamma of 0.1 (Fig. 7). The experiment performed on sample 4B at constant strain rate and increasing temperature from 1373 to 1473K supported the hypothesis that the observed variations of EC are associated with melt migration and rearrangement. The decrease of conductivity associated to deformation was directly proportional to temperature (Fig. 5B) and between 1373 and 1473 K, the viscosity of the basaltic melt decreases from 500 Pa•s to about 80 Pa•s [START_REF] Giordano | Viscosity of magmatic liquids: A model[END_REF]. The relationship between temperature and rate of EC decrease suggests that the reduction in viscosity of the melt phase increases its mobility favouring a faster redistribution of melt during deformation. The increase of conductivity observed once the stress was removed (Fig. 5) was most likely related to interfacial energies, which tends to redistribute the melt into an equilibrium configuration [START_REF] Parsons | An experimental and numerical study of surface tension-driven melt flow[END_REF][START_REF] Laporte | Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: Dry grain boundaries[END_REF], inducing a slight increase of melt connectivity in the direction of EC measurement.

Microstructural observations suggest, additionally, that the loss of melt connectivity along the radius was associated with the generation of melt-enriched regions approximately parallel to the shear direction (Fig. 6B). This melt-segregation features possibly represents the embryonic stage of generation of melt-bands previously described for partially molten samples deformed in simple shear but at higher strain, with respect to our experiments (γ >1; Holtzman et al., 2003;[START_REF] Holtzman | Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain[END_REF][START_REF] Kohlstedt | Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction[END_REF]. These melt-enriched bands develop first at higher shear stress/strain (on the outer portion of cylindrical specimen deformed in torsion) and with increasing deformation, they propagates toward lower stress/strain regions (the core of the sample; [START_REF] King | Stress-driven melt segregation in partially molten olivine-rich rocks deformed in torsion[END_REF][START_REF] Kohlstedt | Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction[END_REF]. The increase of shear stress and strain perpendicular to the shear direction effectively result in a gradient in local dilation and compaction, which force the drainage of melt from direction parallel to the gradient to feed melt-enriched bands approximately parallel to the direction of shear.

The generation of such bands would increase the melt connectivity and enhance significantly the EC in the direction of shear. Consequently, simple shear deformation in presence of a shear stress gradient oriented perpendicular to the shear direction, can generate electrical anisotropy with higher EC in the direction of shear and lower EC in the direction of the stress gradient. More specifically, EC in the shear direction will tend to values corresponding to in-parallel conduction (Hashin and Shtrikman upper bound; [START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF], while in the perpendicular direction EC corresponds to that of an in-series configuration of olivine and melt bearing olivine (Hashin and Shtrikman lower bound; Fig. 7; [START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF]. Experimental and theoretical studies on partially molten systems showed that melt redistribution is controlled by pressure gradients [START_REF] Stevenson | Spontaneous Small-Scale Melt Segregation in Partial Melts Undergoing Deformation[END_REF][START_REF] Jin | Melt Topology in Partially Molten Mantle Peridotite during Ductile Deformation[END_REF][START_REF] Ricard | A two-phase model for compaction and damage 2. Applications to compaction, deformation, and the role of interfacial surface tension[END_REF], interfacial energy [START_REF] Parsons | An experimental and numerical study of surface tension-driven melt flow[END_REF][START_REF] Hier-Majumder | Role of grain boundaries in magma migration and storage[END_REF] and, as this experimental work and a recent theoretical study demonstrate [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF], by shear stress gradients (see also [START_REF] Hier-Majumder | On grain boundary wetting during deformation[END_REF]. We performed calculations adapting the model proposed by [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF] to the shear stress gradient present in our torsional experiments to substantiate the possibility of EC variation being associated to melt migration.

Numerical simulation of melt-migration velocity

The same nondimensionalization scheme proposed by [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF] was used for the calculations. The model (Equations 18-23;[START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF] was applied to a system undergoing simple shear deformation in presence of a positive stress gradient from the core to the outer portions of the sample (identical to the stress conditions in our experiments for a material with a stress exponent of 3 [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF]. This resulted in a different boundary condition for the stress distribution with respect to equation 23 given by [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF], which leads to a solid nondimensional velocity (V r S ) field in the gradient direction given by:

r k b r V r V r V b L c S r S r S r c ∂ ∂τ τ η δ γ η ∂ ∂ ∂ ∂ δ φ max 2 0 2 2 2 2 - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + - ( 5 
)
where b is the radius of the cylindrical system in meters, d c is the compaction length (Fig. 8), r is the nondimensional radius, h 0 is the isotropic viscosity of the system, g is the nondimensional coupling factor (given by Equation 11of [START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF], k f is the permeability (calculated following the formulation proposed by (Holtzman et al., 2003) t is the shear stress, h L is the liquid viscosity (80 Pa•s; [START_REF] Giordano | Viscosity of magmatic liquids: A model[END_REF], t max is the maximum shear stress value applied on the outer portions of the specimen. For the calculations, the same shear stress distribution given by torsional deformation in Paterson apparatus [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF] was used:

max 3 1 2 ) ( τ τ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = b r r (6)
Due to the presence of a central nickel electrode in our samples, we considered only the stress gradient between the electrode and the outer part of the specimens. Equation 5 was solved by finite difference method. The mass conservation equation allows computing the nondimensional liquid velocity (V r L ) field:

V r L = φ -1 φ V r S ( 7 
)
where f is the porosity (melt volume fraction) of the system. Using input values appropriate for experiment 8B a maximum velocity of about 200 µm/hr was obtained for sample 8B (melt volume fraction of 0.116). This velocity results in a total maximum displacement of about 1.2 mm in 6 hours, which is comparable to that observed in the experiment PP110 after 6 hours deformation (Fig. 8). In summary the calculations predict that the melt migrates to the high shear-stress portions of the sample (Fig. 1; [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF] within the same time-scale of the experiments (Fig. 8), confirming the control of shear stress gradients on the observed melt redistribution (Fig. 6).

Needless to say, the segregation of melt observed in our experiments occurred at higher stresses and strain rates in comparison to deformation in the Earth's mantle. Segregation of melt is controlled by stress gradients and surface tension. Parson et al. (2008) and [START_REF] Kohlstedt | Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction[END_REF] showed that both for experiments and conditions relevant to the asthenosphere, differential stresses dominate over surface tension, which tend to equally redistribute the melt-phase in a partially molten rock. They also demonstrate that the rate of melt segregation is higher than the rate of melt redistribution by surface tension. An additional factor that could be important in the mantle is the interplay between stress and buoyancy driven segregation. Numerical models seem to demonstrate that stress induced segregation will dominate at mid-ocean ridges [START_REF] Kohlstedt | Shearing Melt Out of the Earth: An Experimentalist's Perspective on the Influence of Deformation on Melt Extraction[END_REF]) over short length scales whereas buoyancy driven segregation will dominate over longer length scales [START_REF] Rutter | The extraction of crustal melts from their protolith and the flow behavior of partially molten crustal rocks[END_REF]. However, the analyses of the relative effects of stress and buoyancy for the melt segregation mechanisms proposed in our work is beyond the scope of this paper. Future studies focusing on this aspect may be of extreme importance.

Implications for anisotropy at the Lithosphere-Asthenosphere boundary

The LAB underneath mid-oceanic plates is characterized by a significant increase of EC and a decrease in seismic wave propagation velocity at depths between 70 and 150 km [START_REF] Forsyth | Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment[END_REF][START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF][START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF][START_REF] Kawakatsu | Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates[END_REF][START_REF] Rychert | A Global View of the Lithosphere-Asthenosphere Boundary[END_REF]. A horizontal layering of melt-rich and melt-depleted mantle in the LAB in the direction of spreading has been proposed and could account for these geophysical observations [START_REF] Kawakatsu | Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates[END_REF]. This layering could be generated by simple shear resulting from the rheological decoupling between the lithosphere and the less viscous asthenosphere (Holtzman et al., 2003;[START_REF] Holtzman | Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain[END_REF][START_REF] Takei | Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy[END_REF]. However, such shear geometry would not generate the observed anisotropy in EC between the ridge-parallel and spreading directions [START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF][START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF][START_REF] Evans | Geochemistry Carbon in Charge[END_REF], since it would produce two-dimensional melt planes subparallel to the LAB (Holtzman et al., 2003;[START_REF] Holtzman | Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain[END_REF] and the EC would be the same in both the ridge parallel and spreading directions. Anisotropy of electrical conductivity can be generated by high degree of melt connectivity in the spreading direction coupled with low connectivity in the ridge parallel direction (Figs. 9, 10). The low connectivity in the ridge parallel direction could operate by structures either at the grain scale (few millimetres) or at the scale of several tens of kilometres given the lateral resolution of magneto-telluric surveys at depth of ~100-150 km.

Several mechanisms such as small-scale sub-lithospheric convection and viscous fingering of the asthenosphere have been proposed for the generation of melt-enriched channels in the spreading direction (e.g. [START_REF] Jha | Buoyant mantle upwelling and crustal production at oceanic spreading centers: On-axis segmentation and off-axis melting[END_REF][START_REF] Weeraratne | Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific[END_REF][START_REF] Ballmer | Intraplate volcanism with complex age-distance patterns: A case for small-scale sublithospheric convection[END_REF]. Regions of high melt fraction coexisting with melt-poorer regions aligned along the spreading direction would necessarily result in differences in viscosity in the same direction. Different viscosities imply partitioning of strain at the LAB and gradients in stress/strain rate along the ridge direction. Experiments and calculations performed in this study show that stress/strain gradients and gradients in melt fraction are intimately related, being capable of positive feedbacks that can result in the rapid drainage of melt.

More precisely, our experiments show that these gradients perpendicular to the shear direction (i.e. ridge parallel direction) tend to reduce the degree of melt connectivity in the direction of the stress gradient, which could be responsible for the generation of channel-like melt-enriched structures in the direction of MOR spreading. As a consequence, sub-lithospheric convection and viscous fingering could induce inhomogeneity in melt distribution, resulting in viscosity variation of the LAB, which combined with stress/strain driven melt redistribution could culminate in the generation of melt-enriched channels elongated in the spreading direction, a structure that could account for the electrical anisotropy at the LAB (Figs. 9, 10).

The development of melt-enriched channels elongated in the spreading direction can therefore go along with, and may most likely be faster than, the spreading of the lithosphere. At increasing distance from the MOR, the decrease of decoupling between lithosphere and asthenosphere should reduce the intensity of melt redistribution and decrease the degree of electrical anisotropy away from the MOR axis. Electrical conductivity at the EPR in the ridge-parallel direction seems in fact to increase (i.e.

reducing the degree of anisotropy) with increasing distance from the ridge (see Figure 1 of [START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF]and Figure 3 of Baba et al., 2006).

The proposed organization of the melt not only can account for the anisotropy measured during the MELT experiment [START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF][START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF]Figs. 9A, 10, Table 2 online material) but could also give an explanation to a number of independent observations. The analysis of a global dataset of spreading velocity [START_REF] Muller | Age, spreading rates, and spreading asymmetry of the world's ocean crust[END_REF] reveals that the spreading rates in MOR sectors contained between transform faults are not constant. At the EPR, velocities vary between between 88 and 90 mm/y with a wavelength of the order of tens of kilometres [START_REF] Muller | Age, spreading rates, and spreading asymmetry of the world's ocean crust[END_REF]Fig. 9C), which might reflect gradients in melt fraction (i.e. rheology gradients) at the LAB [START_REF] Turcotte | Geodynamics[END_REF]. Additionally seamounts tend to be aligned in direction perpendicular to the MOR (Fig. 9C), and 30 Th-238 U disequilibrium show that magma erupted as far as 40 km away from the ridge axis have been transported considerably faster (190-210 mm/yr) than the average spreading rates [START_REF] Zou | Constraints on melt movement beneath the East Pacific Rise from Th-230-U-238 disequilibrium[END_REF]. The presence of melt-rich channels in the spreading direction could account for the distribution of seamounts and would allow the fast transfer of magma toward off-axis locations. Finally, melt-rich channels at the LAB would imply the lateral extraction at depth of a melt fraction that does not reach the ridge axis. If, as indicated by geophysical surveys, such an extraction occurs at 100-150 km depth underneath the ridge where very low degree of mantle melting occurs [START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF][START_REF] Gaillard | Carbonatite Melts and Electrical Conductivity in the Asthenosphere[END_REF], this extraction process must deplete the source of MOR volcanism in incompatible and volatile elements [START_REF] Gaillard | Carbonatite Melts and Electrical Conductivity in the Asthenosphere[END_REF]; see also partitioning data in Hammouda et al., 2009). Melts produced at 150 km underneath the ridge are carbonatites whereas melts produced at 100 km are believed to be carbonated basalts, i.e. sort of hybrid between carbonatites and basalts [START_REF] Hirschmann | Partial melt in the oceanic low velocity zone[END_REF]. It is therefore possible that the lateral removal of such chemically enriched liquids from the deepest melting zones is accompanied by emissions of depleted basalts at the ridge, whereas portions where such removal does not occur are associated to a relatively enriched MOR volcanism. The sporadic occurrence of E-MORB (exposed both off-axis and on axis) and generally embedded by N-MORB at the EPR [START_REF] Niu | Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component[END_REF] and elsewhere [START_REF] Donnelly | Origin of enriched ocean ridge basalts and implications for mantle dynamics[END_REF]) might be related to such lateral extraction in depth. E-MORB, notably richer in Nb relative to N-MORB [START_REF] Niu | Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component[END_REF], must accordingly derive from a CO 2 richer mantle source [START_REF] Le Roux | The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10 degrees N and 12-14 degrees N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl)[END_REF]. Such mantle source, rich in carbonatites or carbonated basalts, is therefore electrically conductive. Such geometry of MOR plumbing systems provides a rationale to interpret electrical anisotropy at the LAB and could exert a control on the chemistry and distribution of magmas that erupt at constructive plate margins.

Figure captions

38 During the measurement the assembly is isostatically pressurized using Argon gas. (B)

Enlarged sketch of the sample. The plot on top gives the shear stress distribution for a material with a stress exponent of 3 (as measured in these experiments), according to [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF]. The red arrows give the direction of measurement of EC.

The grey central cylinder and the external metallic sheet are the two electrodes hence EC is measured in coaxial geometry. [START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF] or in tubes (lower values). The green area represents the conductivity of olivine-basalt aggregates in which the melt is not connected (Hashin and Shtrikman lower bound;[START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF]. The dashed grey lines give the conductivity for a system in which, only in part of the sample volume, the melt is connected (the volume of sample in which the melt is connected is given by the numbers close to the lines). These calculations have been performed using the Archie's law (see, ten [START_REF] Ten Grotenhuis | Melt distribution in olivine rocks based on electrical conductivity measurements[END_REF]. All the calculations have been performed using data (measured at 400 MPa) from [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF] for olivine [START_REF] Pommier | Methodological reevaluation of the electrical conductivity of silicate melts[END_REF] for the basalt at 1473 K. The sketches close to the coloured fields show the possible arrangements of melt (in red) and olivine (in green) for the different trends of variation of electrical conductivity. Positive velocities are for displacement toward positive values of the radius. The black continuous line gives the stress variation along the sample according to [START_REF] Paterson | Rock deformation tests to large shear strains in torsion[END_REF]. The calculations were performed with an isotropic viscosity of 10 12 Pa•s

(measured in the experiment on sample 8B), liquid viscosity of 80 Pa•s [START_REF] Giordano | Viscosity of magmatic liquids: A model[END_REF], melt fraction (porosity) 0.116 (corresponding to 8wt.% basalt), permeability 3.9•10 -15 m 2 (calculated according to Holtzman et al. 2003).
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mechanism and the black symbols give the bulk EC. The light grey area covers the previously measured values of high frequency EC for partially molten rocks [START_REF] Roberts | Partial-melt electrical conductivity: Influence of melt composition[END_REF], while the green area represent the EC determined for olivine aggregates [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF]. Both the areas give the range of EC values measured at 1473 K. (A) In the experiment shown in Figure 5A after a strain rate increase from 7.3•10 -6 s -1 to 1.2•10 -5 s -1 shear weakening was observed. The strong decrease of bulk EC is associated with an only minor decrease of the Hf-EC, which implies that the decrease of EC is mainly associated to a strong decrease of electrical conductivity associated to the low frequency mechanism. (B) The test shown in figure was performed at constant strain rate but increasing the temperature during the test. The vertical lines separate portions of the experiment for which the temperature was constant. The rate of decrease of bulk EC increases significantly from 1373 to 1473K. In both the experiments once the stress was removed the bulk EC started to increase with a slow rate. [START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF]. The dark green area shows the variation of conductivity as function of temperature for pure olivine and aggregates in which the melt (0.2 to 4 vol.%) is not connected (Hashin and Strickman lower bound;[START_REF] Hashin | A Variational Approach to Theory of Effective Magnetic Permeability of Multiphase Materials[END_REF]. The illustrations on the right hand side of the diagram are schemes of the two melt-configurations. The calculations have been performed using data (measured at 400 MPa) from [START_REF] Constable | Electrical-Conductivity of Olivine, a Dunite, and the Mantle[END_REF] [START_REF] Baba | Mantle dynamics beneath the East Pacific Rise at 17 degrees S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment[END_REF][START_REF] Evans | Geophysical evidence from the MELT area for compositional controls on oceanic plates[END_REF]. The square and deformed squares give the measured bulk EC before and after deformation respectively (see Tables 1 and2 online material).