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Triassic alkaline magmatism of the Hawasina Nappes: 

post-breakup melting of the Oman lithospheric mantle 

modified by the Permian Neotethyan Plume. 
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ABSTRACT 
Middle to Late Triassic lavas were sampled within three tectonostratigraphic groups of the Hawasina Nappes in 

the Oman Mountains. They are predominantly alkali basalts and trachybasalts, associated with minor sub-

alkaline basalts, trachyandesites, trachytes and rhyolites. Their major, trace elements and Nd-Pb isotopic 

compositions are very similar to those of the Permian plume-related high-Ti basalts which also occur in the 

Hawasina Nappes. The Triassic lavas derive from low-degree melting of an enriched OIB-type mantle source, 

characterized by εNdi = 0.3-5.3 and (206Pb/204Pb)i = 16.96-19.31 (for t = 230 My). With time, melting depths 

decreased from the garnet + spinel to the spinel lherzolite facies and the degree of melting increased. The oldest 

are distinguished from the others by unradiogenic Nd and Pb signatures, with εNdi = -4.5 to -1.2 and 

(206Pb/204Pb)i = 16.35-17.08, which we attribute to their contamination by Arabo-Nubian lower crust. The lavas 

likely derived from the Oman lithospheric mantle, the original DMM-HIMU signature of which was overprinted 

during its pervasive metasomatism by the Permian plume-related melts. We suggest that these lavas were 

emplaced during post-breakup decompression-triggered melting in the Middle Triassic during global kinematic 

reorganization of the Tethyan realm. 
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1. Introduction 

 

Petrologic and geochemical studies of ancient oceanic crust and continental margins can 

be used to reconstruct the dynamics of past rifting and oceanization processes. The Middle 

Permian opening of the Neotethyan Ocean (Besse et al., 1998) separated Gondwana from 

Cimmerian continental blocks (Ricou, 1994; Stampfli and Borel, 2002). It led to the formation 

of passive continental margins south of the Neotethys Ocean, i.e. on the northern edges of the 

Australian, Indian, Arabian and African shields. Cretaceous to Neogene convergence between 

Laurasia and Gondwana (Stampfli and Borel, 2002) then led to the disappearance of 

Neotethyan oceanic crust. Fragments of its southern margins were incorporated into Alpine 

collisional belts in the Himalayas, Oman, Zagros, Syria, Cyprus, Turkey and Greece 

(Coleman, 1981, Fig. 1a).  

These inverted margin fragments carry remnants of successive magmatic episodes, which 

can be used to constrain the formation and development stages of the southern Neotethyan 

margin. For instance, Middle Permian flood basalts are widespread in NW Indian (Panjal 

Traps) and Oman (Saih Hatat and Hawasina nappes Fig. 1a). Their plume-related 

geochemical features suggest that the breakup of Gondwana was associated with the 

emplacement of an intraplate volcanic province and associated volcanic-type margins 

(Garzanti et al., 1999; Maury et al., 2003; Lapierre et al., 2004; Chauvet et al., 2008). 

Younger (post-breakup) volcanic sequences are generally tectonically associated with 

Tethyan ophiolitic nappes, from the Himalayas to the eastern Mediterranean (Fig. 1a). Within 

these nappes, volcanic rocks are stratigraphically associated with late Middle to Late Triassic 

pelagic sediments and/or reef limestones. In the Oman Mountains, these Triassic post-breakup 

volcanic series have been considered as tectonically inverted intra-oceanic plateaus or 

seamounts (Glennie et al., 1974; Searle et al., 1980; Searle and Graham, 1982; Robertson and 

Searle, 1990; Stampfli et al., 1991; Pillevuit, 1993; Pillevuit et al., 1997), as well as their 

equivalents in the Himalayas (Ahmad et al., 1996; Robertson, 1998; Corfield et al. 1999) and 

Mediterranean sequences (Syria: Al Riyami and Robertson, 2002; Cyprus: Lapierre et al., 

2007; Chan et al., 2008; Turkey: Maury et al., 2008; Greece: Monjoie et al., 2008),. 

Alternatively, the Oman Triassic lavas have been interpreted as remnants of a second rifting 

episode of the Arabian continental margin (Lippard et al., 1986; Béchennec et al., 1988, 1990, 

1991).  

A new petrologic and geochemical investigation (major and trace elements and Nd, Pb 

isotopes) of Middle to Late Triassic lavas from the allochthonous units of the Oman 

Mountains allows us to address these two hypotheses. 
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2. Geological setting 

 

The Arabian continental margin of the Neotethys ocean formed during Permo-Triassic 

times (Béchennec et al., 1988; Robertson and Searle, 1990). Reconstructions of this margin 

(Glennie et al., 1974; Béchennec, 1987) suggest the occurrence of a continental platform 

(Saiq Fm.), a continental slope (Sumeini Group), and basinal environments (Hawasina units). 

In the Oman Mountains, remnants of several basins are exposed in the Hawasina Nappes, 

which are sandwiched between the autochthonous Arabian platform and the Semail ophiolitic 

nappe (Fig. 1b; Bernouilli and Weissert, 1987; Béchennec et al., 1988). They include Middle 

Permian (Murghabian) to Late Cretaceous sedimentary and volcanic units.  

Béchennec (1987) and Béchennec et al. (1988, 1990, 1993) distinguished four 

tectonostratigraphic groups within the Hawasina Nappes tectonic pile (Fig. 1c,d). From the 

base to the top, they are the Hamrat Duru, Al Aridh, Kawr and Umar Groups (Fig. 1d). These 

groups were emplaced either in proximal (Hamrat Duru) or distal (Umar) pelagic basins, in a 

trench or slope (Al Aridh) or as an isolated carbonate platform (Kawr). While the Hamrat 

Duru basin appeared during the Middle Permian major rifting event, the three others (Al 

Aridh, Kawr and Umar Groups) formed during Middle to Late Triassic (de Wever et al., 

1990). Because they are mainly found within tectonic slices, the remnants of the Hawasina 

Triassic carbonate platform were also named Oman Exotics (Glennie et al., 1974; Searle and 

Graham, 1982; Robertson and Searle, 1990) and the Umar Group volcanics correspond to the 

Haybi Volcanics of Searle et al. (1980). The latter authors performed geochemical analyses on 

a Permian and Triassic sample set coming from the northern part of the Oman Mountains.  

Middle to Late Triassic volcanic sequences (ca. 10 to 100 m-thick) and associated 

magmatic intrusions occur (i) below and within the pelagic sediments of the Umar Group 

(Sinni Fm.); (ii) below and within the Kawr platform carbonates (Misfah Fm.); (iii) below the 

Al Aridh Group slope/trench deposits (Sayfam Fm.); and finally (iv) within the pelagic 

deposits of the Hamrat Duru Group (Matbat Fm.). Synsedimentary megabreccias intercalated 

within the proximal successions of the Hawasina Nappes (Watts, 1990; Pillevuit, 1993) 

suggest contemporaneous tectonic activity. This Middle to Late Triassic tectono-magmatic 

event occurred 30 to 40 My after the Middle Permian opening of Neotethys (Béchennec, 

1987; Pillevuit, 1993; Baud et al., 2001). 

 

3. Sampling and petrography 
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In this study, lavas from the Umar and Kawr Groups were sampled in the central part of the 

Oman Mountains, near the western termination of the Jabal Akhdar anticline (Al Qurti and 

Misfah localities, Fig. 1c,d). Additional samples were collected from three other Umar sites 

(Sinni, Sayjah and Aqil villages, Fig. 1c). The Al Aridh Group volcanics were sampled on the 

SW and NW flanks of the Jabal Buwaydah. Coeval volcanics from Hamrat Duru Group were 

not studied. 

 

3.1. The Umar Group 

The Umar Group is directly overthrusted by the Semail ophiolite (Fig. 1c,d). Its Triassic 

succession includes three lithofacies (UmV1-3, Béchennec, 1987; Beurrier et al., 1986) which 

are well exposed as a succession of tectonic slices in the Al Qurti section (Appendix A). The 

15 samples collected along this section exhibit the largest petrologic diversity of our suite, 

with, from base to top, basalts, trachyandesites, trachytes and rhyolites. The basal unit 

(UmV1) corresponds to a 100 m thick succession of basaltic pillow-lavas, often tubular and 

dominated by subaphyric to porphyritic vesicular basalts with dispersed clinopyroxene 

phenocrysts (Om04-10, -11, -12). The second unit (UmV2) includes basaltic flows capped 

with pelagic sediments (Om04-18, -19) and trachyandesitic pillowed lavas (Om04-17, -24, -

27), successively overlain by hyaloclastites and volcanogenic debris flows. The latter contain 

rhyolitic lava blocks with plagioclase (Om04-29) and quartz grains (Om04-34, -35). The third 

unit (UmV3), emplaced between the Kawr and Umar Groups, corresponds to columnar-

jointed plugs showing trachytic textures with Na-rich plagioclase microcrysts and rare biotite 

phenocrysts (Om04-37, -38). 

 

3.2. The Kawr Group  

In the Hawasina nappes, the Kawr Group outcrops mainly south of the western 

termination of Jabal Akhdar anticline, in several mountains capped by high carbonate cliffs 

(Jabal Misht, Jabal Misfah, Jabal Kawr, and Jabal Ghul; Fig. 1c). Its stratigraphy (Béchennec, 

1987; Pillevuit, 1993) has been defined on the northern and eastern slopes of Jabal Misfah 

(Appendix A). A 50 m thick basal volcanic unit, dated Ladinian-Carnian (Pillevuit, 1993) is 

made up of massive and pillowed basaltic flows, hyaloclastites and tuffites. These volcanics 

are successively overlain by Ladinian-Carnian to Rhaetian marly limestones, by thick and 

massive platform limestones crosscut by numerous basaltic dikes and sills, and finally by 

Jurassic to Cretaceous pelagic deposits. Among the 23 samples (Appendix A) collected from 

the Kawr Group, 11 come from the basal volcanic unit and 12 from the dykes and intrusive 

bodies. The basal flows, as well as the sills and dykes, show aphyric (Om04-52 and -54), 
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microlitic (Om04-56, -59, -66), or highly porphyritic textures with abundant clinopyroxene 

phenocrysts (Om04-55, -57, -58).  

 

3.3 The Al Aridh Group  

The Al Aridh Group mainly outcrops along the southern flank of the Oman Mountains 

(Fig. 1c). It includes a basal volcanic sequence overlain by breccia horizons dated 

Middle/Late Triassic to Santonian (Béchennec et al., 1993). Seven samples were collected 

from two sites in Jabal Buwaydah, located south of the Jabal Kawr (Fig. 1c). The first one 

(“Buwaydah 1” in Fig. 1c) exposes a 40 m thick sequence of sills and massive flows, 

intercalated with basaltic pillows and overlain by a trachyandesitic flow. In the second 

locality (“Buwaydah 2” in Fig. 1c), the 150 m thick volcanic succession is capped by cherts 

and pelagic limestones dated Carnian to basal Norian (de Wever et al., 1990). The Al Aridh 

Group samples are porphyritic basaltic to trachyandesitic lavas with serpentinized olivine, 

fresh clinopyroxene and Fe-Ti oxides phenocrysts. 

 

4. Geochemical data  

 

4.1. Analytical methods 

Sixty one samples (31 from the Umar, 23 from the Kawr and 7 from Al Aridh Group) 

were selected for petrographic and geochemical analysis. These rocks were pulverized in an 

agate mill and analysed using methods similar to those described in previous papers (see 

Chauvet et al., 2008 and references therein). Major elements and a set of trace elements 

(shown in italics in Table 1 and Appendix B) were determined by inductively coupled 

plasma-atomic emission spectrometry (ICP-AES) at the Université de Bretagne Occidentale 

in Brest, following the procedures of Cotten et al. (1995) and using international standards for 

calibration tests (AC-E, BE-N, JB-2, PM-S, WS-E). Rb contents were measured by flame 

atomic emission spectroscopy. Relative standard deviations were ~ 1 % for SiO2 and 2 % for 

other major elements except P2O5 and MnO (0.01%), and ~ 5 % for trace elements. 

Additional trace element contents (Table 1) were measured by ICP-MS at the Université 

Joseph Fourier in Grenoble on 45 samples (27 from Umar, 14 from Kawr and 4 from Al 

Aridh), using the procedures of Barrat et al. (1996) and BHVO-2, BEN and BR-24 standards. 

Analytical errors were less than 3 % for trace elements except Cs (<5%). 

Isotopic Nd and Pb data (Table 2) were corrected for in situ decay using an average age of 

230 Ma (Ladinian-Carnian). All the Hawasina samples were leached twice in 6N HCl during 

30 minutes at 100°C before acid digestion and Nd and Pb chemical separation in order to 

avoid or minimize alteration effects (see below). Nd (semi-dynamic acquisition) isotopic 
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 al. (1997). Results on standards yielded 

Nd/ Nd = 143 144 0.511958 ± 34 (n = 6) for the Neodymium Rennes Standard (Chauvel and 

Blichert-Toft, 2001). Nd/ Nd measured ratios were normalized for mass fractionation 

relative to Nd/ Nd = 0.7219. In addition, 39 samples were selected for lead separation and 

leached with 6N tridistilled HCl during 30 minutes at 85°C before acid digestion (36-48 hours 

in ultrapure HF and HNO  acids). Pb blanks were less than 40 pg. Lead isotopes and Nd 

isotopic ratios of samples labelled “Om04-” and “Om05-” and Pb were measured on a Nu-

plasma 500 multicollector magnetic-sector ICP-MS at the Ecole Normale Supérieure in Lyon. 

Details about chemical separations and isotope analytical measurements including 

reproducibility, accuracy and standards, can be found in Bosch et al. (2008) and references 

therein. 
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3

 

4.2. Alteration and sample selection  

Ancient lavas are altered, a process that disturbs their major and trace element patterns 

and complicates calculation of initial isotopic ratios. Although our samples were carefully 

selected in the field, none of them is devoid of post-magmatic minerals and they often display 

numerous fractures filled with calcite, iron oxides and/or smectites. Pillow groundmass and 

vesicles contain variable amounts of calcite, zeolites and clays. In addition, the occasional 

presence of chlorite suggests that some Hawasina basin lavas underwent hydrothermal 

alteration or low-grade greenschist metamorphic conditions.  

The loss on ignition (LOI) values of analyzed samples range from 2 to 13 wt.%, with 

more than half of them below 6 wt.% (Table 1 and Appendix B). Major elements analyses 

have been recalculated to 100% (volatile-free basis). The highest LOI values (> 10 wt.%) 

were measured in the Umar Group vesicular pillow lavas and in the Kawr Group intrusions, 

the groundmass of which is totally replaced by zeolites and calcite. Despite the high LOI 

values of the studied samples, SiO2, MgO, Al2O3, P2O5 and TiO2 contents variations from 

mafic to felsic lavas are relatively regular, and consistent with the petrographic (thin section) 

features of these rocks. In contrast, the large and erratic variations of CaO and Na2O/K2O at a 

given SiO2 or MgO content (Table 1, Appendix B) or at a given “immobile” trace element 

content (e.g. Zr) suggests the mobility of alkaline and alkaline earth elements during 

alteration and/or recrystallization. 

The analyzed samples display rather regular chondrite- and primitive mantle-normalized 

trace element patterns (Appendix C), with the exception of large ion lithophile elements 

(LILE). For instance, Rb, Ba and Sr exhibit strong negative or positive anomalies in 
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multielement patterns which could have been generated either by their remobilization during 

post-magmatic processes (hydrothermalism and/or weathering) or by contamination processes 

during the evolution of their parental magmas. Nevertheless, the erratic behavior of Ca, Na, K 

and LILE is particularly obvious for samples showing the highest LOI and/or the largest 

amount of post-magmatic minerals. Thus, no attempt was made to use them to constrain 

igneous processes. In contrast, La, Nd, Sm, U and Pb correlate well with Th (Appendix D) 

and with high field strength elements (HFSE, not shown in Appendix D). These features 

suggest that the REE and HFSE contents of the studied samples, as well as their Pb and Nd 

isotopic compositions, represent reliable tools to investigate the petrogenesis of Hawasina 

Triassic lavas.  

Sample selection for Pb isotopic analyses (39 samples out of the 54 analyzed for Nd, 

Appendix D) was aimed to eliminate the most altered samples and to account for the observed 

petrologic and geochemical variations. In the Pb and U versus Th diagrams (Appendix D), a 

majority of analyzed samples display Th/U and Th/Pb ratios close to the OIB mean values. 

However, despite a drastic sample selection, significant dispersions of Pb and U 

concentrations are still observed, particularly for Om-49 and Om-52 (Aqil), Om04-40 and -43 

(Sayjah), Om04-12, -34 and -35 (Al Qurti). Related strong anomalies in multielement patterns 

and unusual ratios (Th/U < 2.5 and Th/Pb > 5) might indicate either post-magmatic alteration 

or open-system processes during magma ascent through the Arabian lithosphere.  

 

4.3. Major elements and rock types 

The analyzed lavas exhibit a wide range of SiO2 (42 to 75 wt.%) and MgO contents 

(0.7 to 13 wt.%, Appendix B and Fig. 2a), even though mafic rocks (SiO2 < 53 wt.% and 

MgO > 3 wt.%) are dominant. This chemical diversity is particularly obvious for the Umar 

samples which range from mafic to felsic (45-75 wt.% SiO2, 11.1-0.7 wt.% MgO, Appendix 

B). Among mafic lavas characterized by SiO2 < 53 wt.% and a basaltic-type petrographic 

assemblage in thin section, samples with MgO > 6 wt.% were classified as basalts (n = 26) 

and samples with 3 % < MgO < 6 wt.% as trachybasalts (n = 16). Both types have high P2O5 

(0.18 < P2O5 < 1.58 wt.%) and high TiO2 contents (1.5 < TiO2 < 3.6 wt.%, Fig. 2b), with 

TiO2 < 2 wt.% for only 7 out of 42 samples (Appendix B). These features are typical of 

alkaline magmas (Wilson, 1989). Despite the erratic behavior of alkali elements, a large 

majority of our sample set consistently plots within the alkaline field in the total alkali versus 

silica diagram (Fig. 2c). The very low Na2O+K2O values of Umar Si-rich lavas (Om04-29, -

34 and 35) are probably linked to the widespread alteration of their groundmass. 

 

4.4. Trace elements  
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Most Hawasina Triassic basalts and trachybasalts show enrichment in LREE and 

depletion in HREE and Y, features that are characteristic of intraplate magmas (Sun and 

McDonough, 1989; Willbold and Stracke, 2006). Their multielement patterns are very similar 

to OIB patterns (Fig. 3a,b), with enrichments culminating at Nb (Appendix C). When plotted 

in the Zr/Ti versus Nb/Y and Nb/Y versus Zr/Y diagrams (Fig. 4a,b), most of the samples 

yield Nb/Y ratios higher than 1, consistent with an alkaline affinity (Winchester and Floyd, 

1977). In Fig. 4b, the studied mafic lavas plot within the field of alkali basalts from the 

Icelandic Neo-Volcanic Zone and away from the fields of Icelandic tholeiites and N-MORB 

(Fitton et al., 1997; Kokfelt et al., 2006).  

The multielement diagrams of the Umar samples cluster into two main geochemical 

groups. The first (and by far the largest) one displays high enrichments in the most 

incompatible elements together with fractionated patterns (La/YbN > 15, Fig. 3a) and Nb/Y 

ratios higher than 1. This population hereafter referred to as the “alkali group”, includes all 

the samples from the UmV1 basal unit of the Umar Group (Al Qurti section) and most UmV2 

lavas. The second group exhibits less fractionated patterns, with a lesser enrichment in the 

most incompatible elements and a more subdued depletion in the least incompatible elements 

(5 < La/YbN < 15, Fig. 3a, Appendix C). It includes a few lavas (Om-29, Om04-40, Om04-51, 

Om-42 and -52 from UmV2 unit of the Umar Group) that display Nb/Y ratios lower than 1, 

together with rather low Zr/Ti ratios (Fig. 4a). As these features are consistent with either a 

mildly alkaline or even sub-alkaline (Om04-40) affinity, this group will be referred to as the 

“sub-alkaline group”. 

 

4.5. Nd and Pb isotopes 

4.5.1. Nd isotopic data  

The initial Nd isotopic ratios of 54 analyzed samples range from 0.51211 to 0.51261 

(i.e. εNdi from +5.32 to -4.45; Table 2). The 44 positive εNdi values are distributed among all 

the studied units, whereas the 10 negative εNdi values are associated to the alkaline lavas of 

the Al Qurti UmV1 (5 samples) and Sinni (5 samples) sections of the Umar Group (Table 2). 

εNdi values of the 31 Umar samples cluster into three main groups characterized by (i) 

unradiogenic εNdi values (-4.5 < εNdi < -1.2), (ii) radiogenic εNdi values (2 < εNdi < 4.4), and 

(iii) intermediate εNdi values, including two samples (Om04-40 and Om-97) with εNdi of 

0.52 and 0.34, respectively. The εNdi of the latter two Umar groups encompass those of Kawr 

flows and Al Aridh lavas (0.7 < εNdi < 4.1 and 1.2 < εNdi < 3.2), while Kawr intrusions yield 

more radiogenic Nd isotopic ratios with 3.1 < εNdi < 5.3 (Table 2).  

 

4.5.2. Pb isotopic data  
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In Pb-Pb isotopic diagrams (Fig. 5a,b), Hawasina samples plot within an array subparallel 

to the Northern Hemisphere Reference Line (NHRL; Hart, 1984). Umar samples (n=23) 
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206Pb/204Pb)i, from 15.28 

to 15.64 for (207Pb/204Pb)i and from 35.91 to 39.09 for (208Pb/204Pb)i (Table 2). Kawr and Al 

Aridh samples plot between these extremes. Kawr intrusions exhibit a wide range of Pb ratios 

which straddle that of the Kawr flows and Al Aridh samples. In the Pb-Pb correlation 

diagrams, the five samples that show the highest deviations from the main trend in Th-U and 

Th-Pb diagrams (Appendix C) generally plot within the OIB field, with the exception of the 

Om04-34 rhyolite which yields very unusual Pb ratios (Table 2). Such initial recalculated 

ratios could be linked to an overcorrection due to its particularly high Th contents compared 

to its low Pb concentration (Appendix B). Thus, this sample will not be considered in the 

following discussion. 

 

4.5.3. Pb versus Nd isotopic ratios  

With the exception of Kawr intrusions, which exhibit highly variable Pb isotopic ratios 

together with a restricted range of εNdi values, the studied sample set shows a rough positive 

correlation in the εNdi versus (206Pb/204Pb)i diagram (Fig. 5c). The observed scatter indicates 

that at least two isotopic end-members contributed to the geochemical signatures of the 

Hawasina Triassic magmatism (Fig. 5a,b,c). 

  

5. Discussion 

 

5.1. Fractionation, assimilation coupled with fractional crystallization and partial melting 

effects 

The Umar UmV2 trachyandesites, trachytes and rhyolites (Om04-17, -24, -27 and Om04-

34 to -38) have negative Eu (and Ti) anomalies that are absent from UmV1 and UmV2 basaltic 

flows (Appendix C). The decrease of Al2O3 contents and Eu/Eu* ratios with increasing silica 

content (for SiO2 > 53 wt.%, Fig. 6a,b) suggest that the Eu negative anomaly is correlated to 

plagioclase fractionation. However, a closed-system fractional crystallization process is not 

consistent with most REE variations. Indeed, UmV2 basalts and trachyandesites (Om04-17 to 

27) exhibit similar enrichments in La, but higher HREE and Y contents than UmV1 basalts 

(Fig. 3a, Appendix C). Moreover, in Figure 6c, a jump in (La/Yb)N ratios is observed between 

UmV1 basalts and UmV2 lavas. The whole sample set displays positive correlations between 

La and (La/Yb)N (Fig. 6d), which are not consistent with closed-system fractionation. 
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The isotopic signatures of the studied lavas could be an intrinsic feature of their mantle 

source(s), or acquired via assimilation processes during magma ascent and/or storage within 

the Arabian lithosphere. Among our set, Umar samples exhibit the largest scatter of both SiO
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contents and εNdi values. Their SiO2 contents and trace elements ratios were plotted against 

εNdi values (Fig. 6e) to check the assimilation hypothesis. Umar alkali basalts seem to have 

preferentially sampled the Nd and Pb unradiogenic component. On the other hand, the silica-

rich Umar lavas (UmV2 trachyandesites, trachytes and rhyolites) exhibit εNdi higher than 

those of basaltic lavas. Therefore, the relationships between the isotopic Nd signature and the 

silica contents of analyzed lavas are opposite to those expected for a shallow (upper) crustal 

assimilation process coupled with fractional crystallization (DePaolo, 1980), an increase of 

SiO2 and a decrease in εNdi.  

The studied mafic lavas display (La/Yb)N variations dependant from variable La contents 

(Fig. 6d) and from significant variations of the HREE (trend 1 in Fig. 7a). A sample subset 

shows, in contrast, significant evolution of Yb contents (Fig. 7c) and (Sm/Yb)N ratios, without 

significant variations of La contents (trend 2 in Fig. 7a,b). As garnet has high distribution 

coefficients for HREE, (La/Yb)N and (Sm/Yb)N ratios are sensitive to the amount of residual 

garnet during partial melting (Caroff et al., 1997). An increasing melting degree of garnet-

bearing lherzolite leads to a rapid decrease of La/Yb ratio without major Yb fractionation 

(Luhr et al., 1995). In contrast, increasing melting of spinel lherzolite will involve a more 

rapid Yb fractionation without significant variation of La/Yb ratio (Fig. 7c). In Figure 7c, 

Umar mafic lavas define two main trends delineated by the two grey domains. UmV2 sub-

alkaline basalts characterized by low (La/Yb)N ratios (< 10) show significant (Sm/Yb)N 

variations with highly variable Yb contents. They might derive from variable amounts of 

partial melting degrees (F ~ 5 to 10%) of a garnet-free lherzolitic source. In contrast, the older 

UmV1 alkali basalts, which display high (La/Yb)N ratios (> 15) and low Yb contents 

(< 2 ppm) might derive from a lower amount (F ~ 3 to 6 %) of partial melting of a deeper 

(garnet+spinel-bearing) lherzolitic source. The Kawr and Al Aridh mafic lavas plot between 

the two Umar groups (Fig. 7c) and could have been generated at intermediate depths.  

 

5.2. Evidence for source heterogeneity  

The investigated mafic lavas display geochemical features similar to OIB and continental 

intraplate basalts, i.e. (i) incompatible element enrichments (Fig. 3) and (ii) Nd and Pb 

isotopic compositions clearly distinct from MORB (Fig. 5c). The most Nd- and Pb-radiogenic 

samples plot within the OIB field (Fig. 5), while the least Nd- and Pb-radiogenic ones (Umar 

alkali basalts) plot close to the Enriched Mantle 1 end-member (EM 1, Zindler and Hart, 

1986; Fig. 5c). Their principal mantle source is distinct from the Depleted MORB Mantle 
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(DMM) in that the highest εNdi value is +5.3 (Table 2). Moreover, the isotopic signatures of 

the Umar alkali basalts suggest a contribution of another source, one characterized by strongly 

enriched LREE patterns (Fig. 3a) relatively high La/Nb and Th/Nb ratios (Fig. 8a,b) and 

negative εNd
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i signatures (-4.5 < εNdi < -1.2) (Figs. 5c and 8).  

In addition, the (La/Sm)N versus εNdi plot (Fig. 8c) shows that the LREE enrichment of 

the basaltic samples is not coupled with Nd isotopic ratios. Indeed, it is greatest in the low 

εNdi group (Umar basalts) and in the high εNdi Kawr platform intrusions. In this diagram, the 

occurrence of two distinct isotopic groups and the lack of continuous trends suggest that the 

studied samples do not derive from the melting of variable mixes of two main mantle 

components. In that respect, they differ from most hotspot lavas which usually plot along 

linear trends connecting a depleted and an enriched mantle component in diagrams of Nd and 

Pb isotopic ratios and incompatible trace elements (Phipps Morgan and Morgan, 1999).  

 

5.3. Possible geochemical imprint of the Arabian lithosphere 

In the Ti/Y versus εNdi plot (Fig. 8d), the studied basalts and trachybasalts show 

geochemical signatures characteristic of high-Ti continental flood basalts (Ti/Y>300-350; 

Hawkesworth et al., 1992; Gibson et al., 1995; Peate and Hawkesworth, 1996; Pik et al., 

1998, 1999). Highly variable εNdi values such as those observed for Hawasina lavas are often 

a characteristic of continental basalts. They are generally interpreted as markers of 

interactions between asthenosphere-derived melts and the local continental crust or the 

subcontinental lithospheric mantle (Saunders et al., 1992; Lightfoot et al, 1993; Sharma, 

1997). As shown in Figs. 8a-b, the low εNdi lavas from the Umar display a slight but 

significant depletion in Nb. This feature might be attributed to interactions with the local 

continental lithosphere, e.g. the lower crust or subcontinental lithospheric mantle. 

The Arabo-Nubian shield includes oceanic terranes that formed and accreted during the 

Neoproterozoic Pan-African orogeny (Stern, 1994; Stein and Goldstein, 1996). These terranes 

are characterized by radiogenic Nd and Pb isotopic ratios (+2 < εNdi < +9; Stoeser and Frost, 

2006; Andersson et al., 2006). In addition, mafic and felsic granulites and peridotites, locally 

exhumed or found as xenoliths within Cenozoic lavas, sample of the Arabo-African lower 

continental crust and lithospheric mantle (Fig. 9). Their isotopic characteristics define a large 

domain of variation with, for instance, radiogenic Pb compositions (206Pb/204Pb > 18) and 

positive εNdi signatures for Zabargad granulites and peridotites (Lancelot and Bosch, 1991; 

Hamelin and Allègre, 1988). Moreover, xenoliths from the Arabo-African lithospheric mantle 

also display radiogenic Nd ratios (0.5135 < 143Nd/144Nd < 0.5129), associated to 206Pb/204Pb > 

17: these values are intermediate between DMM and high-μ (HIMU) end-members (Fig. 9). 

In addition, the predominant HIMU isotopic signature (206Pb/204Pb = 18.60 to 19.55) of 
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Neogene-Quaternary intraplate basalts in Syria, Saudi Arabia and Yemen, has been 

interpreted as inherited from the Arabian lithospheric mantle (Bertrand et al., 2003). 

The positive εNd of the Arabian lithospheric mantle (Fig. 9b) precludes it as the main 

source of the studied lavas, which have negative εNd values. Conversely, both the Nd and Pb 

isotopic ratios of the studied lavas plot within the compositional range of the Arabian upper 

and lower crusts. In particular, the isotopic compositions of alkali UmV1 basalts match those 

of mafic granulites from the Yemen lower crust (Baker et al., 1997). This feature together 

with their slight Nb depletion suggests that the UmV1 lavas signature might result from 

assimilation of lower crustal materials (Fig. 8a,b). 

 

5.4. A Triassic Neotethyan plume beneath the Oman margin?  

The OIB-like characteristics and predominantly alkali basaltic features of the Triassic 

Hawasina lavas have led many former authors (Glennie et al., 1974; Searle et al., 1980; Searle 

and Graham, 1982; Robertson and Searle, 1990; Stampfli et al., 1991; Pillevuit, 1993; 

Pillevuit et al., 1997) to consider them as hotspot-related intra-oceanic plateaus or seamounts. 

They might derive from either a genuine Triassic mantle plume or a still active Tethyan 

plume inherited from the Permian magmatic history. However, any isotopic (Figs. 5c and 10) 

or trace element (Fig. 4b) evidence for a depleted mantle component in their source is lacking. 

Conversely, Triassic depleted tholeiites occur in the Mamonia Complex, Cyprus (Lapierre et 

al., 2007), in Baër Bassit, Syria (Perez, 2006) and in Othrys, Greece (Monjoie et al., 2008). 

The isotopic signatures of Mediterranean Triassic volcanics (Fig. 10) are consistent with a 

mixing between the depleted upper mantle (main source of Mamonia, Baër Bassit and Othrys 

depleted tholeiites) and two mantle enriched components, HIMU and EM 2 (Perez, 2006; 

Lapierre et al., 2007; Maury et al., 2008). In contrast with the Oman case, none of these 

volcanics involved the contribution of lower crustal components with negative εNdi to their 

genesis (Fig. 10). This feature suggests that they were emplaced on the Neotethyan oceanic 

floor rather than on a continental margin. 

In addition, the hypothesis of a Triassic plume beneath the Oman margin does not fit 

available geological and chronological constraints. The preserved Triassic lava piles are less 

than 100 m thick, and thus very small with respect to plume-related magmatic successions 

such as traps, oceanic islands or rift-related series. The comparison of the Kawr platform with 

an intra-oceanic atoll built on the top of a seamount (Pillevuit, 1993; Pillevuit et al., 1997) has 

been invalidated by recent fieldwork (Basile and Chauvet, 2009). In addition, there is no 

evidence for magmatic activity in the Oman margin between the Permian (Wordian-

Capitanian, ca. 265 Ma old) and the Middle-Late Triassic (Ladinian-Carnian, ca. 230 Ma old) 
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events. This time gap is inconsistent with the hypothesis of survival of a Neotethyan plume 

since the Permian event. 

 

5.5. An alternative hypothesis: melting of the Oman lithospheric mantle modified by the 

Permian plume.  

Alkali basaltic magmas can be emplaced in regions removed from a mantle plume, 

providing that a distensional tectonic regime causes the uprise and partial melting of enriched 

lithospheric mantle (Wilson, 1989). Passage over an active mantle plume can indeed modify 

considerably the composition of the oceanic (Dupuy et al., 1993; Chauvel et al., 1997) or 

continental (Hawkesworth et al., 1990; Saunders et al., 1992; Lightfoot et al., 1993) 

lithospheric mantle, mainly through melt-induced metasomatism (Harry and Leeman, 1995; 

Downes, 2001). For instance, enriched pargasite-bearing mantle xenoliths from Morocco 

record the pervasive metasomatism of a depleted Proterozoic sublithospheric mantle by 

Tertiary plume-related HIMU-type alkaline melts which obliterated its initial composition 

(Raffone et al., 2009). The HIMU signature of Cenozoic alkali basalts from western Europe 

and their mantle xenoliths is attributed to mantle metasomatism of an heterogeneous 

lithospheric mantle by melts from an Early Tertiary asthenospheric plume (Hoernle et al., 

1995; Downes, 2001). To test such a process, we have compared the compositions of the 

studied Triassic Hawasina lavas and those of their predecessors, i.e. the Permian Hawasina 

basalts which are clearly plume-related (Maury et al., 2003; Lapierre et al., 2004). 

The Permian Hawasina basaltic piles include high-Ti alkali melts and low-Ti tholeiitic 

melts (Fig. 11a), the latter displaying low (La/Sm)N ratios (Fig. 11b) and either slightly 

enriched or slightly depleted multielement patterns (Fig. 11c). On the basis of Nd and Pb 

isotopic data, Lapierre et al. (2004) defined three different geochemical groups. Group 1 low-

Ti tholeiitic basalts are characteristic of the most distal environments of the Hawasina 

Permian basin. They have variable but radiogenic Nd isotopic ratios (3.8 < εNdi < 11.1, Fig. 

12a,b), together with rather homogeneous Pb isotopic ratios (Fig. 12c). Group 2 high-Ti alkali 

basalts are systematically associated with the proximal basin environments, and are more 

enriched in La, Th and Nb than Group 1 basalts (Fig. 11b,c). They are characterized by less 

radiogenic Nd isotopic ratios (3.1 < εNdi < 4.9; Fig. 12a,b). Finally, Group 3 includes high-Ti 

and low-Ti basalts (Fig. 11a) that erupted onto the continental platform of the Arabian 

margin, except for one basalt from the distal basin (top left of Fig. 11c). These Group 3 

basalts are systematically enriched in the most incompatible trace elements and they have 

unradiogenic Nd isotopic ratios (-2 < εNdi < 1.6) and Pb isotopic ratios similar to those of 

Group 2 lavas (Fig. 12). 
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The trace element compositions of the Triassic Hawasina volcanics are overall very 

similar to those of Groups 2 and 3 high-Ti Permian basalts (Fig. 11c). Moreover, with the 

exception of Kawr intrusions and UmV
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1 alkali basalts, the Nd and Pb isotopic compositions 

of Triassic Hawasina basalts match those of Groups 2 and 3 Permian basalts (Fig. 12). The 

UmV1 basalts show Nd and Pb compositions less radiogenic than those of Group 3 lavas (Fig. 

12c).  

The above comparison shows that a component equivalent to that which generated the 

Permian Group 1 distal tholeiites has not been detected in the studied samples. Conversely, 

the Hawasina Triassic lavas are isotopically similar to Permian Groups 2 and 3 lavas, 

respectively (Fig. 12c). It is therefore possible to consider the OIB-type source of Permian 

Group 2 alkali basalts as identical or closely similar to the source of most Triassic volcanics 

(UmV2 unit, Kawr intrusions and the majority of Al Aridh lavas). It might thus represent the 

main mantle reservoir underlying the Arabian margin since Middle Permian times 

(component A in Fig. 12a,b). The Kawr intrusions, which display higher La/Sm and La/Nd 

ratios than other Triassic lavas, could derive from low-degree melting of this source (trend B 

in Fig. 12a,b). 

In the La/Nb, (La/Sm)N and La/Nd versus εNdi diagrams (Figs. 8a and 12a,b), Kawr 

basaltic flows plot between the main radiogenic and unradiogenic components. Trend C, 

drawn in (La/Sm)N and La/Nd versus εNdi plots, suggests that their source might be a mixture 

between OIB-type mantle (component A) and an enriched component. This trend has no 

equivalent among the Permian basalts, but the number of samples defining it is too limited for 

detailed interpretation.  

Finally, the trend towards EM 1 (Fig. 12c) of Permian Group 3 and Triassic UmV1 alkali 

basalts might result from their interaction with the lower crust (trend D in Fig. 12a,b). 

According to Lapierre et al. (2004), contamination of Group 3 Permian lavas would involve 

rocks similar in composition to the gneissic granulites of Zabargad Island. In contrast, UmV1 

basalts have Nd and Pb isotopic ratios that are lower than those of Zabargad granulites (Fig. 

9), and more consistent with the composition of mafic lower crustal xenoliths (Baker et al., 

1997). 

In short, we propose that Permian plume-related alkaline melts metasomatized the Oman 

lithospheric mantle during their ascent towards the surface, overprinting its initial DMM-

HIMU signature. Thirty-five million years later, a post-breakup extension induced partial 

melting of this metasomatized mantle, and generated the Triassic basaltic magmas. During 

their ascent, some of the oldest and deepest melts (UmV1 basalts) interacted with rocks from 

the lower continental crust. 
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5.6. Tectonic framework of the Triassic volcanic event 502 
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Coeval (Ladinian – Carnian) volcanic sequences were emplaced all along the southern 

Tethyan realm. They were interpreted either as belonging to the southern Neotethyan 

continental margin series (e.g. Béchennec et al., 1988, 1991) or alternatively as oceanic island 

on the Neotethyan oceanic floor (Stampfli et al. 1991; Pillevuit et al., 1997). The lower crustal 

contamination suffered by the oldest Triassic basalts in the Umar basin (UmV1) indicates that 

distal parts of the Hawasina basin overlay continental crust during the Triassic. The 

concomitant synsedimentary destabilizations of its continental slope and basin environments 

(Watts, 1990; Pillevuit, 1993) suggest a link between the Triassic magmatic event and 

extensional (post-breakup) tectonic reactivation of the Permian structures. 

The Neotethys opened between the northern edge of Gondwana and the Cimmerian 

continental blocks. These blocks drifted northward during the subduction of the Paleotethys 

beneath the Southern Laurasia active margin (Besse et al., 1998). At the end of the Middle 

Triassic (Anisian), Paleotethyan subduction ended and was replaced by that of the Neotethys 

(Saidi et al., 1997; Besse et al., 1998). In geodynamic reconstructions, this subduction jump is 

generally linked to a global kinematic reorganization of the Tethyan realm. It is either 

attributed to a Neotethys ridge jump (Dercourt et al., 1993; Besse et al., 1998; Vrielynck and 

Bouysse, 2001), or to a change from a transtensional to a distensional regime in the Neotethys 

accretion system (Ricou, 1994). Both processes might lead to a reactivation of the extensional 

tectonic structures inherited from the Permian breakup. The resulting extension might have 

caused convective thinning of the subcontinental lithosphere similarly to that in the Basin and 

Range province (Fitton et al., 1991; DePaolo and Daley, 2000). We suggest that this thinning 

led to the decompression-triggered partial melting of the Arabian uprising mantle, and to the 

emplacement of the Triassic Hawasina basalts. 

 

6. Conclusions 

 

1. Middle to Late Triassic volcanic rocks from the Hawasina Nappes are predominantly 

alkali basalts, with minor associated sub-alkaline basalts, trachyandesites, trachytes and 

rhyolites. Most of them are geochemically very similar to the more abundant Permian plume-

related high-Ti basalts, which also occur in the Hawasina Nappes. 

2. The Triassic basalts derive from low-degree melting of an enriched OIB-type mantle 

source, characterized by 0.3 < εNdi < 5.3 and 206Pb/204Pbi =16.96-19.31. With time, the degree 

of partial melting increased and the corresponding depths decreased from the garnet + spinel 

to the spinel lherzolite facies. Some of the oldest and deepest melts (UmV1 unit of Umar 

Group) are distinguished from the others by their unradiogenic Nd and Pb signature, with -
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4.5 < εNdi < -1.2 and 206Pb/204Pbi =16.35-17.08. We attribute these features to contamination 

by the lower continental crust of the Oman margin. 
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3. The Triassic Hawasina lavas show no evidence for a depleted mantle source, such as 

those documented for the Permian tholeiitic low-Ti basalts of Oman and the Triassic oceanic 

island-type tholeiites of Cyprus. The ca. 35 My time span between their emplacement and that 

of their Permian equivalents suggests that they were not related to prolonged activity of the 

Tethyan plume. We propose instead that they originated from the partial melting of the Oman 

lithospheric mantle, the original DM-HIMU signature of which was overprinted during its 

pervasive metasomatism by Permian plume-related melts. 

4. The origin of the Hawasina Triassic volcanism is tentatively attributed to a post-

breakup decompression-triggered melting event linked to an extensional remobilization of the 

earlier tectonic structures of the Oman margin. This remobilization was possibly a 

consequence of the global kinematic reorganization of the Tethyan realm during the Middle 

Triassic. 
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Figure captions 

 

Fig. 1. Geological setting. a) The Tethyan Suture (ophiolites and associated mélanges) 

after Coleman (1981), with locations of the main late Carboniferous, Permian and Triassic 

volcanic sequences associated to the Neotethyan margins inverted segments (mainly from 

Garzanti et al., 1999). b) Simplified geological map of the Oman Mountains and associated 

main structural units (after Glennie et al., 1974). c) Sampling locations on the geological map 

of the Hawasina nappes (after Béchennec, 1987 modified by de Wever et al., 1990). Sampling 

sites coordinates of Sinni: 23°25’4’’N - 57°09’2’’E; Sayjah: 23°11’23’’N - 57°51’58’’E; 

Aqil: 22°47’8’’N - 57°48’4’’E (Om-45); 22°47’2’’N - 57°51’3’’E (Om-52); 22°47’5’’N - 

57°48’2’’E (Om-42); 22°47’9’’N - 57°48’4’’E (Om-48 and -49); Jabal Buwaydah 1: 

22°53’6’’N - 57°05’7’’E; Jabal Buwaydah 2: 23°00’8N - 57°00’E. d) Regional cross section 

according to Béchennec (1987).  

 

Fig. 2. Selected major element plots for the Triassic Hawasina basin lavas. a) MgO 

(wt.%), b) TiO2 (wt.%) and c) Na2O+K2O (wt.%) versus SiO2 (wt.%) plots. The trend 

separating alkaline and tholeiitic fields in c) is from MacDonald and Katsura (1964) and the 

lava nomenclature from Le Bas et al. (1986).  
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Fig. 3. Chondrite and primitive mantle-normalized trace elements patterns of (a) Umar 

Group samples. b) Comparison between multielement patterns of selected Kawr and Alridh 

Groups basalts and trachybasalts with OIB patterns and the compositional field of the alkaline 

Umar Group samples from the Al Qurti UmV1 unit and the Sinni village (grey array). 

Chondrite, primitive mantle and OIB compositions are from Sun and McDonough (1989). 

 

Fig. 4. a) Zr/Ti versus Nb/Y discriminating diagram of Winchester and Floyd (1977). b) 

Plot of Triassic Hawasina basalts and trachybasalts in the Nb/Y versus Zr/Y diagram of Fitton 

et al. (1997) together with Iceland plume-related picritic, tholeiitic and alkaline primary 

basalts (MgO > 8 wt.%) of the Neo-Volcanic Zone, and the Kolbeinsey and Reykjanes ridge 

basalts (Kokfelt et al., 2006). Note the deviation towards low Nb/Y values for samples with 

La/Nb < 1. 

 

Fig. 5. Initial Pb and Nd isotopic compositions of Triassic Hawasina lavas. Plots of a) 

(207Pb/204Pb)i, b) (208Pb/204Pb)i and c) εNdi against (206Pb/204Pb)i. The compositional fields of 

Indian and Atlantic MORB are compiled from the Petrological Database of the Ocean Floor 

(PETDB). Compositional fields of OIB, mantle isotopic components HIMU (for High-µ), EM 

1 and EM 2 (for Enriched Mantle 1 and 2) and the NHRL (Northern Hemisphere Reference 

Line) are from Zindler and Hart (1986).  

 

Fig. 6. a) and b) Al2O3 (wt.%) and Eu/Eu* versus SiO2 (wt.%) diagrams for Al Qurti 

samples of the Umar Group c) (La/Yb)N ratios of Al Qurti samples plotted against their 

stratigraphic position. d) and e) (La/Yb)N versus La(ppm) and εNdi versus SiO2 (wt.%) 

diagrams for all Triassic Hawasina samples. 

 

Fig. 7. Selected REE plots. a) and b) (La/Yb)N and La versus (Sm/Yb)N plots for 

Hawasina Triassic basalts and trachybasalts. The meaning of arrows (1) and (2) is explained 

in the text. c) La/Yb and Yb (ppm) variations during non-modal partial melting (F values: 

partial melting degrees) of garnet and spinel lherzolite sources “s” containing different 

proportions of these minerals (100% Gt – 0% Sp, 50 % - 50 %, 30% - 70%, 0% Gt – 100% 

Sp). In this model developed by Luhr et al. (1995), source “s” is assumed to be enriched 

relative to chondrite, with La = 6 * Ch (1.79 ppm) and Yb = 1.5 * Ch (0.31 ppm). This model 

was used by Luhr et al. (1995) for primitive basalts with Mg# > 68 to limit the fractionation 

effects related to magmatic differentiation. As the iron contents of the studied basalts may 

have been modified by post-magmatic processes, their MgO contents are used to check the 
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primitive character Hawasina Triassic basalts. Samples with MgO > 7 wt.% are identified by 

thick and doubled symbols.  

 

Fig. 8. Plots of the εNdi of Triassic Hawasina basalts and trachybasalts against: a) La/Nb; 

b) Th/Nb; c) (La/Sm)N and d) Ti/Y. MORB and OIB compositions are from Sun and 

McDonough (1989). SCLM (Sub-Continental Lithospheric Mantle) composition is from 

McDonough (1990) and the compositions of LC and UC (Lower and Upper continental Crust) 

from McLennan (2001).  

 

Fig. 9. Nd and Pb isotopic compositions of Triassic Hawasina volcanics recalculated at 

t = 230 My, compared to the published fields of the Arabian sub-continental lithospheric 

mantle and the regional upper and lower crusts. E. Pr.: Early Proterozoic, Ar: Archean, L. Ar.: 

Late Archean. MORB, OIB, EM 1 and EM 2 are from Zindler and Hart (1986); NHRL is 

from Hart (1984); Arabian lithospheric mantle is from Shaw et al. (2007 - Jordan), Baker et 

al. (2002, 1997 – Yemen and Southern Red Sea), Hamelin and Allègre (1988 – Zabargad 

Island), Blusztajn et al. (1995 – Saudi Arabia). Sudanese crust is from Davidson and Wilson 

(1989); Yemen and Saudi Arabia upper crust is from Whitehouse et al. (2001); Baker et al. 

(2000); Hegner and Pallister (1989); the lower mafic crust is from Cohen et al. (1984 - 

Tanzania), Altherr et al. (1990) and G. Chazot and J. A. Baker (unpublished data presented as 

a composition field in Baker et al., 1997 – Arabia and Yemen); the gneissic lower crust is 

from Lancelot and Bosch (1991 – Zabargad Island). 

 

Fig. 10. Nd and Pb isotopic compositions (at t = 230 My) of Triassic intraplate volcanic 

sequences from Oman and the Eastern Mediterranean occurrences. Data are from this work 

(Oman); Lapierre et al., 2007 (Cyprus); Maury et al., 2008 (Turkey); Perez, 2006 (Syria); 

Monjoie et al., 2008 (Greece). 

  

Fig. 11. Geochemical comparison between the Permian and Triassic lavas from the Oman 

margin. All Permian data are from Lapierre et al. (2004) and Maury et al. (2003). a) and b) 

plots of TiO2 (wt.%) and (La/Sm)N versus Th (ppm) for basalts from the two magmatic 

events. c) Primitive mantle-normalized multielement patterns of the Permian Groups 1, 2 and 

3 and of the Triassic basalts and trachybasalts.  

 

Fig. 12. a) and b) Plots of ε(Nd)i values versus (La/Sm)N and La/Nd ratios for the Permian 

Groups 1, 2 and 3 (Lapierre et al., 2004) and the Triassic basalts and trachybasalts. c) ε(Nd)i 

versus (206Pb/204Pb)i diagrams. All isotopic data are recalculated at t = 230 My. The meaning 

 29



1037 

1038 

1039 

1040 

1041 

1042 

1043 

1044 

1045 

1046 

1047 

1048 

1049 

1050 

1051 

1052 

1053 

1054 
1055 

1056 

1057 

1058 

1059 

1060 

1061 

1062 

1063 

1064 

1065 

1066 

1067 

1068 

1069 

1070 

1071 

of A, B, C and D in diagrams a) and b) is explained in the text. MORB, OIB and primitive 

mantle reference values are from Sun and McDonough (1989). 

 

Table captions 

 

Table 1. Major element (wt.%) and trace element (ppm) compositions of representative 

Triassic lavas (whole set shown in Appendix A). Trace element compositions measured by 

ICP-AES are shown in italics and those obtained by ICP-MS in normal numbers. B: basalts 

(SiO2 < 53 wt.% and MgO > 6 wt.%); TB: trachybasalts (SiO2 < 53 wt.% and MgO = 3 to 

6 wt.%); DB: basaltic dolerite; TA: trachyandesite; T: trachyte; R: Rhyolite. Analytical 

methods explained in the text. 

 

Table 2. Nd and Pb actual and initial (“i” for t = 230 My) isotopic compositions with their 

incertitudes (± 2 σ) for Triassic volcanics from the Hawasina nappes. Analytical methods 

explained in the text. 

 

Appendix 

 
Appendix A. Selected sampling sites. a) Cross section and sample locations in the Al 

Qurti site of the Umar Group (Fig. 1c). b) Stratigraphic column of the basal 300 m of the 

Kawr Group at Jabal Misfah (Fig. 1c) and location of samples.  

 

Appendix B. Major element and trace element compositions of Triassic lavas from the 

Hawasina Nappes. Trace element compositions measured by ICP-AES are shown in italics 

and those obtained by ICP-MS in normal numbers. B: basalts (SiO2 < 53 wt.% and MgO > 

6 wt.%); TB: trachybasalts (SiO2 < 53 wt.% and MgO > 3 wt.%); DB: basaltic dolerite; TA: 

trachyandesite; T: trachyte; R: Rhyolite. Analytical methods explained in the text. 

 

Appendix C. Chondrite and primitive mantle-normalized trace elements patterns of 

Middle to Late Triassic lavas from the Hawasina Nappes. Chondrite and primitive-mantle 

compositions are from Sun and McDonough (1989). 

 

Appendix D. Plots of La, Nd, Sm, U and Pb against Th (ppm) for Triassic Hawasina 

samples. The linear trends reported on some diagrams correspond to the average Th/U and 

Th/Pb ratios of OIB (Sun and McDonough, 1989). 
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