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The transition from the behavior of a single dislocation interacting with a field of fixed obstacles to the
collective motion of multiple dislocations is studied below the depinning transition �thermally activated glide�.
In absence of interactions, a truncated power law distribution of jump amplitudes �avalanches� with a diverging
cutoff toward the critical point, and intermittency are observed. Interactions lead to a modification of the
correlation length exponent below the critical point and to more pronounced intermittency, a dynamics more
compatible to acoustic emission experimental data.
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Plastic deformation of crystalline solids mediated by dis-
locations has long been viewed as a smooth and homoge-
neous “plastic flow.” A fundamentally different picture
emerged during the last several years �1�, that of a complex
intermittent phenomenon characterized by dislocation ava-
lanches �2�, time correlations �3�, fractal patterns, and space-
time coupling �4�. Experimental evidences came first from
acoustic emission �AE� measurements performed on single
crystals of various materials �ice, Cd, Zn, Cu� exhibiting
power law distributions of AE amplitude A, a proxy of the
strain increment � carried by the avalanche, P�A�
�A−�Af�A /A0� �5,6�. The exponent �A=2.0�0.1 was found
to be independent of the applied stress, temperature, strain
hardening, or the material �6�. Scaling cutoff toward large
amplitudes, described by f�A /A0�, has been observed as the
result of a nontrivial finite-size effect �6�. This cutoff does
not evolve with the applied stress or strain. The AE results
were then confirmed by deformation tests on micropillars �7�
and by microextensometry experiments on macroscopic
samples �6�.

These results suggest a critical behavior of the dislocation
system. The simplest modeling framework of this problem is
the behavior of a single dislocation interacting with a random
array of immobile obstacles �8–10� where long-ranged inter-
actions between dislocations are neglected. This is a special
case of the depinning transition for disordered elastic mani-
folds �11�, for which one expects a jerky motion of the dis-
location line with a power law distribution of jump size, S
�the area swept by the dislocation during a jump� P�S�
�S−�Sf�S /S0�. In this case, for an infinitely large system, the
cutoff S0 diverges as S0���−�c�−� when approaching the
critical shear stress �c either from above or from below. Ap-
proaching the critical stress from below is possible if thermal
activation is allowed. This small scale limit of the problem is
however in contradiction with the collective dislocation dy-
namics mentioned above on two fundamental points: �i� criti-
cality is only obtained at the critical point �=�c, i.e., the
cutoff S0 depends on the applied stress, and �ii� the exponent
�S inferred from rough arguments or more sophisticated
analyses is much lower than �A=2, the exponent measured in

AE experiments. The depinning transition of a large array of
interacting rigid dislocations was studied by Moretti et al.
�12� above the critical stress for depinning �no thermal acti-
vation�. They concluded that in terms of depinning transition,
the behavior of such idealized pile-ups does not depart sig-
nificantly from that of isolated elastic manifolds in random
media, and stressed the fundamental difference with the be-
havior of three-dimensional assemblies of dislocations that
exhibit metastable jammed configurations and avalanches
even in the absence of quenched disorder.

Numerical models taking into account long-range interac-
tions between multiple dislocations are in much better agree-
ment with observations �2,13�. This suggests that these long-
range interactions, instead of the short-range interactions
between an elastic line and immobile obstacles, are at the
root of the observed self-organized �essentially stress inde-
pendent� critical plasticity. Here we focus on this transition
from the behavior of a single dislocation interacting with
obstacles to the collective dislocation dynamics, and analyze
the motion of a small number of interacting dislocations
across a field of fixed obstacles randomly distributed in their
glide plane. The motion is thermally activated, i.e., the elas-
tic manifold depinning problem is considered below the criti-
cal point.

A model previously employed to study the thermally ac-
tivated motion of a single dislocation across fields of ob-
stacles is used �14,15�. The model details are presented in
these references. The dislocations are represented as flexible
strings of line tension �=1 /2Gb2 �G is the shear modulus
and b is the Burgers vector length�. Randomly distributed
obstacles are placed in the glide plane. These may represent
precipitates, solute clusters or other obstacles with which the
dislocation interacts in the short range.

Under the action of the shear stress �, a segment of length
lc=1 /�� �� is the obstacle density� pinned by two obstacles
bows out into an arc of dimensionless radius r�=1 /2��. The
applied shear stress �� is normalized by the Orowan stress
Gb / lc, ��=

�lc

Gb . The force acting on the respective obstacles is

F=2� cos� �
2 �, where � is the angle made by the two

branches of the dislocation impinging against the obstacle.
Let us use the nondimensional form f = F

2� =cos� �
2 � for the

force. The obstacle strength is defined as the maximum al-
lowed force fc=cos��c /2�.*Corresponding author; picuc@rpi.edu

PHYSICAL REVIEW E 82, 022107 �2010�

1539-3755/2010/82�2�/022107�4� ©2010 The American Physical Society022107-1

http://dx.doi.org/10.1103/PhysRevE.82.022107


The critical resolved shear stress �c
� at which dislocations

glide through in absence of thermal activation is given by
Friedel’s result �16� �c

�= fc
3/2 �for randomly distributed ob-

stacles�. Here, the applied stress is normalized by the critical
resolved shear stress: 	=�� /�c

�. 	=1 is a critical point for the
system.

The obstacle-dislocation interaction is described in terms
of an activation energy 
G=2�d
G�, where d is a charac-
teristic interaction range. �d becomes the unit of energy of
the problem. The normalized activation energy is written

G�=
G0

��1− f��n, with f�= f / fc being the reduced
dislocation-obstacle interaction force. 
G� depends on the
obstacle nature but decreases monotonically with f�. The
power n=2 is considered, which corresponds to obstacles
with a triangular force-displacement profile.

The per-attempt probability that the dislocation over-
comes an obstacle is given by the Arrhenius form p

=exp�−�
G��, where 1
� = kT

2�d is the dimensionless tempera-
ture. The “circle rolling” procedure outlined in Ref. �17� is
used to advance the dislocation. A stable configuration is
obtained when two conditions are fulfilled at all obstacles in
contact with the dislocation: the dislocation bows out into an
arc of circle of radius smaller than the critical one �no
Orowan looping� and the force acting on all obstacles is
smaller than fc.

Periodic boundary conditions are used in the direction
parallel to the dislocation. The dimension of the model in
this direction is important as spurious cutoffs in the distribu-
tion of jump areas may be introduced by these boundary
conditions. We performed numerical studies varying the re-
spective model size between 100lc and 400lc and concluded
that as long as 	�0.8, the model size can be chosen �200lc.
The model size in the direction of the dislocation motion is
effectively infinite since the obstacle field is continuously
renewed in front of the most advanced dislocation segment.

At low stress, a jump following release from an obstacle
brings the dislocation to the next obstacle and the jump area
S is on the order of lc

2. This increases the probability of
release at the pinning site immediately next to the released
site along the current dislocation line and “unzipping” oc-
curs. In this regime the activation energy for the entire dis-
location glide process is equal to the activation energy for
release at an individual obstacle �when all obstacles in the
glide plane are identical� �14�. This mechanism is repre-
sented schematically in Fig. 1�a�. The red dashed lines rep-
resent new equilibrium segments following thermally acti-
vated release.

At large resolved shear stress, the motion is jerky in the
sense that upon release at an obstacle the dislocation by-
passes multiple neighboring obstacles before finding a new
equilibrium configuration �Fig. 1�b��. In this regime the ac-
tivation energy for dislocation motion is not identical to that
for by-passing a single obstacle.

Single and multiple dislocations moving in the same glide
plane across a field of randomly distributed identical ob-
stacles are considered in this work. The dislocations interact
through their stress field. Dislocation self-interaction �be-
tween segments of the same dislocation� is also considered.
In order to apply the stress produced by the interaction of

dislocation segments within the framework of the “circle
rolling” procedure, the interaction stress is computed at the
center point of each dislocation segment. This additional
stress is applied as a constant field to the entire segment,
which remains circular. This is an approximation since the
stress field introduced by interactions is expected to vary
along the representative dislocation. However, we conjecture
that this approximation has limited effect on the overall dy-
namics.

The dislocations in the pack are forced together by a con-
straining shear stress �0

� which is applied to the first and the
last dislocations of the pack �Fig. 1�. This constraining stress
insures that the average distance between them remains con-
stant in time. All dislocations are equally subjected to the far
field applied stress. The results reported below for packs of
dislocations �three and five dislocations� refer to the behavior
of the middle dislocation of the pack. This way we analyze
how the elastic interaction between dislocations modifies the
jerky motion of individual dislocations. In this study we se-
lect �0

� equal to 10% of the far field stress ��. The average
distance between dislocations in the pack is small enough
��8 to 10lc� to ensure significant elastic interaction between
them.

Figures 2�a� and 2�b� show the distribution of jump areas,
P�S�, for systems of a single dislocation �1d�, and of three
�3d�, and five �5d� interacting dislocations subjected to stress
in the unzipping range, 	=0.4, and to 	=0.6 and 	=0.8 in
the jerky range. Obstacles are weak, with obstacle strength
fc=0.1 in all simulations. The divergence of the cutoff size

FIG. 1. �Color online� Schematic representation of a pack of
three interacting dislocations performing �a� unzipping and �b� jerky
motion. The red dashed lines represent equilibrium configurations
after a release event at one pinning point of the previous stable
configuration �continuous black lines�. In the jerky mode the dislo-
cation bypasses multiple obstacles. The arrows represent the con-
fining stress �0

� acting on the outer dislocations in order to hold the
pack together.
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S0 as the applied stress increases toward the critical point
	=1 is seen in Fig. 2�a�. In this limit, the distribution func-
tion becomes a power law, P�S��S−�S with exponent �S�1.
Dislocation-dislocation interaction �3d and 5d cases� does
not change �S; in all instances, �S remains below the collec-
tive dislocation dynamics exponent, �A.

Signals collected from systems with multiple dislocations
�3d and 5d� were used to generate a cumulative signal ob-
tained by summing up jump amplitudes at given time �pre-
sumably closer to an AE measurement�: S��t�=	iSi�t�, where
Si�t� is the jump area of dislocation i of the pack. However,
the corresponding distributions P�S�� essentially overlap
P�S�.

The data is replotted in Fig. 2�b� as a master curve ob-
tained by fitting the functional form P�S��S−�S exp�−S /S0�
to the data in Fig. 2�a�, with �S=1 and S0��1−	�−�. The
exponent �, which is related to the rate of divergence of the
correlation length, is observed to increase with the number of
dislocations in the pack: �=3.13, 3.38, and 3.47 for 1d, 3d,
and 5d, respectively.

We computed the roughness exponent  by taking the
Fourier transform of the dislocation line profile; the power

spectrum of this function is expected to be a power function
of exponent −�2+1�. At low 	 �	=0.4�, the thermal expo-
nent =0.5 results, while at higher 	 a transition is observed
from an exponent =0.8 �close to the value of 2/3 reported
previously� at large length scales, to =0.5 at small length
scales. The transition moves to smaller length scales as 	
increases, such that for 	=0.6 and 0.8, the larger =0.8
dominates. These roughness exponents and dependence on 	
were also obtained by Kolton et al. �18� for the Langevin
dynamics of an elastic manifold. These authors also indicate
�19� the existence of a roughness exponent =1.26 at very
low temperatures. The roughness exponent does not change
with the number of dislocations in the pack.

We consider next the intermittency of dislocation motion,
and how it is modified by long-range interactions between
dislocations. We analyze first the time series formed by the
wait times between jumps, �t�t�. If the distribution of �t is
Poissonian, the motion is random and the jumps are not clus-
tered in time. Departures from this situation are observed in
all data sets, with the mean of the distribution being smaller
than the standard deviation; this is interpreted as an indica-
tion of intermittent dynamics.

Figures 3�a� and 3�b� represent the distribution functions
P��t� for the 1d and 3d cases and for small and large applied
stress, 	=0.4 and 	=0.8, respectively. The distribution is
closer to an exponential in the low �t limit and appears to
transform into a power law in the large �t limit, the transition
being controlled by the applied stress. Dislocation-
dislocation interaction leads to a better-defined power law
tail and to increasing difference between the mean and stan-
dard deviation of the distribution, i.e., to more pronounced
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FIG. 2. �Color online� Probability density distribution functions
of dislocation jump amplitudes for a single dislocation �1d� and for
the central dislocation of packs of three �3d� and five �5d� disloca-
tions. �a� curves showing the divergence of the cutoff size S0 as the
critical point 	=1 is approached. The dashed line has slope −1. �b�
master curve obtained by normalization with S0=1.03�1−	�−3.13,
S0=1.07�1−	�−3.38 and S0=1.13�1−	�−3.47 for 1d, 3d, and 5d, re-
spectively. The inset shows part of a recorded signal for the 3d
system with 	=0.8.
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FIG. 3. �Color online� Probability distribution functions of wait
times between unpinning events for a� 	=0.4 �log-log plot� and �b�
	=0.8 �semilog plot�. The distribution is exponential at small �t
and power law at large �t. The dashed line in �a� has slope −2.
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intermittency. These observations are independent of the in-
tegration time step, which is chosen small enough to ensure
at least several time steps per dislocation wait time. Actually,
the curves are well approximated by P��t����1
−e−�t/b� / ��t /b��m, with �b ,m�= �0.8,2.3�, �0.3,4�, and
�0.2,5.2� for 	=0.4, 0.6, and 0.8, respectively. This func-
tional form has a power law tail P��t����t /b�−m for large �t,
and is exponential, P��t��e−m�t/2b, for small �t. The transi-
tion from the exponential to the power law-dominated range
takes place at about �t=2b. The exponent m is seen to in-
crease with 	.

A more detailed study of intermittency in these signals
can be performed by means of multifractal analysis, as pre-
viously used in turbulence �20� as well as to analyze jerky
flow in alloys exhibiting Portevin–Le Chatelier effect �21� or
AE signals obtained from deforming single crystals �6�. The
time series S�t� was mapped to a signal with equally spaced
samples. The jerk intensity at each such “grid point” was
computed as ui=u�ti�=
ti−
t/2

ti+
t/2S�t��dt�, i.e., the sum of all dis-
location jumps over the respective temporal bin of length 
t.
The qth moment of the distribution function of series u was
computed. These moments depend on 
t and the expected
scaling is Z
t�q�=	iui

q�
t�q−1�D�q�, where D�q� is the gen-
eralized fractal dimension. The nonlinearity of the spectrum
D�q� is a signature of intermittency. The curves Z
t versus 
t
are power laws, provided the probing scale 
t is larger than
the maximum wait time interval �t. Results of the analysis
are shown in Fig. 4. The generalized fractal dimension D�q�
exhibits nonlinear variation with q in all cases. However, the
curvature, i.e., the intermittent character of the motion, is
more pronounced when approaching the critical point. Dis-
locations interaction also increases the intermittency �see in-
set of Fig. 4�.

To probe the contribution of the signal amplitude and that
of the waiting times to this effect, the signal S�t� was modi-
fied by replacing either the jump amplitude, S, or the wait
time, �t, with random signals, while keeping the other mea-
sure unchanged. Randomizing the wait time series �while
preserving the mean of the distribution constant� completely
eliminates the intermittency, rendering D�q� linear. Perform-

ing the opposite operation, randomizing the amplitudes while
keeping the wait times unchanged, leads to little or no
change in D�q�. Furthermore, the wait times and the ampli-
tudes of the jumps are not correlated. Likewise, successive
amplitude values are not correlated. This means that the area
swept by the dislocation in a given event is essentially deter-
mined by the local obstacle distribution, which is random.
These conclusions remain valid even when using cumulative
jump amplitudes S�.

In conclusion, field-mediated dislocation interaction pro-
motes the appearance of intermittency and modifies the cor-
relation length exponent, therefore appearing to lead to a
transition from the less rich dynamics of a single dislocation
to that of large ensembles of interacting dislocations as evi-
denced by AE experiments. However, long-range interac-
tions between few dislocations does not solve the contradic-
tions between the depinning problem and the collective
dislocation dynamics discussed in introduction.
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�evaluated numerically� of the curves in the main figure. The gen-
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