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[1] The aim of this paper is to assess the scaling properties of heavy point rainfall with
respect to duration. In the region of interest, the probability distribution tails of hourly
to daily rainfall display log‐log linearity. The log‐log linearity of tails is a feature of
fat‐tailed distributions. The conservation of this property throughout the scales will be
investigated in the framework of scale‐invariant analysis. Evidence of the scaling of heavy
rainfall is shown for one particularly long rainfall series through the conservation of the
survival probability shape at durations in the range 1–24 h. An objective method is
implemented to estimate the hyperbolic‐tail parameters of rainfall distributions. This
method is automatized and detects the lower bound above which the distributions exhibit
power law tails and determines the power law exponent a using a maximum likelihood
estimator. The application of unbiased estimation methods and scale‐invariant properties
for the estimation of the power law exponent provides a significant reduction of the
intergage power law variability. This achievement is essential for a correct use of
geostatistical approaches to interpolate the power law parameters at ungaged sites. The
method is then applied to the rain gage network in the Cévennes‐Vivarais region, a
Mediterranean mountainous region located in southern France. The maps show thicker
rainfall distribution tails in the flat area between the seashore and the foothill. It is shown
that in a flat region closer to the Mediterranean Sea the rainfall distribution tails are
hyperbolic and the power law exponent is quasi‐constant with duration, whereas, over the
mountain, the power law behavior is less defined. The physical reasons for such results and
the consequences for the statistical modeling of heavy rainfall are then discussed,
providing an innovative point of view for the comprehension of the rainfall extremes
behavior at different temporal scales.

Citation: Ceresetti, D., G. Molinié, and J.‐D. Creutin (2010), Scaling properties of heavy rainfall at short duration: A regional
analysis, Water Resour. Res., 46, W09531, doi:10.1029/2009WR008603.

1. Introduction

[2] During the last thirty years, a considerable body of
investigations analyzed the scale invariance of rainfall,
demonstrating that rainfall fields have intrinsic scaling
properties within a specified range of scales. A physical
process is scale invariant if its probability distribution, once
applied a rescaling factor, does not change under scale
magnification or contraction within a given range.
[3] Frisch and Parisi [1985] provided fundamental in-

sights into the multiscaling behavior of processes. Analyz-
ing the average value of the qth power of the change in the
turbulent velocity for different time lags, they found that
|v(h) − v(h + l)|q varies as the power law lz(q), where z is
nonlinear with q. The nonlinearity of z(q) indicates that
the velocity fluctuations display multifractal scaling. A
Legendre transform allows to switch from the moment
scaling function to the codimension function c(g), describing

the scaling in terms of probability distribution. The singu-
larity order g in the codimension function expression is the
dual of the moment order q in the moment scaling function.
[4] A particular case of scaling, referred to as simple

scaling, occurs when the scaling exponent z(q) is linear with
q. In simple scaling processes the probability distribution is
rescaled from a scale to another by means of a single scaling
exponent, while in multifractality the scaling exponent
depends on the degree of singularity of the process. The
distribution equality between two probability distributions
at different scales is referred to as “strict sense scaling.” A
weaker property is usually adopted for assessing the scaling
behavior of a process: the equality of moments, referred to as
“wide sense scaling” [Gupta and Waymire, 1990].
[5] First evidences of the multiscaling behavior of mete-

orological fields were shown by Schertzer and Lovejoy
[1987] analyzing meteorological radar reflectivities. Gupta
and Waymire [1990] evaluated and detailed the different
types of scaling of instantaneous radar rainfall with respect
to the surface. The multiscaling concept can be also applied
to time series of rain gage data over a wide range of tem-
poral scales. Ladoy et al. [1993] analyzed a pluviometric
series located in Nîmes (France) covering 50 years of data
characterized at a 12 h time resolution. They have been able
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to determine the multifractal parameters of the rainfall series
finding scale invariance in the range 12 h to 16 days. Hubert
et al. [1993] analyzed data from different regions at tem-
poral scales of 6 min at the Reunion Island (Indian Ocean),
of 15 min in the French Alps, of 1 day at Nîmes and at
Dédougou (Burkina Faso, West Africa). They found out
multiple scaling behavior of point rainfall rates from one to
several days (16–30 days depending on the location).
[6] The scale invariance of rainfall maxima has been the

topic of several studies. Bendjoudi et al. [1997] derived a
multifractal based intensity‐duration‐frequency formulation
showing that a multifractal phase transition implies alge-
braic tails above a given singularity level. From the direct
analysis of rainfall data series, Burlando and Rosso [1996],
Menabde et al. [1999], and Borga et al. [2005] showed that
the annual maxima are approximately simple scaling in the
range 0.5–24 h. It is worth mentioning that Burlando and
Rosso [1996] and Menabde et al. [1999] processed data
series from different climatic regions. In work by Burlando
and Rosso [1996], one rain gage station is located in a flat
area whereas the second is a mountainous station. Menabde
et al. [1999] dealt with a midlatitude temperate region of
Australia and with a semiarid region of South Africa.
[7] The usual approach for the analysis of heavy rainfall is

based on the extreme value theory. This theory considers
events exceeding a given threshold (peak over threshold
(POT)) or maxima during a given period (annual or shorter
periods; see Kotz and Nadarajah [2000] for more details),
resulting in two distribution classes: generalized Pareto dis-
tributions (GPD) and generalized extreme value (GEV) dis-
tributions. The GEV distribution class involves three types of
maxima: hyperbolic‐tailed (GEV‐II), exponential (GEV‐I)
and bounded maxima (GEV‐III). Maxima rainfall rates usu-
ally follow GEV‐I (Gumbel) or GEV‐II (Fréchet) distribu-
tions [Kottegoda and Rosso, 1997], depending on the decay
of the probability distribution (respectively exponential and
hyperbolic tailed, hyperbolic tails being thicker than expo-
nential ones). Daily rainfall maxima are often modeled with
Gumbel distributions [Gumbel, 1958; Koutsoyiannis et al.,
1998]. Nevertheless, infradaily rainfall can show thicker
tails and the improper use of GEV‐I distribution leads to a
generalized underestimation of extreme events for high return
periods. The choice between the two approaches (hyperbolic
or exponential tailed distributions) has been justified only by
empirical evidence on the distribution of maxima.
[8] Few studies on heavy rainfall scaling focused on the

properties of the underlying probability distributions. Hubert
and Bendjoudi [1996] studied the distribution of heavy
rainfall in Dédougou over scales ranging from 1 day to 1 year.
Analyzing the power law exponent a in double‐logarithmic
plot, they showed that the hyperbolic tail of the pdf does not
change with the accumulation period, resulting in simple
scaling of rainfall extremes. Approximate simple scaling is
also illustrated in Table 3 of Sivakumar [2000] analyzing the
hyperbolic tail of the probability distributions for accumula-
tion durations between 6 h and 7 days for two rainfall series
at Singapore and Leaf River Basin (Mississippi, USA).
[9] In this paper, our purpose is to give a regional

description of heavy rainfall statistics. According to our
knowledge, no study focused on the intergage properties of
the probability distribution tails. Many papers focused on
the behavior of single rain gages, not representative of a
complex‐relief region. Applying an objective method for

determining the power law exponent a, and a scale‐invariant
relationship that involves the hyperbolic tail of the distri-
bution, our aim is to reduce the intergage variability of the
power law parameters. According to our experience, the
determination of the power law parameters using an arbi-
trary threshold−based method prevents a robust parameter
estimation and thus the comparison between gages and the
regionalization of the variable. Applying the method to about
two hundred stations, we show that a coherent interpolation
process is now possible as well as the prediction of the tail
behavior at ungaged sites.
[10] The paper is structured as follows: we first show

evidence of hyperbolic behavior of heavy rainfall at specific
stations and we describe the objective method implemented
in order to determine the hyperbolic model parameters
(section 2). In section 3, we use a reference rainfall series
(50 years) to check for the simple scaling properties of
distribution tails between 1 and 24 h. The goal of section 4
is to map the model parameters of heavy rainfall. A com-
parison of the power law exponent a at accumulation dura-
tions from 1 h to 8 h allows us to identify subregions where
a is approximately constant. The results related to the rainfall‐
forcing processes and to the extreme value theory are dis-
cussed in section 5.

2. Heavy Point Rainfall Behavior

[11] In this section, we characterize the positive rainfall
rates by their survival probability (complement to 1 of the
cumulative distribution function). The decay of the survival
probability gives information about the underlying law of
extremes; the region of interest is shown in Figure 1. An
example of the survival probability of hourly point rainfall is
plotted in Figure 2 for the rain gage station of Colognac,
about 30 km SW of Alés, France. As we are interested in
heavy rainfall, the plot is limited to the upper 5% of the
observations. The survival probability tail is hyperbolic. It
can be parameterized by a decay rate a and by a lower
bound xmin. In practice, the decay rate is usually estimated
by fitting a power law to the data (i.e., a straight line on a
log‐log plot) and calculating its slope. However, this par-
ticular fitting process is influenced by the empirical esti-
mation of the survival probability. One can see that the
empirical survival probability of the highest observations on
the log‐log plot in Figure 2 diverges from the straight line.
As illustrated in the following simple exercise, this can be
interpreted as a consequence of the mode of computation of
the highest empirical frequencies (outliers). Taking N = 100
realizations of a random variable X, the empirical survival
probability can be defined, if we take the Weibull plotting
position expression, by

P X > xð Þ ¼ 1� i

N þ 1
; ð1Þ

where i is the rank of a sorted sample x, varying from 1 to N.
Let us consider to add one further observation to the series.
If this observation is the highest of the sample, it will be
ranked 101 in the sorted sample. The survival probability of
the 100‐ranked sample will be modified by 100%, passing
from 0.01 to about 0.02. At the same time, the survival
probability of the 50‐ranked sample will be modified by
only 0.5%, passing from about 0.5 to about 0.495. This
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Figure 1. (a) Localization of the region of interest. (b) Elevation map (gray shaded area in m above sea
level) in the region of interest. The crosses indicate the hourly rain gage network. The solid line indicates
the main hydrographic network. The main river in the region is the Rhône River. It roughly represents the
eastern boundary of the region. The Mediterranean shore is the southern boundary, and the mountain
ridge, oriented north‐northwest, is the southern limit of the Massif Central plateau.
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exercise highlights that empirical survival probabilities are
robustly estimated when looking at usual probability levels,
but strongly biased when dealing with extreme quantiles.
The bias of a plotting position formula depends on the prob-
ability distribution of the sample. More adapted expressions
for the determination of the plotting position in positively
skewed data are available for several probability distributions
[Kottegoda and Rosso, 1997], and the exercise above can be
easily generalized for any of these.
[12] This example highlights that any power law fitting

method based on the plotting of empirical cumulative density
function is affected by large uncertainties, which increase in
presence of outliers in the probability distribution. Goldstein
et al. [2004] showed the inaccuracy of some of these
graphical methods by calculating the bias in the estimation of
the power law exponent a of samples composed by 10000
realizations. They found out that the maximum likelihood
estimator (MLE) provides a better estimate �̂ than other
methods, including least squares linear regression (LSq). The
MLE estimator (equation (2)) is equivalent to the Hill esti-
mator adopted in extreme value theory:

�̂ ¼ 1þ n
Xn
i¼1

ln
xi

Xmin

" #�1

: ð2Þ

[13] The main advantage using MLE with respect to LSq
is that the method provides an unbiased estimate of the
exponent �̂, independently of the empirical cumulative dis-
tribution. We performed complementary simulations to extend
the numerical experiment of Goldstein et al. [2004] to shorter
series (sets of about 1000 realizations) drawn from a Pareto
distribution:

P X � xð Þ ¼ x

xmin

� ���

; ð3Þ

for all x ≥ xmin, where xmin is the so‐called scale parameter
and a the shape parameter. One hundred series with xmin =
10 and a = 3 have been generated with N, the number of
realizations, ranging from 100 to 10000. In Figure 3 the box
plots summarize the distributions of the estimated �̂ com-
puted using, respectively, the LSq and MLE methods.
Considering a set of 10000 samples, we notice that LSq
provides far more scattered estimations of �̂ than MLE, in

Figure 3. Box plots of the distribution of �̂ using (a) the
least squares fitting and (b) the maximum likelihood estima-
tor on 100 samples of different size. All the samples were
distributed following a Pareto distribution, xmin = 10, k = 3.

Figure 2. Log‐log plot of the survival probability distribu-
tion of hourly rainfall for the rain gage station of Colognac,
France.
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agreement with Goldstein et al. [2004]; the dispersion of �̂
remains of the same order of magnitude whatever the
sample set size. Moreover, the average of �̂ estimated by
MLE remains close to 3 (the actual value), while it is more
fluctuating when estimated by LSq. This confirms that MLE
is a more consistent estimator than LSq. Two reasons have
been highlighted in literature. First, LSq is more sensitive to
the presence of outliers in the distribution tails. Second, the
residuals of the linear fitting of log‐reduced variables do not
follow a Gaussian distribution [Clauset et al., 2009].
[14] After having defined an unbiased method for the

estimation of the power law exponent of hyperbolic dis-
tributions, the second major problem is to define the scale
parameter (xmin in equation (3)), i.e., the lower bound above
which the power law holds. Considering an arbitrary bound,
as we did in Figure 2, is obviously not satisfactory. The
determination of �̂ depends on the choice of the lower
bound x̂min. This bound can be different from one rain gage
to another, because of the heterogeneity of the rainfall
regime in the region. Clauset et al. [2009] derived a method
to estimate the lower bound x̂min.
[15] The probability density function of a variable y

assuming discrete values and distributed as a power law is
defined as [Goldstein et al., 2004]

p xð Þ ¼ x��

� �; xminð Þ ; ð4Þ

where a is the power law exponent and z(a, xmin) is the
generalized Zeta function, defined as

� �; xminð Þ ¼
X1
n¼0

nDxþ xminð Þ��; ð5Þ

where xmin is the lower bound and Dx is the rain gage
accuracy (0.1 mm of rain depth for the analyzed rain gage
database).
[16] The estimated lower bound x̂min is determined by

means of the Kolmogorov‐Smirnov (KS) statistics. Clauset
et al. [2009] have shown that this objective method is

among the most efficient for comparing two distributions.
The D statistics of the KS test is defined as

D ¼ max
x�x1

jS xð Þ � P xð Þj; ð6Þ

where S(x) and P(x) are the cumulative probability dis-
tributions of the observed samples and of the model, above a
lower bound x1. Figure 4 shows the D statistics as a function
of x1 for the rain gage of Colognac. The value of x1
corresponding to the minimum of D provides the estimated
x̂min, 7.2 mm h−1 in the case shown in Figure 4. Therefore, �̂
is estimated applying MLE to the X realizations higher or
equal to x̂min.
[17] Figure 5 illustrates the sensitivity of �̂ to x1. For x1

higher than 20 mm h−1 the �̂ sensitivity to x1, as well as the
estimation uncertainty, is consistently high. This is the result
of the rapid decrease of the sample set size, and in this
method, as well as in other methods, a is never taken in this
range. For values of x1 close to the optimal value x̂min, i.e.
within the range 0.1–15 h−1, the sensitivity of �̂ is consid-
erably lower, varying of some decimals. However, it is
worthy to notice that small variations of �̂ can have relevant
influence in the estimation of rainfall for very high quantiles.

3. Scaling Behavior of Heavy Rainfall

[18] In section 2, we stated that the tail distribution of
hourly rainfall behaves as a power law at many rain gage
stations and we described a method to estimate the power
law parameters. In the current section, we investigate the con-
servation of this property for temporal resolutions ranging
from 1 to 24 h, for the longest hourly rain gage series of the
region, located in Montpellier (see Figure 1). This rain gage
collected over 50 years of hourly data, in the period 1920–
1972. This rain gage has been used for testing some of the
properties that we assume throughout the paper. Rainfall
rates for four durations (1, 4, 10 and 24 h) have been com-
puted by aggregation within nonoverlapping windows. To
make possible their scale‐free intercomparison, the sample
sets are first normalized by the mean rainfall rate, subse-
quently, for each duration, a sample with fixed size is chosen
(2000 nonzero samples).

Figure 4. Plot of the Kolmogorov‐Smirnov D statistics as
a function of the lower bound x1 for the hourly rain gage sta-
tion of Colognac, France (see Figure 2). The minimum of D
corresponds to xmin, which is used in turn to determine a.

Figure 5. Power law exponent a as a function of the lower
bound x1 for the rain gage station of Colognac, France (see
Figure 2).

CERESETTI ET AL.: SCALING PROPERTIES OF HEAVY RAINFALL W09531W09531

5 of 12



[19] The assumption of data stationarity is often required
to analyze the heavy rainfall behavior. On the other hand,
the sample set size has to be as long as possible to improve
the robustness of the statistics. These two requirements
could be incompatible. The stationarity of the rainfall
intensities of the 50 year long data set of Montpellier is thus
questionable. Therefore, we have checked this stationarity in
computing the survival probabilities displayed in Figure 6
for two consecutive subperiods lasting 25 years each. The
two subperiods do not show considerable differences.
[20] Figure 6 shows that the empirical survival probability

exhibits hyperbolic tails at durations of 1, 4, 10 and 24 h.
The lower bounds xmin and slopes a are computed using the
method described in section 2. Figure 6 emphasizes that, at
any duration between 1 and 24 h, the hyperbolic tail has an
approximately constant slope, while the variability of the
series with respect to the mean decreases with the accu-
mulation duration. The lower bound xmin above which the
power law behavior holds depends on the rainfall duration.
If xmin is the limit of the hyperbolic tail and the simple
scaling holds at this point, xmin should scale as a function of
the accumulation duration such that the absolute quantile is
a constant.
[21] Therefore, the highest rainfall rates of this long series

display simple scaling properties for durations in between 1
and 24 h. If the rainfall rate is a random process X(t) (t 2 <),
we are able to magnify or contract by a factor l the highest
rates without modifying the distribution shape [Sornette,
2004, p. 148]. As stated by Gupta and Waymire [1990],
we can compute a scale function l� ≥ 0 such that

X �tð Þ ¼d ��X tð Þ: ð7Þ

[22] The equality in distribution (equation (7)) is referred
to as “strict sense simple scaling.” It is obvious in Figure 6
that the strict sense simple scaling does not apply to the
whole rainfall rate distribution (also stated by Gupta and
Waymire [1990]) which is rather multifractal [Hubert et al.,
1993; Tessier et al., 1993]. However, this is not incompati-

ble with the simple scaling behavior observed for the highest
rainfall rates. Several studies showed evidences of the simple
scaling behavior of very high quantiles, such as annual
maxima of the rainfall rate [Burlando and Rosso, 1996;
Bendjoudi et al., 1997; Menabde et al., 1999; Borga et al.,
2005] while other authors reported a change in the high
rainfall quantile behavior that Schertzer and Lovejoy [1992]
define as “multifractal phase transition.”

4. Regionalization of the Power Law Exponent

4.1. Study Region and Data

[23] The Cévennes‐Vivarais region is located in the
southeast of France (see Figure 1). This region is prone to
heavy rainfall events causing flash floods [Jacq, 1994;
Delrieu et al., 2005]. Typical meteorological conditions
have been detected as triggering conditions for flash floods,
mainly the advection of warm humid air from the south.
[24] The region is southerly bounded by the Mediterra-

nean sea providing warm and humid air masses. The Alps
massif to the east and the Massif Central to the west channel
the flow in the Rhône River valley (eastern boundary of
the study region). The Massif Central mountain range,
approximately oriented north‐northwest, is impacted by
low‐ level air masses from south and favors their lifting. The
northwestern part of the study region, usually less concerned
by severe rainfall events, is constituted by flat highlands.
[25] The rain gage network in the region has been

installed at the beginning of the previous century. However,
digitized hourly rainfall data are available only since 1993.
In this study, we used data from 1993 to 2008 provided by
the French Meteorological Service Météo‐France. From
1993 to 2000 about 150 rain gages were available; this
number increased to about 200 after the year 2000 (date of
implementation of the Hydrometeorological Survey Service,
OHMCV [Delrieu, 2004]). The rain gage density is very
fluctuating from one place to another (see Figure 1) and the
mean rain gage density is approximately 1 per 150 km2.

4.2. Methodology and Implementation

[26] The hyperbolic behavior and self‐similarity of the
distributions of heavy rainfall intensities cumulated over
periods from 1 to 24 h have been empirically assessed in
section 3. In the current section, we regionalize the para-
meters characterizing the self‐similarity of heavy rainfall
rates at different durations.
[27] The steps involved in the estimation of the power law

exponent a at a rain gage are the following.
[28] 1. Select a rain gage having at least 2000 nonzero

observations at the duration D = 1h.
[29] 2. Cumulate the rain gage observations over higher

accumulation durations through a fixed‐window process; we
cumulated at 2, 4 and 8 h.
[30] 3. Fr D = 1h, estimate xmin by minimizing the D

statistics of the Kolmogorov‐Smirnov test (for each value of
x1, a value of a is computed and the statistics D is returned).
[31] 4. Estimate the quantile of xmin in the complete

rainfall series (both zero and positive values)
[32] 5. For each duration D > 1h, Xmin is computed as the

value of xD corresponding to the same quantile as forD = 1 h.

Figure 6. Log‐log plot of survival probability of the nor-
malized rainfall rate for durations of 1 h (solid line), 4 h
(dash‐dotted line), 10 h (dashed line) and 24 h (long‐
dash‐dotted line) at the rain gage station of Montpellier‐
Bel Air. A solid circle marks the lower bounds xmin.

CERESETTI ET AL.: SCALING PROPERTIES OF HEAVY RAINFALL W09531W09531

6 of 12



[33] 6. Compute a with the method proposed by Clauset
et al. [2009] taking Xmin as the lower bound, following
equation (2).
[34] The interpolated exponent �̂1 of the point rainfall for

the 1 h duration is mapped in Figure 7a, clearly showing

elongated structures corresponding to the mountain ridge.
The regionalization of �̂ is obtained by interpolation, per-
formed only if the variable has a definite correlation struc-
ture. The universal kriging method (described by Chiles and
Delfiner [1999]) has been chosen to interpolate the values of

Figure 7. Power law exponent (�̂) map in the region of interest for different accumulation periods:
(a) D = 1 h, (b) D = 2 h. (c) D = 4 h, and (d) D = 8 h. The crosses represent the considered rain gage
network at the corresponding duration. See Figure 1 for details on the background.
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�̂ at different accumulation times. We emphasize that even
though the value of �̂1 has been spatially interpolated, it
remains a local measure. Since different mechanisms are
involved, the integration of a over a surface does not cor-
respond to the areal power law exponent.

[35] The interpolated �̂1 values can be altered by two
kinds of errors. One is due to the interpolation process; the
second is due to the assumption of hyperbolic behavior of
rainfall distribution tails and their fitting. The former is
evaluated through the kriging standard deviation displayed
in Figure 8a. Figure 8a shows that except in the domain

Figure 8. Kriging standard deviation map for the a exponent: (a) D = 1 h, (b) D = 2 h. (c) D = 4 h, and
(d) D = 8 h.
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fringe, the kriging standard deviation is lower than 10% of
�̂1 which we consider as acceptable in comparison, for
instance, to the variation of 20% of �̂ across the region.
The confidence interval D�̂ efficiently assesses the latter
error type (i.e., the reliability of the point �̂ estimation). In
Figure 9a, the confidence interval D�̂ for the 95% con-
fidence level is mapped for the region of interest. Figure 9b
shows that the confidence interval roughly varies between
14% in the plain region to 26 % of �̂ in the northern part of
the region of study. The a estimation is the most reliable in
the southern part of the study region. The lowest �̂1 ∼ 2.6
are located at the lowest altitude and increase gradually
with altitude up to the Cévennes‐Vivarais mountain ridge
(�̂1 ∼ 3.6) and the Alps. In the Rhône river valley the
gradient is weaker. We have to point out that, in the
mountainous subregion, the power law model is less
adapted to the series, as shown by analyzing the confidence
interval (Figure 9b). In section 4.3, we will evaluate the a
exponent for the accumulation periods of 2, 4 and 8 h.

4.3. Regional Rainfall Scaling Assessment

[36] Following methodology described in the previous
paragraph, the assessment of the simple scaling assumption
is undertaken in the whole study region by evaluating the a
behavior at different accumulation periods. At each rain
gage, rainfall rates are aggregated over 2, 4 and 8 h periods
using nonoverlapping windows. The 4 h limit guarantees
sufficiently long rainfall series (>500) while, for the 8 h
interval, most of gages had been discarded due to the poor
sample set size.
[37] Since the quantile of xmin is assumed to be scale

invariant (section 2), this property has been used to retrieve

its values at the 2, 4 and 8 h durations from xmin computed at
the 1 h duration. Using the maximum likelihood estimation
method (2), �̂2, �̂4 and �̂8 are estimated (section 2) and
mapped (section 4.2, Figures 7b, 7c, and 7d).The interpo-
lation variance associated to the �̂2, �̂4 and �̂8 kriging is
almost identical in pattern and displays increasing values of
the estimation error with duration (Figures 8b, 8c, and 8d).
This is due to the decreasing sample set size and to the
reduced number of available gages. Despite those sources of
uncertainties, �̂2, �̂4 and �̂8 remain approximately constant
in the subregion corresponding to the lowest altitudes. On
the contrary, the fluctuations seem more consistent near the
mountain ridge and in the northwest plateau. This evidence
validates the scaling behavior of heavy rainfall for short
duration in this flat subregion in agreement with Hubert and
Bendjoudi [1996]. In the subregion at the north of the Mont
Lozère, a varies consistently with duration. The simple
scaling hypothesis does not hold in this area.
[38] Figure 10 shows the map of xmin for D = 1 h. In the

plain region and over the Massif Central, the lower bound
xmin is the lowest (∼4 mm h−1) and increases toward the
northwest over the mountain slope until the ridge up to
about 9 mm h−1 and toward the north up to 8 mm h−1.
Mountainous and northeastern rain gages show the smallest
proportion of events lying in the hyperbolic part of the
distribution. This is the main evidence of the effect of
orography on rainfall from the point of view of the proba-
bility distribution.

5. Concluding Remarks

[39] The paper has shown that an objective method can be
used to characterize the heavy rainfall distribution featuring

Figure 9. Confidence interval of �̂1 for the 95% confidence level: (a) absolute confidence interval and
(b) confidence interval relative to �̂1. The maps have been obtained by kriging interpolation.
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hyperbolic tails. The objective and unbiased determination
of the power law exponent a is necessary for the regional-
ization of the power law behavior of rainfall series. This
process has been repeated at different accumulation periods,
leading to the definition of a subregion where the power law
exponent is approximately constant. Considering the rela-
tively short observation period (16 years), we assume that
no significant trends affecting the stationarity of the rain
gage series are present.
[40] In section 5.1, we will interpret the results from the

point of view of the physical processes generating rainfall
within the study region, and we will discuss the current
findings regarding the statistical analysis of extreme rain-
fall events.

5.1. Physical Interpretation of the Results

[41] The behavior of rainfall distribution tails is heteroge-
neous in the region of interest. The regionalization of the
rainfall variability (a values, Figure 7), the agreement between
the power law model and the tail distribution shape (confi-
dence interval, Figure 9) and the proportion of observations
concerned by the power law behavior (xmin values, Figure 10)
delineate the differences between the flat area and the moun-
tainous region. In the southeast subregion (betweenAlès, Nîmes
and Montpellier) the rainfall variability, i.e., the ratio between
maximum and average rainfall, is the highest at short dura-
tions: it is the area where the power law model is the most
adapted (lower confidence interval in Figure 9) and the
number of observations exhibiting hyperbolic tails is the
highest (lower xmin in Figure 10). The power law exponent in
the region shows a relief‐oriented gradient: both the Central

Massif and the Alps exhibit high a, corresponding to lower
rainfall variability compared to the flat areas. The signature
of the Rhône Valley is sharp for small accumulation periods,
decreasing for high accumulation periods.
[42] Several studies [Sénési et al., 1996; Ducrocq et al.,

2002; Ricard, 2002; Ducrocq et al., 2003; Delrieu et al.,
2005; Nuissier et al., 2008] have shown that the heaviest
rainfall are yielded by mesoscale systems entering the region
from the south and southeast. Grossly speaking, the rela-
tively warm and humid air masses coming from the Medi-
terranean sea are lifted upward by an orographic barrier, the
Massif Central slopes, and by thermodynamical mechanisms
(cold pool [Nuissier et al., 2008]) which block the heaviest
rainfall in the southeast of the study region.
[43] The south‐north gradient, displayed by the statistical

properties of heavy rainfall in the northern part of the study
area especially for accumulation periods higher than 2 h, is
less linked to the relief. Both valley and mountain slopes are
present in the region. The lack of references concerning the
rainfall events occurring in this region allows only hypo-
thetical reasoning. The average increase of a values in this
region corresponds to a general decrease of rainfall vari-
ability compared to the southern portion. An interpretation
may be that, besides the relief effect, the distance from the
storm‐triggering zone plays an important role on the weak-
ening of the storm convection, due to the ground friction. In
conclusion, the sheltering effect generated by the relief is not
the only factor limiting the rainfall variability.

5.2. Consequences for the Extreme Modeling

[44] The representativity of the power law exponent a
for the description of the variability of heavy rainfall is
demonstrated by two main results. First, a has a well‐
determined spatial structure (Figure 7). The interpolation
process has been easily performed since the variable has a
definite empirical variogram at any duration. Interesting
properties of a are that whatever the accumulation duration,
a is always lower in the flat area; in addition, in the southern
portion of the domain, a is approximately constant with the
accumulation duration, satisfying the necessary conditions
for the simple scaling of heavy rainfall. As recalled in section
1, the cumulative probability distributions of extreme rainfall
intensities are usually modeled either by generalized extreme
value (GEV) or generalized Pareto distributions (GPD)
[Kottegoda and Rosso, 1997; Sornette, 2004] depending on
the selection of heavy rainfall events (maxima or peaks
over threshold). Depending on their parameters, both the
GEV and GPD distributions may display exponential or
power law tails. Extreme rainfall analyses related to design
rainfall assessment in the southeast of France [Guillot and
Duband, 1967; Slimani and Lebel, 1986; Nguyen Thao
et al., 1993; Cernesson et al., 1996] and elsewhere [Zhang
and Singh, 2007], for instance, assumed that infradaily
extreme rainfall intensities follow Gumbel distributions
(GEV‐I), i.e., exponential survival probability tails. Thick tail
distributions have been found in space‐time rainfall fluctua-
tions [Kumar and Foufoula‐Georgiou, 1993; Perica and
Foufoula‐Georgiou, 1996].
[45] Koutsoyiannis [2003] pointed out some reasons of

the GEV‐I popularity in hydrology: design‐rainfall studies
are based on maxima analyses, GEV‐I exhibit linearity on
Gumbel diagrams. on the log‐log plot in Figure 2. More-

Figure 10. Map of the power law lower bound x̂min for
D = 1 h.
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over, GEV‐II (Fréchet) distribution has one additional
parameter respect to GEV‐I, giving larger uncertainties with
limited sample sets. However, several studies reported that
GEV‐I underestimates actual extreme rainfall intensities
(see Koutsoyiannis [2003] for a detailed description). In this
study most of rain gages shows hyperbolic tails at various
durations: this is an evidence of the Fréchet behavior of
maxima; the exponential behavior of survival probability
tails typical of Gumbel distribution is not in agreement with
our findings concerning the southern part of the study
region. Considering the proportion of hyperbolically dis-
tributed samples at the accumulation time of 1 h, we
observed that in most of rain gages they are no more than
5 % of the positive rainfall values. This value corresponds
to the 0.1–0.3% of the whole observations, meaning that in
a year, between 8 and 20 observations are hyperbolically
distributed. However, the strong interdependence of most
of these values further limits the number of independent
data lying in the hyperbolic tail. In addition, increasing the
accumulation period, the number of observations per year
decreases, reducing the number of hyperbolically distrib-
uted samples. In the case of the 24 h accumulation period,
we should observe in average a hyperbolic sample every
three years. In our opinion, this explains why a limited
sample set of daily data better fits a GEV‐I distribution
rather than a GEV‐II one.
[46] The most important result in this paper is the

assessment of the variability of a with duration (Figure 11).
The variance among the a values at 1 h, 2 h, 3 h, 4 h is used
as indicator of the variability of the temporal scaling prop-
erties of heavy rainfall. The 8 h accumulation period has not

been considered in this computation: many stations have
been discarded due to the poor sample set size. The lower
the variance, the higher the reliability in the temporal simple
scaling behavior. Figure 11 shows that, in a large subregion
covering both the flat area and a portion of the foothill
(southern part of the study region), the variability of a with
the accumulation period is small (variance lower than 0.06).
In this zone a can be considered as a constant with respect
to duration. Since in the same subregion the confidence
interval of the power law estimation is lower than 20% of
the value of a (Figure 9), in these areas the rainfall distri-
bution can be considered approximately self‐similar in the
power law distributed part. In the framework of the usual
extreme value analysis, this means that the “extreme value
index” x, (which is 0 in GEV‐I and equal to 1

� in GEV‐II),
would always be higher than 0 in this subregion and, even
more noteworthy, it is constant with duration. In regions
where time simple scaling of heavy rainfall holds, the der-
ivation of one of the three parameters of GEV‐II by means
of scale invariance relations can therefore determine a
considerable improvement in the fitting of limited samples
series with GEV‐II distribution.
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