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S U M M A R Y

The development of metamorphic core complexes (MCC) corresponds to a mode of litho-

spheric continental stretching that follows collision. In most of the models that explain the

formation of the MCC, high thermal gradients are necessary to weaken the lower crust and to

induce its ascent. Such models fail to explain the exhumation of high pressure–low tempera-

ture metamorphic rocks in metamorphic core complex structures as observed in the Cycladic

Blueschists in the Aegean domain. Besides, account for the lithological crustal stratification

induced from collision has never been tested. In this paper, we use fully coupled thermome-

chanical modelling to investigate the impact of structural heritage and initial thermal gradient

on the behaviour of the post-orogenic continental lithosphere. The models are designed and

validated by petrological, structural and time data from the Cyclades. As a result, high thermal

gradients (Moho temperature higher than 800◦C) are neither necessary nor always sufficient

to induce the development of a metamorphic core complex. At the contrary, the rheological

layering of the crust inherited from collision is a first-order parameter controlling the develop-

ment of extensional structures in post-orogenic settings. ‘Cold’ MCC can develop if the crust

is made of a strong nappe thrust on top of weaker metamorphic cover and basement units, as

observed in the Cyclades.

Key words: Back-arc basin processes; Continental tectonics: compressional; Continental

tectonics: extensional; Dynamics of lithosphere and mantle; Crustal structure; Rheology:

crust and lithosphere.

1 I N T RO D U C T I O N

1.1 Metamorphic core complexes: characteristic features

Metamorphic core complexes (MCC) are crustal-scale structures

that exhibit ductilely deformed high-grade rocks exhumed below

a low-angle normal-fault or detachment. Since their identification

in the Basin and Range (Coney 1980), such structures have been

extensively studied through field work, geophysical imaging and

modelling. From extensive field studies [for general review see

(Whitney et al. 2004)] the main characters of MCC can be out-

lined as follows: (1) a characteristic size of some tens of kilometres

sometimes reaching a hundred kilometres, (2) a dome core, made of

metamorphic rocks, migmatites and granite bounded, (3) a detach-

ment zone and (4) upper-crustal units with limited metamorphism

and detrital sedimentary basins.

The regions where these structures were described all represent

former orogens. It is now widely accepted that MCC and their de-

tachments are characteristic features of post-orogenic extension in

initially thickened continental crust where Moho temperatures may

be higher than 700◦C (Gaudemer et al. 1988). Assuming a granitic

crustal composition, the lower crust behaves as a weak ductile layer

able to flow horizontally at significant regional scale (Block & Roy-

den 1990; Buck 1991), which is consistent with the occurrence

of migmatitic cores (Rey et al. 2009). The conceptual model of

‘fluid crustal layer’ (Wernicke 1990) constitutes the basis of most

older simplified numerical and experimental models of MCC (e.g.

Wdowinski & Axen 1992; Lavier et al. 1999; Chéry 2001). Recent

MCC models which account for temperature-dependent viscous

rheology in lower crust and mantle suggest that MCC development

can be only reproduced for initial Moho temperatures higher than

800◦C and for minimal crustal thicknesses of 45 km (Tirel et al.
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2008). The MCC are therefore considered to be restricted to warm

crusts.

1.2 Role of the initial geometry of the thickened crust

While recovering some of the first-order characteristics of most

of the MCC, the previous models failed at explaining the limited

retrograde heating within some exhumed high pressure–low temper-

ature (HP–LT) metamorphic units, as is observed in the Cycladic

MCC (Okrusch & Broecker 1990). On Tinos in the northern part of

Cyclades, the pressure-temperature-time (P-T-t) data suggest tem-

peratures as cold as 680◦C–700◦C (Parra et al. 2002) at 50 km

depth at the beginning of crustal extension, well below the 800◦C

lower bound established for the initial Moho temperature (Tirel et al.

2008).

Most of the models implicitly consider that thickening of the crust

is coaxial and homogeneous leading to a thick ‘normal’ stratifica-

tion. The geological reality is, however, that most orogens formed

as a result of nappe stacking. Consequently, it is possible to as-

sume that the structure of a crustal orogenic wedge is different

from the ‘normal’ sequence, with stronger mafic allochtons thrust

on top of a weaker autochthon. Such an orogenic sequence must

have mechanical properties remarkably differing from those of nor-

mal crust. Specifically nappe stacking may result in strong me-

chanical (Le Pourhiet et al. 2004) and density contrasts (Gerya

et al. 2001; Rey et al. 2009) that prompt the development of

gravitational–mechanical instabilities during post-orogenic exten-

sion.

In this paper, we investigate through thermomechanical mod-

elling how a crustal stratification inherited from nappe stacking

may affect the development of MCC during post-orogenic exten-

sion. We focus on the relative influence of initial stratification and

thermal gradient of the crust on the behaviour of continental litho-

sphere during post-orogenic extension. After a brief review of the

available data concerning the Cyclades, taken as a reference for

‘cold MCC’, and a presentation of chosen numerical model setups,

the experiments will be interpreted and validated by comparing

predicted structure and synthetic P–T paths to natural data in the

Cyclades.

2 E V I D E N C E F O R I N H E R I T E D

C RU S TA L S T R AT I F I C AT I O N

I N T H E C YC L A D I C M C C

2.1 Geological setting

The Cycladic islands, in the Aegean sea (Fig. 1A), belong to the in-

ternal part of the Hellenide-Tauride belt (Jacobshagen et al. 1978).

Two trends of MCC are distinguished: in the northern Cyclades, the

MCC of Andros, Tinos, Mykonos and Ikaria were exhumed below a

series of northeast dipping detachments (Jolivet et al. 2010), while

the MCC of Paros and Naxos, in the central Cyclades, lie below the

north-dipping central Cycladic Detachment (Gautier et al. 1993;

Vanderhaeghe 2004). Both sets of detachments are associated to

top-to-the-north or northeast shearing ductile deformation in the

lower plate. HT–LP metamorphism in amphibolite and greenschist

facies conditions accompanied the exhumation of the lower plate.

This tectono-metamorphic event has been linked to the extension

of the Aegean lithosphere in the backarc domain of the Hellenic

subduction zone, triggered by the southward retreat of the African

slab (Le Pichon & Angelier 1981; Jolivet & Faccenna 2000). The

formation of these MCC is considered as coeval with backarc mag-

Figure 1. (A) Structural map of the Cyclades (Huet et al. 2009). The MCC

are associated to north-dipping detachments and to top-to-the-north or north-

east deformation in the lower plate (Cycladic Blueschist and Cycladic base-

ment). The Pelagonian unit constitutes the upper plate of the MCC. The

white arrows indicate the sense of ductile shear in the lower plate. (B) P-T-t

paths of the Cycladic Blueschist of Tinos (Parra et al. 2002), the Cycladic

Blueschist and the Cycladic basement of Naxos (Martin 2004). The equiva-

lent depth is computed assuming lithostatic pressure and a density of 2700

kg m−3. The pressure of the two units recorded at 30 Ma defines an ini-

tial thermal gradient of 16◦C km−1. The inferred stratification of the crust

before the onset of extension is represented by the grey background (dark

grey: upper crust, median grey: middle crust and light grey: lower crust).

matism that initiated at 35–30 Ma and migrated southwards with

slab retreat at 1 cm yr−1 (Jolivet & Brun 2009).

Between 30 and 10 Ma, three crustal units have been involved

in the formation of the MCC; they belong to the Hellenides nappe

stack formed during the Eocene (Bonneau 1984). The lower Cy-

cladic basement unit crops out in the central and southern Cyclades

(Fig. 1A). The middle Cycladic Blueschist unit is present on most

C© 2010 The Authors, GJI, 184, 611–625
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Core complexes in a heterogeneous crust 613

islands. Both units form the lower plate of the MCC. They exhibit

HP–LT Eocene metamorphic parageneses with variable degree of

preservation, reworked in higher temperature conditions during the

Oligo-Miocene (Altherr et al. 1982; Wijbrans & McDougall 1986).

The Pelagonian unit appears in the hangingwall of the detachments.

The initial thickness of the crust and individual nappes before the

onset of extension is poorly constrained. A value of 50 km has been

proposed (McKenzie 1978) and is now often adopted. We use the

following thicknesses for the three units: 20 km for the Cycladic

basement in lower crust position, 10 km for the Cycladic Blueschist

unit in middle crust position and 25 km for the Pelagonian unit in

upper crust position (Fig. 1B). These values are consistent with the

pressure recorded in the two lower units at 30 Ma (Parra et al. 2002;

Martin 2004), assuming that pressure is close to lithostatic and that

the crustal density is 2700 kg m−3 (Fig. 1B).

2.2 Deformation pattern in the Cycladic MCC units

The Cycladic Basement is mainly composed of hercynian granitoids

and gneiss overlain by a thin layer of micaschists. The lowermost

part of this unit is exposed on Naxos and Paros where pervasive

partial melting is observed (Jansen & Schuilling 1976). The upper-

most part of this unit crops out on Ios where it is free of Cenozoic

migmatization. On this island, large low-strain zones of granite are

bounded by narrow shear zones (Vandenberg & Lister 1996; Huet

et al. 2009). A strain gradient can be observed from the preserved

core of the unit to its upper contact with the Cycladic Blueschist.

The Cycladic Blueschist is an association of metapelite, marble and

metabasite. Extensional deformation evolved during exhumation

from distributed shear to pervasive ductile shear-bands and finally

to localized shallow-dipping normal faults (Mehl et al. 2005). This

unit also exhibits a strain gradient from bottom to top, associated

to a gradient of retrogression of the HP–LT parageneses (Parra

et al. 2002). The Pelagonian unit is composed of ophiolitic material

and slivers of gneissic continental crust. In this unit, extension has

essentially been accommodated by normal faulting (Katzir et al.

1996), with only minor ductile deformation at its base. Conse-

quently, during the first stages of the exhumation in the MCC, the

brittle–ductile transition (BDT) in the crust corresponded more or

less to the Pelagonian/Cycladic Blueschist contact. Moreover, the

reactivation of nappe contacts evidences that strain localization is

mainly due to the rheological contrasts between units. Hence, lithol-

ogy seems to control the mechanical behaviour of the crust during

the formation of the Cycladic MCC, except when migmatization

occurs.

3 D E S I G N O F T H E N U M E R I C A L

E X P E R I M E N T S

3.1 The numerical code

The numerical code FLAMAR v12 used in this study is based

on the FLAC algorithm (Cundall 1989) and is a result of long

evolution of Paravoz v3 (Poliakov et al. 1993) and its later versions

(Toussaint et al. 2004; Yamato et al. 2007). It solves simultaneously

for conservation of momentum

ρgi +
∂σi j

∂x j

= ρ
∂Vi

∂t,
(1)

and for conservation of heat

DT

Dt
=

∂T

∂xi

(

χ
∂T

∂xi

)

+ Hr . (2)

The parameters ρ, g, σ , x, V , t, T and χ stand, respectively,

for density, gravity acceleration, stress, coordinate, velocity, time,

temperature and thermal diffusivity. In all cases of this study, we

switched off the internal heating term, Hr, due to uncertainties on

its values in case of nappe stacking (cf . Section 7.1). Thermome-

chanical coupling is enforced using Boussinesq approximation for

the computation of density, including thermal stresses in eq. (1) and

advecting the temperature with the mesh within the Lagrangian for-

mulation of the code. The rock behaviour is approximated by explicit

visco-elasto-plastic rheology (power-law ductile-viscous flow law

and Mohr-Coulomb plasticity). The effective rheological behaviour

is determined by current strain-rate, state of stress and temperature

[the implementation is detailed in Le Pourhiet et al. (2004)]. A ro-

bust marker-based remeshing procedure allows for handling of very

large strains and displacements (Yamato et al. 2007). To focus on

the influence of the rheological stratification, the model setups are

deliberately simplified. Erosion, shear-heating, partial melting and

mineral phase transitions are not considered in the computation.

A passive marker technique (Yamato et al. 2007) allows for trac-

ing synthetic P-T paths and computing synthetic finite deformation

field, that is, schistosity and intensity of finite strain.

3.2 Initial and boundary conditions

The thermal boundary conditions (Fig. 2) are set as follows: 0◦C

at the surface, fixed initial temperature at the bottom (1100, 1300

or 1500◦C) and zero lateral outflow at the sides of the model. The

three thermal profiles are initially in equilibrium with the bound-

ary conditions (Fig. 2B). The cold, intermediate and warm cases

lead to 13.7, 16.2 and 18.7◦C km−1 thermal gradient and 685, 810

Figure 2. (A) Initial and boundary conditions of the experiments. (B) Initial thermal profiles computed for bottom temperatures of 1100, 1300 and 1500 ◦C.

C© 2010 The Authors, GJI, 184, 611–625
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Table 1. Value of physical parameters used in experiments. A, n and �G are the parameters for power-law creep : dε/dt = A σ nexp(–�G/RT). 1 (Ranalli &

Murphy 1987), 2 (Hansen & Carter 1982) and 3 (Chopra & Paterson 1984).

All materials

Shear modulus (GPa) 30

Poisson’s ratio 0.25

Mohr-Coulomb criterion

Cohesion (MPa) 20

Friction angle (◦) 30

Thermal expansion coefficient (K−1) 3 ×10−5

Specific heat (J kg−1 K−1) 103

Density Thermal

at 25◦C conductivity A �G

25◦C (kg m−3) (W m−1 K−1) (MPa−n s−1) n (kJ mol−1) Material Ref.

Crust 2700 2.5 6.7 × 10−6 2.4 156 Dry quartzite 1

2 × 10−6 3.3 186 Dry granite 2

1.3 × 10−3 2.4 219 Quartz-diorite 2

Mantle 3300 3.3 2.5 × 104 3.5 532 Dry dunite 3

Table 2. Lithological layering of the three types of experiments.

REF PS NS

Upper crust Initial thickness (km) 25 10 25

Lithology Quartz-diorite Dry quartzite Quartz-diorite

Middle crust Initial thickness (km) 10 15 10

Lithology Quartz-diorite Dry granite Dry quartzite

Lower crust Initial thickness (km) 15 25 15

Lithology Quartz-diorite Quartz-diorite Dry granite

Lithospheric mantle Initial thickness (km) 40 40 40

Lithology Dry dunite Dry dunite Dry dunite

and 935 ◦C at the Moho, respectively. The gradient of the inter-

mediate case is similar to the one deduced from the P-T-t paths

at 30 Ma (Fig. 1B). Both sides of the models have been assigned

a free slip condition. Following Tirel et al. (2004a), asymmetric

lateral boundary conditions are applied, with constant horizontal

velocity of 1 cm yr−1 and 0 cm yr−1 applied to the left- and the

right-end sides, respectively. The upper surface is free while the

base deforms in response to hydrostatic forces ensuring local iso-

static compensation [Winkler foundation, e.g. Burov & Poliakov

(2001)]. The initial velocity field is linearly interpolated from the

boundary conditions and stress is initially lithostatic and isotropic.

We did not impose any mechanical or thermal heterogeneity to

achieve strain localization in some prescribed zone. Instead, a ran-

dom noise of 5 MPa has been added to the mean cohesion value

(20 MPa) in the upper crust thus mimicking natural variability in

rock properties (Huismans et al. 2005). However, the cohesion of

the 15-km-long zone located on the left side of the model has been

set to 30 MPa to prevent undesired strain localization on the faster

boundary.

3.3 Geometry and lithological stratification

The model (Fig. 2) is initially 210 km wide and 90 km thick (crust:

50 km, lithospheric mantle: 40 km) with 0.75 × 1.25 km quadri-

lateral elements. Three initial crustal stratifications are considered

(Tables 1 and 2). The reference (REF) stratification refers to a homo-

geneous quartz-dioritic 50 km crust, which is the classical geometry

studied in MCC modelling studies (Tirel et al. 2004a; Tirel et al.

2008; Tirel et al. 2009). The pure-shear (PS) stratification refers

to a commonly accepted rheological stratification: soft upper crust,

intermediate strength middle crust and more mafic and stronger

lower crust. The nappe-stacking (NS) stratification refers to an in-

verted crustal structure and fits the initial geometry inferred for

the Cyclades: mafic upper crust, soft middle crust and intermedi-

ate strength lower crust. The nine numerical experiments presented

here were run for 20 Myr. They correspond to the three rheological

stratifications tested for the three given initial thermal profiles (cold,

intermediate and warm).

Since the crust is homogeneous in REF experiments, its effec-

tive rheology is mainly controlled by temperature (Figs 3A, E and

I). In PS and NS experiments, the effective rheology is primarily

controlled by the lithological stratification. PS experiments are char-

acterized by two low viscosity layers, a thin one at the base of the

middle crust and a thicker one at the base of the lower crust (Figs 4

A, E and I). In both cases, the viscosity decreases continuously

with depth. This contrasts with NS experiments, in which a sharp

viscosity discontinuity (two orders of magnitude) occurs at the base

of the upper crust (Figs 5 A, E and I). Moreover, these experiments

are characterized by a thick low viscosity layer that includes both

the middle and lower crusts.

4 P O S T - O RO G E N I C

T H E R M O M E C H A N I C A L E V O LU T I O N

O F L I T H O L O G I C A L LY L AY E R E D

L I T H O S P H E R E S

All experiments show similar evolutions during the first 2 Myr.

Three regularly spaced (70 km) symmetrical grabens form and lo-

calize deformation in the upper crust (g1, g2 and g3 on Fig. 6).

However, after this initial phase, the rheological profile of the crust

controls the localization of strain in deeper layers and results either

in a distributed, or in a localized mode of extension in the crust. In

C© 2010 The Authors, GJI, 184, 611–625
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Core complexes in a heterogeneous crust 615

Figure 3. Cold, intermediate and warm REF experiments (homogeneous crust). Initial strength profiles (A, E and I), geometry (B, F and J) and intensity of

finite strain (C, G and K) at the end of the experiment and comparison between the envelopes of the synthetic P-T paths and the P-T paths of Tinos (1) (Parra

et al. 2002) and Naxos (2 and 3) (Martin 2004) (D, H and L). The black portion of the upper crust in (B, F and J) corresponds to a zone of 30 MPa cohesion

introduced to avoid localization at the edge of the model. The mid-crustal layer in (B, F and J) is a passive marker. In the cold case, no middle and lower crust

is exhumed at the surface; strength localizes in the mantle leading to the formation of a ‘true rift’. In the intermediate and warm cases, middle and lower crusts

are exhumed in ‘spreading dome’ structures. See text for detailed description.

this section we first describe the dynamics of cases with intermedi-

ate thermal structure for each tested rheological stratification. We

then dicuss the effect of the initial thermal profile. Movies show-

ing the evolution of the nine experiments are provided online as

Supporting Information.

4.1 The ‘reference’ (REF) experiment

In this experiment, strain localizes between 2 and 12 Myr in the

middle and lower crusts resulting in the formation of a dome, which

exhumes mainly lower crustal material (Figs 3F and 6A). Local-

ization occurs after 2 Myr on two conjugate shear zones (sz1a and

sz1b) below the graben g1 (Figs 3F and 6A). A third shear zone

located at the bottom of the lower crust (sz1c) is connected to sz1a.

These shear zones root at the Moho. After 7 Myr the dome reaches

the surface, resulting in a lateral decoupling of the upper crust in

two independent blocks. The dome then grows laterally by spread-

ing on a central symmetric graben located at its centre rather than

on its flanks. During the growth of the dome, the Moho rises but

the whole crust is never ruptured by the shear zones. At 12 Myr,

the faults exhuming the dome are inactive whereas two grabens

C© 2010 The Authors, GJI, 184, 611–625
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616 B. Huet et al.

Figure 4. Cold, intermediate and warm PS experiments (lithological stratification with more mafic material at depth). Initial strength profiles (A, E and I),

geometry (B, F and J) and intensity of finite strain (C, G and K) at the end of the experiment and comparison between the envelopes of the synthetic P-T

paths and the P-T paths of Tinos (1) (Parra et al. 2002) and Naxos (2 and 3) (Martin 2004) (D, H and L). The black portion of the upper crust in (B, F and J)

corresponds to a zone of 30 MPa cohesion introduced to avoid localization at the edge of the model. In the cold case, no middle and lower crust is exhumed

at the surface; strength localizes in the mantle leading to the formation of a ‘true rift’. In the intermediate cases, no middle and lower crust is exhumed at the

surface, homogeneous stretching leads to the formation of a ‘wide rift’. In the warm case, some middle and lower crust is exhumed to the surface in a structure

that shares characteristic of the ‘spreading dome’ and the ‘wide rift’ modes. See text for detailed description.

(g2 and g3) are still active. A second dome then forms below graben

g2. Its evolution and timing are similar to graben g1: formation of

three shear zones in the middle and lower crusts at 14 Myr (sz2a,

sz2b and sz2c), exhumation to the surface at 19 Myr and bending

of the Moho. During the activity of the second dome (14–19 Myr),

the deep parts of the shear zones sz1b and sz1c are still active. sz1b

is connected to a newly formed graben at the vicinity of the right

flank of the first dome. In the meantime a dome forms below graben

g3. It is associated to diffuse conjugate shear zones and does not

pierce the surface. During the last Myr, localized strain only occurs

at the Moho.

4.2 The ‘pure-shear’ (PS) experiment

Between 2 and 8 Myr, strain localizes in the lower crust resulting

in the formation of three lower crustal domes (Figs 4F and 6B). At

3 Myr, three sets of conjugate shear zones (sz1a-b-c, sz2a-b and

sz3a) form in the middle and lower crusts below the three grabens

C© 2010 The Authors, GJI, 184, 611–625

Geophysical Journal International C© 2010 RAS

 at C
N

R
S - IST

O
 on February 4, 2013

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Core complexes in a heterogeneous crust 617

Figure 5. Cold, intermediate and warm NS experiments (reversed lithological stratification due to nappe stacking). Initial strength profiles (A, E and I),

geometry (B, F and J) and intensity of finite strain (C, G and K) at the end of the experiment and comparison between the envelopes of the synthetic P-T

paths and the P-T paths of Tinos (1) (Parra et al. 2002) and Naxos (2 and 3) (Martin 2004) (D, H and L). The black portion of the upper crust in (B, F and

J) corresponds to a zone of 30 MPa cohesion introduced to avoid localization at the edge of the model. In the cold, intermediate and warm cases, middle and

lower crust is exhumed at the surface in ‘metamorphic core complex’ mode. See text for detailed description.

(g1–3). At 8 Myr, the lower crust reaches 12–14 km and the three

grabens overlying the dome become inactive. Deformation in the

upper crust is then localized on three pairs of grabens at both sides

of the domes (g1a-b, g2a-b and g3a-b). Each secondary graben is

extended at depth by one previously formed shear zone rooting in

the middle-lower crust interface. These asymmetric systems allow

for the exhumation of lateral subdomes. The final geometry consists

in three large domes composed of three subdomes (Fig. 4F). The rise

of the top of the lower crust is stopped at 10–12 km. During the last 4

Myr, shear zones develop at the Moho and progressively propagate

in the mantle. The resulting geometry is similar to periodically

spaced Cantilever systems (Kuznir & Park 1987). However, the

amount of extension in the last 4 Myr is not sufficient to rupture the

crust and the mantle.

4.3 The ‘nappe-stacking’ (NS) experiment

In this experiment, grabens g2 and g3 are abandoned at 3 Myr,

after initial necking. Strain localization below graben g1 leads to

the exhumation of one large dome (Figs 5F and 6C). Between 3

and 5 Myr, two flat lying shear zones extending the upper crustal

faults (f1a and f1b) localize in the upper part of the middle crust

C© 2010 The Authors, GJI, 184, 611–625
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Figure 6. Sequential evolution of the intermediate case of experiments REF (A), PS (B) and NS (C). The profiles of second invariant of deviatoric stress indicate the effective shear stress. The zones of localized

strain (g: graben, f: faults and sz: shear zones) are reported from strain-rate profiles. See text for detailed description.
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(respectively, sz1a and sz1b). This conjugate system allows the

vertical ascent of middle-lower crustal material in a dome. The

exhumed material pierces the upper crust at 5 Myr. From that stage,

the upper crust does not deform any longer. After 6 Myr, the active

conjugate faults switch to the centre of the dome (f1c and f1d).

They root in shear zones sz1a and sz1b. Two other shear zones

form at the Moho (sz1c and szm). Symmetric lateral growth of the

dome occurs during 2 Myr. From 10 to 12 Myr, the left dipping

fault (f1c) and shear zone (sz1a) progressively inactivate and the

dome becomes asymmetric. After 16 Myr, active deformation at the

surface switches to the right flank of the dome (f1e). The asymmetric

lateral growth of the dome is provided by lateral flow of the middle

and lower crusts in a viscous channel delimited by two parallel

shear zones (sz1b and szm). During this experiment, the exhumation

of middle and lower crusts is accompanied by rise of the Moho

below the dome. However, no localized strain disrupts the mantle

lithosphere.

4.4 Influence of initial thermal profile

For a given lithological stratification, the geometry of the crustal

structures accommodating extension is roughly similar, indepen-

dently of the initial thermal profile. The initial thermal profile has

a major influence on the dynamics and the localization of strain

in experiments REF and PS. First, the grabens are simultaneously

active in the cold cases whereas the grabens activity alternates se-

quentially in the warm cases. Second, as high temperature profiles

favour localization, they also promote exhumation of middle and

lower crusts in the grabens. Third, strain localization in the upper

crust is only transmitted down to the mantle in the cold cases. These

three points explain the discrepancies observed in the final geome-

try and the finite strain pattern (Figs 3 and 4). On the contrary, the

effect of the initial thermal profile is reduced in NS experiments

(Fig. 5). Indeed, the final geometry and finite strain pattern of the

three NS experiments share the major characteristics described in

Section 4.3. Finally, for the three lithological stratifications, the am-

plitude of the Moho deflection is higher when the initial low initial

thermal gradients are low.

5 I N T E R P R E TAT I O N O F T H E

M O D E L L I N G R E S U LT S

In this section, we interpret different stages of our experiments and

propose a classification of post-orogenic extensional structures.

5.1 Necking of upper crust and downward propagation

of localized strain

Strain localization in the regularly spaced grabens during the first

2 Myr can be interpreted as upper crustal plastic necking over the

low viscosity lower crust. The 70 km length scale appearing in all

experiments is not imposed by any heterogeneity but corresponds

to the preferred amplification wavelength of the system. The ratio

between the neck spacing and the thickness of the plastic layer hence

varies between 2.8 and 4.7, which is in agreement with analytical

solutions (3–4) for a non-Newtonian viscous layer overlain by a

plastic layer (Fletcher & Hallet 1983).

After this initial event, sets of conjugate shear zones (a and b on

Fig. 6) extend the conjugate necking-related faults into the lower

viscosity layers. In REF and PS experiments they root at the Moho

with a dip decreasing from 60◦ to 0◦, whereas in NS experiments

they root at the low viscosity mid-crustal layer. The downward

propagation of the localized shear zones in the middle and lower

crusts therefore results from the high strain rates at the lower tip

of the faults in association with the non-linear viscous rheology

(Burov & Poliakov 2001; Wijns et al. 2005). These shear zones

accommodate most of the exhumation of the middle and lower

crust (Figs 3 and 4).

5.2 Dynamics of exhumation

Exhumation of a dome up to the surface occurs in six experiments:

intermediate and warm case with the REF stratification, warm case

with the PS stratification, and cold, intermediate and warm case

with the NS stratification (Figs 3–5). It is therefore favoured by

the strength contrast between the upper crust and the middle-lower

crust. It is the result of the extreme thinning of the upper crust. The

topographic gradient induced by the formation of the necks allows

the lateral flow in the middle and lower crusts (Block & Royden

1990), which in turn brings material filling the available space in

the neck. Two dynamics are responsible for the exhumation and

the lateral growth of the domes. In REF (intermediate and warm)

and PS (warm) experiments, most of the exhumation is achieved

through a spreading system consisting in conjugate normal faults

and shear zones located at the centre of the dome (Fig. 6B). The

shear zones rooting in the Moho prevent the formation of a large

viscous channel in the middle-lower crust. As a result, most of the

domes are formed from lower crustal material. Besides, these domes

do not correspond to MCC stricto sensu. Since the faults and the

shear zones are located at the centre of the dome, they cannot be

considered as detachments. In the following, we call these structures

spreading domes.

In NS experiments, exhumation occurs in two stages. The first

stage is controlled by the vertical ascent of the middle and lower

crusts below the graben (Fig. 7D). Exhumation is allowed by two

symmetric high angle faults and is maintained by the low viscosity

of the lower crustal layers. The rise of the ductile crust is respon-

sible for the flexure of the upper crust illustrated by the strength

profile at 4 Myr (Fig. 6C). The second stage is controlled by asym-

metric lateral flow in the middle and lower crusts. A steady viscous

channel develops between the bottom of the upper crust and the

Moho and brings material finally exhumed below the normal faults.

The resulting structures can be interpreted as MCC with successive

detachments located at the flanks of the dome. Even though the dy-

namics of exhumation is different in MCC and in spreading domes,

the P-T paths of the exhumed units show a first-order similarity

(Figs 3–5). Cooling is almost inexistant in the first stages of the ex-

humation. The end of the exhumation is then associated to cooling

along warm thermal gradients.

5.3 Lateral migration versus strain localization

The degree of localization in a necking zone and the migration of

active exhumation from a graben to another are strongly controlled

by the strength of the exhumed material, which is controlled by its

lithology and its temperature. In REF cases, the exhumed material

has the same lithology as the upper crust. The local reduction of

crustal strength in the necks is only due to the exhumation of warm

material (Fig. 6A). As the exhumed material cools down near the

surface, its strength increases. It then becomes easier to rupture the

crust at the location of another neck. In PS cases, the three necks

are active simultaneously in the first part of the experiments, and
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Figure 7. Models of evolution for ‘true rift’ mode (A), ‘spreading dome’ mode (B), ‘wide rift’ mode (C) and ‘metamorphic core complex’ mode (D). The

evolution of one neck is represented. The active structures are coloured in red. (A) In the ‘true rift’ mode, localized strain is transmitted from an upper crustal

graben down to the mantle, leading to the rupture of the whole crust. In this mode, exhumation of the lower crust up to the surface does not occur. (B) In the

‘spreading dome’ mode, the faults are extended by ductile shear zones rooting at the Moho. The symmetric lower crustal dome is exhumed in a ‘spreading

centre’ located in the centre of the dome. The Moho is passively deflected below the dome, but it is not ruptured by the shear zones. (C) In the ‘wide rift’

mode, several crustal grabens are simultaneously active (not represented). Lower crust is exhumed below the grabens, but the upper crust is never ruptured and

the lower crust never reaches the surface. The rise of high strength material induces the migration of active deformation on newly formed grabens. (D) In the

‘metamorphic core complex’ mode, the lower crust is first exhumed locally. Lateral growth of the dome is then achieved through asymmetric flow of the lower

crust. The viscous channel is bounded on top by the detachments, and at bottom by the Moho. Successive detachments allow for the development of secondary

domes in the metamorphic core complex.

then extension migrates on pairs of newly formed grabens (Fig. 6C).

In these cases, migration is imposed by the slow rise of the high

strength lower crust (Fig. 6B). This mode of extension corresponds

to the wide rift mode of Buck’s classification (Buck 1991). In NS

cases, one neck accommodates all the extension with little migration

of the faults. Exhumation of very low strength material prevents de-

formation to migrate to another neck (Fig. 6C). The initial thermal

gradient has an influence on the degree of lateral strain localiza-

tion in REF and PS experiments, as well. When warm material is

exhumed, it induces a reduction of the upper crustal strength. As a

consequence, the necks are active for a longer duration in the warm

cases, compared to the intermediate cases.

To compare our results with other studies, typical values for

the integrated strength of the lithosphere (Ranalli 1995) have a

magnitude comprised between 1011 N m−1 (within the grabens) and

1012 N m−1 (within the surrounding parts). Migration of the active

deformation and the development of a wide rift are controlled by

local increase of the integrated strength, as previously proposed

(England 1983; van Wijk & Cloetingh 2002).

5.4 Classification of post-orogenic extensional structures

The results of our experiments suggest that the crustal lithologi-

cal stratification and the initial temperature profile have a major

influence on the dynamics of extension. Four modes of extension

have been described here: true rift, spreading dome metamorphic,

wide rift and core complex modes (Fig. 7). The last two modes

correspond to the classification of Buck (Buck 1991). The true rift

mode is characterized by migration of the deformation from the

crust down to the mantle. It eventually leads to the rupture of the

whole lithosphere that could represent the first step to oceanization.

In this mode, exhumation of ductile crust up to the surface does not

occur. The spreading dome mode is characterized by the exhuma-

tion of a lower crustal dome along a ‘spreading centre’ located in

the centre of the dome. The parallel with oceanic spreading centres

is only based on morphology. The wide rift mode is characterized

by the simultaneous formation of several crustal necks. However,

the upper crust is not ruptured and ductile crust is not exhumed. The

metamorphic core complex mode is characterized by extreme strain

localization in the upper crust. It is associated with the exhumation

of a lower crustal dome below successive detachments located at

the edge of the dome.

We propose that the four modes can be classified as a function

of the initial Moho temperature and of the ratio of the upper and

lower crustal strengths (Table 3). Strength ratios larger than one

correspond to metamorphic core complex mode, whatever the initial

Moho temperature. For initial Moho temperature lower than 700 ◦C

and for strength ratios larger than or equal to one, true rifts are

expected. Wide rift mode is predicted for initial Moho temperature

close to 800 ◦C and for strength ratios lower than one. Spreading

dome mode occurs for initial Moho temperature greater than 800 ◦C

and for strength ratios equal to one. Finally, an intermediate mode

between wide rift and spreading dome is expected for initial Moho

temperature greater than 900 ◦C and for strength ratio lower than

one.

6 C O M PA R I S O N W I T H T H E A E G E A N

D O M A I N

The initial thermal profile and lithological stratification of the inter-

mediate case of NS experiment has been designed with constraints

from the Aegean domain. To compare the results of the experiment
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Table 3. Different modes of extension of the crust depending on the thermal gradient and the strength ratio between

the upper and lower crust computed at the same temperature. If the crust is homogeneous, this ratio equals one (REF

experiments). If the lower crust is more mafic than the upper crust, the ratio is lower than one (PS experiments). If the

lower crust is less mafic than the upper crust, the ratio is larger than one (NS experiments).

Strength ratio between the upper and lower crust

R < 1 R = 1 R > 1

Initial Moho temperature <700◦C True-rift True-rift MCC

∼800◦C Wide rift Spreading dome MCC

>900◦C Spreading dome-wide rift Spreading dome MCC

Figure 8. Comparison between the intermediate NS model and the Cyclades. (A) Comparison between the synthetic P-T paths and the natural ones. (B)

Geometry and interpolated schistosity at 20 Ma. The three successive detachments are printed in red. (C) Profile of intensity of finite strain and dip of the

schistosity (black lines). The intensity of finite strain is represented as I = 1–X /Z so that I = 1 means inifinite stretching. See comments in text.

to the observations, we consider the final stage as a synthetic N–S

cross-section of the Cyclades with the North at the right side of the

model (Fig. 8). This 2-D approach cannot account for E–W tecton-

ics in the Cyclades. Syn-extensional E–W shortening has indeed

been documented in the MCC (Avigad et al. 2001), although its

effect has been argued to be limited (Gautier & Brun 1994). The

Cyclades are also characterized by a gradient of finite extension

along strike from its periphery in continental Greece to its centre

around Naxos island. The synthetic profile cannot be directly com-

pared to the present day geometry of the Cyclades, which is affected

by steep normal faults that dissect the structures associated to the

MCC formation. Moreover, the MCC correspond to topographical

low in our experiments whereas they correspond to topographical

high in the Cyclades (most probably due to our choice of density in

the crust cf . Section 7.1).

6.1 Crustal geometry

The distribution of domes and units predicted by the experiments

matches the Cyclades one (Figs 1A and 8B). In both nature and

experiments, the Cycladic basement is located in the southern and

central part of the profile. We propose that the large dome cored by

the basement in the centre of model is equivalent to the central MCC

of Naxos and Paros, and that the secondary dome corresponds to the

northern MCC of Andros, Tinos, Mykonos and Ikaria. According

to this interpretation, the Cyclades would correspond to one large
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MCC comprising several subdomes exhumed below distinct detach-

ments. Tinos and Naxos, which are well-documented islands, are

therefore considered as representative of the northern and central

MCC, respectively. In the experiment, the final crustal thickness be-

low the MCC is comprised between 18 and 27 km (Fig. 8B), whereas

in the Cyclades, the crust is 25 km thick (Tirel et al. 2004b). Fur-

thermore, the present-day Moho is flat in the Cyclades and does

not exhibit the vertical deflection obtained in our experiment. This

deflection is the result of the contribution of the low viscosity litho-

spheric mantle to the isostatic compensation (Wijns et al. 2005).

It is possible that the flat Moho geometry in the Cyclades is not

inherited from the MCC formation event, but represents a later fea-

ture. The active MCC in the D’Entrecasteaux islands show a Moho

upwarp of 10–15 km (Abers et al. 2002). Modelling of gravity data

in the D’Entrecasteaux islands shows that crustal thinning alone

leads to subsidence. This implies that deep mantle takes part in

MCC topographic signature. Our experiment, considering a 90-km-

thick lithosphere without underlying asthenosphere and lasting for

relatively short time cannot render possible late flattening of the

Moho.

6.2 Finite deformation and kinematics

The finite deformation intensity (Fig. 8C) indicates that finite strain

is partitioned between the little deformed Pelagonian upper unit, the

highly sheared Cycladic Blueschist and the less deformed basement

unit. Maximum finite deformation intensity occurs at the rheological

boundaries (Fig. 8C), mainly at the top of the Cycladic Blueschist

that represent the sharpest strength contrast as observed in the Cy-

clades (Mehl et al. 2005). The computed schistosity is fairly flat

at the surface. In the deep basement, the steep schistosity is the

result of the ascent of the lower crust following necking. This pat-

tern is consistent with the schistosity trajectories within and around

the core of Naxos dome, which was interpreted as an evidence

for diapiric ascent (Vanderhaeghe 2004). Besides, the dip and the

kinematics of the detachments (Fig. 8B) reflect the dominant top-

to-the-north sense of shear in the Cycladic MCC. The deformation

associated with the initial conjugate south-dipping detachment does

not have known analogues in nature. The top-to-the-south shear cri-

teria documented on Ios island are indeed linked to thrusting of the

Cycladic Blueschist over the Cycladic basement (Huet et al. 2009)

and the top-to-the-south criteria described in the western Cyclades

correspond to late Miocene extension (Iglseder et al. 2009).

6.3 P-T paths

The distribution of the synthetic P-T paths (Fig. 8A) shows that

cooling occurs early during decompression on the northern flank

of the dome (equivalent to Tinos) and that cooling happens later in

the core of the dome (equivalent to Naxos). This zonation observed

in the Cyclades has been interpreted by the effect of small-scale

heat conduction between the upper and the lower units (Jolivet &

GoffŽ 2000). The synthetic P-T paths of the Cycladic Blueschist

(Tinos and Naxos) are in good agreement with their natural equiv-

alent (Parra et al. 2002; Martin 2004, Fig. 8A). Such a fit cannot

be observed with the other experiments (Figs 3–5). However, the

experiment is not able to reproduce the P-T path (Fig 8A) of the

migmatitic core of Naxos that reached 800 ◦C (Martin 2004). Two

processes could have lead to a better fit. First, account for par-

tial melting would lead to a decrease of the effective viscosity and

density of a part of the material (e.g. Rey et al. 2009), and could

probably promote the exhumation of the lowest part of the crust.

Second, concentration of radiogenic elements in migmatites, that is

not considered in our experiments, is likely to explain the observed

retrograde heating (Thomson & Bard 1982).

7 D I S C U S S I O N

In this section, we discuss the mechanical feasibility of cold MCC

and the need for strength discontinuity at the BDT for the initiation

of MCC.

7.1 The effect of density contrast and radiogenic heating

Among parameters neglected in the experiments, radiogenic heating

could probably affect thermal state during extension, while density

contrast between the upper and lower crust could control the overall

geometry and exhumation rates. Test experiments with radioactive

heating term (Hr, eq. 2) in the granitic lower crust were performed

and showed no important effect of this parameter on the geometry

of isotherms or P-T paths shapes. The 20 Myr time spans consid-

ered here are probably too short and exhumation rates too high for

radioactive decay to affect the thermal evolution of exhumed rocks.

Furthermore, the simple initial thermal conditions used for our ex-

periments do not consider any thermal effect of the nappe-stacking

event on geotherm, that would result in colder initial profiles.

The effect of density contrast between the upper and lower crust

has been estimated for the REF and NS geometries with density

contrast values ranging from 0 to 300 kg m−3 (Fig 9A). The exper-

iments show that the overall geometries are not changed except the

surface topography, that is negative throughout the dome for �ρ

= 0 and reached +2000 m for �ρ = 300 kg m−3. To evaluate the

possible participation of density contrasts in exhumation processes

(i.e. diapirism), maximum exhumation rates have been compared

to exhumation rates calculated for equivalent markers exhumed by

pure shear thinning (Fig 9B). It appears that exhumation rates are

controlled by the extension rate imposed at the boundary and that

density contrast only has a second-order effect. Diapirism is there-

fore not directly involved in the MCC modelled here.

7.2 MCC are not restricted to warm lithospheres

Our results confirm that the mode of extension in thickened crusts is

primarily controlled by rheological stratification (Brun 1999; Wijns

et al. 2005). Strong competence contrasts between the upper and

lower crusts ensure efficient flow of the lower crust and localized

stretching of the upper crust. They therefore promote the formation

of MCC. However, whereas the rheological stratification is classi-

cally controlled by temperature, it is controlled at first order by the

lithogical stratification in our experiments. This approach gives new

insights on the ability of MCC to form in a relatively cold crust. In

numerical experiments where the crustal lithology is homogeneous,

MCC are predicted to form for initial Moho temperature higher

than 800 ◦C (Tirel et al. 2008) with effective viscosities lower than

1020 Pa s for the lower crust and 1022 Pa s for the mantle. A MCC

forms in our three NS experiments, even for initial Moho temper-

ature slightly lower than 700 ◦C. In these cases, the lithological

stratification ensures effective viscosities in the range proposed by

(Tirel et al. 2008). We therefore suggest that MCC can form in rel-

atively cold crust, provided the lithology of the lower crust ensures

sufficiently low viscosity.
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Figure 9. Effect of density contrast on topography and exhumation rates. (A) Topography profiles for the NS and REF intermediate cases with density contrast

(�ρ) between the upper and lower crust. Lower crust is lighter than the upper crust. f1b, f1d and f1e refer to faults that develop in NS experiments, g1 and

g2 refer to grabens forming in REF experiments (see Fig. 7 for detailed geometry of strain localization). (B) Maximum exhumation rate versus extension

rate imposed at boundary in the NS experiment. Normalized exhumation rates are maximum exhumation rates divided by the theoretical exhumation rate of

markers at the same initial depth and exhumed only by pure shear thinning of the material. Density contrast (positive for lower crust lighter than upper crust)

has only a second-order effect on exhumation rate values.

Two processes associated to nappe stacking can produce this

pattern. First, obduction consist of thrusting of strong ophiolitic

material over weaker continental crust. Second, it has been argued

that the mafic lower crust delaminates in the formation of mountain

belts (Laubscher 1990). The combination of these two processes is

thus likely to lead to the formation of a reverse rheological stratifi-

cation, favouring in turn the formation of cold MCC. In this point

of view, the setup of laboratory experiments with thickened crusts

(Brun et al. 1994; Tirel et al. 2006) can be reinterpreted. The rhe-

ological stratification is reproduced by modelling the upper crust

with a Mohr-Coulomb plastic material (sand) and the lower crust

with a Newtonian viscous material (silicone). The lower layer has a

constant low viscosity, which is an approximation of the thermally

controlled viscous lower crust. However, the resulting strength pro-

files are similar to those of our NS experiments. We therefore pro-

pose that the rheological stratification of laboratory experiments

corresponds to a lithological stratification that could be the result of

nappe stacking.

Besides, the dynamics and final geometry of NS experiments

is hardly affected by the initial thermal profile, even if the initial

strength profiles strongly differ (Fig 5). In the cold case, an important

part of the lithospheric strength resides in the lithospheric mantle

(Fig 5A), as in the ‘jelly sandwich’ model (Burov & Watts 2006),

whereas, in the warm case, the whole strength of the lithosphere

resides in the crust (Fig 5I), as in the ‘crème brûlée’ model (Jackson

2002). As a consequence, whether the mantle is strong or not does

not influence the formation of MCC in NS experiments. The low

viscosity lower crust is responsible for efficient decoupling between

the upper crust and the mantle and prevents downward propagation

of localized strain to the lithospheric mantle. We therefore suggest

that the development of MCC is not sufficient to discriminate the

long-term behaviour of the lithosphere, especially in the Aegean.

The propagation of the North Anatolian fault in the Aegean litho-

sphere (Armijo et al. 1999) is for instance not in contradiction with

the development of MCC in the same lithosphere.

7.3 High temperature alone is not sufficient

for the development of MCC

In the intermediate and warm cases of experiments REF, the initial

Moho temperature is higher than 800 ◦C. MCC formation is then

predicted in this range (Tirel et al. 2008). However, extension is

accommodated in spreading dome mode in our experiments. Be-

sides, in numerical studies considering homogeneous crust similar

to our REF experiments, two types of structures are obtained, both

of them being interpreted as MCC. When no localizing heterogene-

ity is considered, several domes develop in upper crustal necks and

shear zones are located at their centres (Wijns et al. 2005; Tirel

et al. 2009). This dynamics is similar to the spreading dome mode

according to our classification. On the contrary, when a localizing

heterogeneity is introduced, only one dome is exhumed below a de-

tachment located on its flanks (Tirel et al. 2004a; Tirel et al. 2008).

These structures correspond to MCC stricto sensu. The pre-scripted

heterogeneity has therefore a major effect on the dynamics of ex-

tension and exhumation. First, it localizes strain in a unique neck.

Second, the detachment develops within the heterogeneity. We then

suggest that the presence of a localizing heterogeneity, responsible

for strength discontinuity at the top of the lower crust, is essential

for the formation of MCC since it prevents the formation of shear

zones dissecting the whole lower crust, as in spreading domes. In

experiments NS, the weak middle crust has an effect similar to

the heterogeneity in previous numerical models (Tirel et al. 2004a;

Tirel et al. 2008). It is responsible for a major strength drop at the

BDT (Fig 5), precisely where the crustal strength is supposed to be

the largest (Brace & Kohlstedt 1980). The middle crustal layer acts

then like a décollement just below the BDT, allowing the localiza-

tion of detachments. This dynamics can be compared to the effect

of reaction softening assisted by surface fluids stopped at the BDT

(Famin et al. 2004). Retrograde mineral reactions developing in a

few thousands of years are able to produce a large strength drop

at the BDT (Gueydan et al. 2004). These processes are likely to
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explain the development of normal shear zones at the BDT within

a homogeneous crust submitted to extension.

8 C O N C LU S I O N

The aim of this paper is to explore the influence of lithological strati-

fication inherited from orogenic stages on the development of MCC

during post-orogenic extension. Three crustal stratifications (ho-

mogeneous, normal and reversed) and three thermal profiles (cold,

intermediate and warm) have been considered. In the nine numeri-

cal experiments, the degree of strain localization and the dynamics

of exhumation are strongly controlled by the crustal stratification,

and, to a lesser extent, by the temperature profile. Four modes of

extension have been distinguished: true rift, wide rift, metamorphic

core complex and spreading dome. Spreading dome accommodates

stretching by the exhumation of material along a ridge located in

the centre of the dome.

A metamorphic core complex can develop in a crust where the

lithological layering is reversed, even with cold thermal gradients.

In a homogeneous crust or a normally stratified crust, no meta-

morphic core complex forms, even with high thermal gradients.

High thermal gradients are therefore neither sufficient nor neces-

sary for the development of MCC in thickened crusts submitted to

post-orogenic extension. The lithological layering and the thermal

profile of one of our experiments have been designed with data

from the Cycladic MCC. The comparison between the natural data

(geometry, finite strain, kinematics and P-T paths) and their syn-

thetic counterparts shows a good agreement between our model and

nature. In experiments showing the development of a metamorphic

core complex, the mantle strength has little influence on the dynam-

ics of exhumation and the final geometry. The presence of MCC is

therefore not sufficient to discriminate between the ‘jelly-sandwich’

and ‘crème-brûlée’ long-term strength models.
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