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S U M M A R Y
The knowledge of the gravitational potential coefficients J2 and J4 of a hydrostatic Earth
model is necessary to deal with non-hydrostatic properties of our planet. They are indeed
fundamental parameters when modelling the 3-D density structure or the rotational behaviour
of our planet. The most widely used values computed by Nakiboglu need to be updated for two
reasons. First, we have noted a mistake in one of his formulae. Secondly, the value of the inertia
ratio I/M R2 chosen at the time of PREM is not any more the best estimate. Both corrections
slightly but significantly reduce the hydrostatic J2 value: the dynamical flattening of the Earth
is even further from hydrostaticity than previously thought. The difference between the polar
and equatorial radii appears to be 113 ± 1 m (instead of 98 m) larger than the hydrostatic
value. Moreover, uncertainties upon the hydrostatic parameters are estimated.

Key words: Gravity anomalies and Earth structure; Earth rotation variations; Geopotential
theory.

1 I N T RO D U C T I O N

The equilibrium shape of a rotating, self-gravitating planet is a
classical problem of geodesy that dates back to Newton and was
studied by the most famous mathematicians like Clairaut, Maclaurin
and D’Alembert among many others. The theory of hydrostatic
equilibrium predicts the shape and the gravity at the surface of
the Earth, as a function of latitude. All results conclude that the
hydrostatic flattening of the Earth, with a polar radius about 21 km
smaller than its equatorial radius, is indeed close to the observed
value (for modern estimates, see e.g. Nakiboglu 1982; Denis 1989).
For most practical applications, the reference shape and gravity of
the Earth are not based on this theoretical, hydrostatic model but
are directly deduced from satellite observations.

There are however geophysical problems where the hydrostatic
reference value is important and where the relative agreement be-
tween the observed and hydrostatic flattening is not enough. In the
geodynamic community, the geoid is not referred to a best-fitting
ellipsoid as done in the geodesy community, but to the shape that
the Earth should have if gravity and rotation were in equilibrium.
This non-hydrostatic geoid only differs at even degrees and order
0 (practically, only at degrees 2 and 4) from those used by geode-
sists. This non-hydrostatic geoid being most likely induced by the
degree-2 order-0 mantle density heterogeneities, the value of the
non-hydrostatic J 2 coefficient and of non-hydrostatic flattening of
the Earth is used to constrain the modelling of mantle mass anomaly

(e.g. Ricard et al. 1984, 1993; Richards & Hager 1984, see also
Forte 2007 for a review). The rotational behaviour of our planet af-
ter pleistocenic deglaciations is also affected (Mitrovica et al. 2005;
Cambiotti et al. 2010).

For these geophysical questions, a precise estimate of the theoret-
ical hydrostatic geoid is needed, and what most authors have done
is to use the theoretical hydrostatic geoid computed by Nakiboglu
(1982). It is necessary to reassess this estimate for several reasons.
First, since Nakiboglu (1982), the mass and inertia of the Earth have
been estimated with higher precisions (Chambat & Valette 2001).
As the hydrostatic flattening is controlled by these two quantities and
by the radial density profile of the Earth, this impacts the prediction
of the hydrostatic shape directly, but also indirectly, by requiring
a change of the radial density models of the Earth. For example,
PREM model was built in agreement with mass and inertia values
that are not those estimated for the Earth any more. Second, the
previous attempts do not provide modelling error bars. Thirdly, we
discovered a few minor mistakes in previous computations, which
affects the numerical estimates of the flattening by quantities larger
than the final uncertainty.

2 E Q U I L I B R I U M E Q UAT I O N S

Although the equilibrium equations are given elsewhere, we find
it necessary to write them again in this paper and discuss some
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differences with Kopal (1960), Lanzano (1982) or Nakiboglu
(1982). Like these three authors, we describe the shape of the Earth
in terms of flattening. We have not verified the equations of Moritz
(1990) given with ellipticity instead of flattening as variable.

The hydrostatic self-gravitational equilibrium theory consists of
solving together Poisson’s equation �ϕ = 4πGρ − 2 �2 and the
hydrostatic equilibrium equation grad p = − ρ grad ϕ with the
boundary conditions [ϕ] = 0, [gradϕ · n] = 0, [p] = 0, ϕ(x) ∼
− 1

2 (�2x2 − (� · x)2) at ∞, where ϕ is here the gravity potential
(Newtonian + centrifugal), G the gravitational constant, ρ the den-
sity, p the pressure, � the rotation vector, x the position vector, n
the unitary normal vector to an interface and where [ f ] denotes
the jump of a quantity f across an interface. The hydrostatic equa-
tion imposes that equipotential surfaces are also equidensity sur-
faces. Poisson’s equation can be recast into a relation involving one
unknown function only, for example, the shape of these surfaces.
This relation can then be solved when linearized with respect to a
spherical reference.

Explicitly, and correct to second-order, the equation of an equipo-
tential surface s = s(r , θ ) and the expression of the external gravi-
tational potential φ(r , θ ) (= −ϕ + centrifugal) are

s(r, θ ) = r (1 + f2(r )P2(cos θ ) + f4(r )P4(cos θ )), (1)

φ(r, θ ) = G M

r

(
1 − J2

a2

r 2
P2(cos θ ) − J4

a4

r 4
P4(cos θ )

)
, (2)

where fn(r ) and Jn are non-dimensional factors to be determined.
In these equations, s is the distance from the Earth’s centre, θ the
colatitude (s and φ do not depend on the longitude), r the mean
radius of s and M the mass of the Earth. The length a in (2) is
conventional and is usually chosen as the major semi-axis of the
reference ellispoid. We take a = 6 378 137 m. The Pn are Legendre
polynomia of degree n, that is,

P2(cos θ ) = 1

2
(3 cos2 θ − 1), (3)

P4(cos θ ) = 1

8
(35 cos4 θ − 30 cos2 θ + 3). (4)

The shape and potential parameters, fn and Jn, are not indepen-
dent. Taking into account that the external surface (at mean radius
r = R) is a gravity equipotential, we get

J2 = −
(

f2(R) + m

3
+ 11

7
f 2
2 (R) + m

7
f2(R)

)(ah

a

)2
, (5)

J4 = −
(

f4(R) + 36

35
f 2
2 (R) + 6m

7
f2(R)

)(ah

a

)4
, (6)

where ah is the equatorial semi-axis of the hydrostatic surface,

ah = R

(
1 − 1

2
f2(R) + 3

8
f4(R)

)
(7)

and where the ratio of centrifugal to gravitational force at mean
radius is

m = �2 R3

G M
. (8)

The function fn can be estimated at any order with respect to
the small number m by integration of differential equations where
the variable is r. The theory was established by Clairaut (1743) at
first-order, improved by Airy (1826) and continued by Callandreau
(1889) up to second-order and by Lanzano (1962, 1982) up to third-
order. For the Earth the second-order is necessary and sufficient.

The primary parameters that enter the computation of fn are
the angular velocity of the Earth �, the geocentric gravitational
constant GM and the density distribution of a spherical reference
Earth model ρ(r ). Actually the solution depends on m, on the mean
density ρ̄(r ) within the sphere or radius r defined by

ρ̄(r ) = 3

r 3

∫ r

0
ρ(y)y2 dy, (9)

and on the following density factor γ (r )

γ (r ) = ρ(r )

ρ̄(r )
. (10)

The functions fn(r ) are solutions of the differential system (ch.
2.02 Lanzano 1982):

r 2 f̈ 2 + 6γ r ḟ 2 + 6(γ − 1) f2

= 2

7
(18(1 − γ ) f2 + (2 − 9γ )r ḟ 2)r ḟ 2

+ 4 m
ρ̄(R)

ρ̄(r )
(1 − γ )( f2 + r ḟ 2), (11)

r 2 f̈ 4 + 6γ r ḟ 4 + (6γ − 20) f4

= 18

35

(−21γ f 2
2 + 2(2 − 9γ )r f2 ḟ 2 + (2 − 9γ )r 2 ḟ 2

2

)
,

(12)

where a dot denotes the radial derivative.
We have verified these equations by means of a shape perturbation

method as in Chambat & Valette (2001), for the first-order and as
in Valette (1987, chap. 5.2) for the second-order. They agree with
those given by Nakiboglu (1982). There is a misprint in Kopal’s
book (1960) in which the coefficient 2 underlined in (12) is replaced
by 1.

This differential system must be supplemented by continuity con-
ditions at interfaces and boundary conditions at the centre and at
the external surface. The conditions at interfaces are obtained by
writing the continuity of the gravity potential and the gravity ac-
celeration, accounting for the non-spherical shape of the interfaces
(eq. 1). It results in the continuity of fn and ḟ n across interfaces:

[ f2] = [ ḟ 2] = [ f4] = [ ḟ 4] = 0. (13)

The conditions at the external surface are obtained by writing
again the continuity of the gravity potential and acceleration and the
fact that the external potential is harmonic (eq. 2). These conditions
are

2 f2 + R ḟ 2 + 5

3
m

= 1

7

(
12 f 2

2 + 6R f2 ḟ 2 + 2R2 ḟ 2
2

) + 2

3
m (5 f2 + R ḟ 2), (14)

4 f4 + R ḟ 4 = 18

35

(
6 f 2

2 + 5R f2 ḟ 2 + R2 ḟ 2
2

)
. (15)

These conditions correspond to those written by Kopal (1960) and
Lanzano (1982). The underlined factor 6 in (14) is missing in
Nakigoblu’s article (1982). This is not a misprint since the same
mistake appears in Nakiboglu (1979) and since we can reproduce
Nakiboglu’s numerical results when we use his equation without
the factor 6. It matters as we get significantly different results when
using (14).

Conditions at the centre arise from the fact that physical fields
are regular at this point which is singular in spherical coordinates.
For example, the density takes the form ρ(r ) � ρ(0) + cst r 2 in the
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vicinity of the centre which implies that γ � 1 + cst r 2. Conditions
on fn follow from this remark and the hypothesis that fn and ḟ n

remain finite. Dividing eq. (11) by r and making r → 0, every term
but ḟ 2 vanishes, which leads to

ḟ 2 = 0. (16)

In the same manner, making r → 0 in eq. (12), every term but two
vanishes, which implies

f4 = 27

35
f 2
2 . (17)

Instead of conditions (16) and (17), Nakiboglu and Lanzano write
f 2 = f 4 = 0, which is incorrect. Despite recommandations of Kopal
(1960) and Moritz (1990), the integration of the differential system
(11–17) is usually performed by using iterative methods. It is in
fact simpler to recast the system into a set of two linear systems:
one for the first-order and another for the second-order. Indeed a
first integration without the terms on the right side of (11)–(15)
gives the first-order solution; a second integration, with products of
the first-order terms on the right-side of these equations, gives the
second-order solution.

To perform the integration easily, a first step is to transform the
equations into first-order linear differential systems. This is done
in Appendix A. At first-order the system is homogeneous and the
numerical integration is straightforward: we integrate the system
from the centre where the only physical fundamental solution is
( f2, r ḟ 2) � (cst, 0) up to the surface where the normalization con-
dition (14) provides the constant. At second-order the system is
heterogeneous and the resolution proceeds with two integrations:
one for a particular solution of the heterogeneous system and one
for the general physical fundamental solution of the homogenous
system. The normalization of the fundamental solution is obtained
by applying the surface condition to the total solution. The inte-
grations were carried out by using a density model in a discretized
form, the Runge-Kutta matlab routine ode45 and the matlab spline
interpolator interp1 to refine the sampling.

3 N U M E R I C A L R E S U LT S

3.1 Global Earth data and mean density model

Some global Earth data values are summarized in Table 1. They are
taken from Chambat & Valette (2001) who made a thorough analysis
of them. Since this publication the only change is the value of G and
consequently of M , the precision of which has gained a factor 15
(Mohr et al. 2008). The GM value is given here without atmosphere
after correction of atmospheric mass Matm = (5.1480 ± 0.0003) ×
1018 kg (Trenberth & Smith 2005). This correction significantly
affects GM but does not affect its uncertainty.

Prior density models are not suitable to obtain the best up-to-date
estimates of hydrostatic parameters because they do not fit R, GM
and I/M within their error bars. For instance, PREM uses R =
6 371 000 m, G M = 3.986 638 727 × 1014 m3 s−2, I/M R2 =
0.330 800, which implies m = 3.449 236 × 10−3 (compare with
the actual data and uncertainties in Table 1). As a radial density
model, we therefore use a new unpublished mean density model
that adjusts, within the observational uncertainties, the Earth ra-
dius R, mass M , the inertia ratio I/M (Table 1) and the seismic
modes mean frequencies (Valette & Lesage, personal communica-
tion). This model remains close to PREM, however, and we will see
in Section 3.3 how the bias of PREM can be accounted for.

After integration of the differential system (11)–(12) with this
density model we find, correct to first-order (Table 1),

J 1
2 = 1.072 3 × 10−3, (18)

and correct to second-order

J2 = 1.071 2 × 10−3, (19)

J2 − J 1
2 = 1.085 × 10−6, (20)

J4 = −2.96 × 10−6. (21)

Table 1. Data for reference Earth model. The values in parenthesis are the uncertainties referred to the last figures of the
nominal values.

Data Symbol Value Unit Relative
(uncertainty) uncertainty

Observeda

Physical mean radius R 6.371 230 (10) 106 m 1.6 × 10−6

Geocentric gravitational constantb GM 3.986 000 979 (40) 1014 m3 s−2 1.0 × 10−8

Angular velocity � 7.292 115 0 (1) 10−5 rad s−1 1.4 × 10−8

Rotationnal factor m 3.450 162 (16) 10−3 4.7 × 10−6

Gravitational constant G 6.674 28 (67) 10−11 m3 kg−1 s−2 1.0 × 10−4

Mass M 5.972 18 (60) 1024 kg 1.0 × 10−4

Inertia ratiob,c I/M 1.342 354 (31) 1013 m2 2.3 × 10−5

Inertia coefficientb,c I/M R2 0.330 690 (9) 2.6 × 10−5

Degree 2 zonal potential coefficientb,d,e J 2|obs−corr 1.082 604 6 (5) 10−3 4.6 × 10−7

Degree 4 zonal potential coefficiente J 4 −1.620 (1) 10−6 6.2 × 10−4

Hydrostatic (this study)

Fluid degree two Love number k 0.932 33 (9) 1 × 10−4

Degree 2 zonal potential coefficient, first-ordere J 1
2 1.072 3 (1) 10−3 1 × 10−4

Degree 2 zonal potential coefficient, second-ordere J 2 1.071 2 (1) 10−3 1 × 10−4

Difference of second- and first-ordere J 2 − J 1
2 −1.085 (3) 10−6 3 × 10−3

Degree 4 zonal potential coefficiente J 4 −2.96 (3) 10−6 1 × 10−2

aFrom Chambat & Valette (2001) with modifications explained in text.
bWithout atmosphere.
cInertia ratio of the spherical model that is closest to the Earth.
dWithout direct and hydrostatic indirect permanent tide.
e J 2 and J 4 are scaled with GM given in this table and a = 6 378 137 m.
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3.2 Uncertainties

The uncertainties in the computed hydrostatic values are given in
Table 1 and have been evaluated in the following way. At first-order
we define the so-called degree 2 fluid Love number k by

f2(R) = −(k + 1)
m

3
. (22)

Then relations (5) and (14) can be written as

J 1
2 = k

m

3

(ah

a

)2
(23)

and

k = 3 − R ḟ 2/ f2

2 + R ḟ 2/ f2

(R). (24)

Relation (22) implies that the uncertainty of the first-order hydro-
static theory is essentially controlled by the one of k since m is much
better known (see Table 1).

A result from Radau (1885) shows that k depends upon the density
essentially through I/M R2. Indeed to a very good approximation
we have (see e.g. Dahlen & Tromp 1998, p. 599-600)

k � kRadau = 5
25
4

(
1 − 3

2
I

M R2

)2 + 1
− 1. (25)

From the error of I/M R2 given in Table 1 and Radau’s formula
(25) a relative error of 7 × 10−5 is found for k. To improve this
estimation, we also compute k with various density models, obtained
by perturbing our reference density profile while keeping I/M R2

constant. We achieve that by varying the density and the interfaces
radii. These tests show that changing the internal density at constant
I/M R2 affects k by certainly less than 3 × 10−5 in relative value.
A conservative value of the relative uncertainty on k and J 1

2 is
therefore 10−4.

The uncertainties of J 2 − J 1
2 and J 4 are also estimated with the

dispersions obtained by using different density models. As can been
seen in Table 1 the uncertainty of J 2 is practically equal to that of
J 1

2.

3.3 Validation and corrections

It was not possible to compare exactly our results with Nakiboglu’s
article (1982) because he did not give the value of m he used. We
have compared our results with those of Denis (1989), using his
value of m = 0.00345039 and PREM model. The integration gives

f2 = −2.228 947 × 10−3, f4 = 4.445 × 10−6, (26)

k = 0.933 11, J2 = 1.072 1 × 10−3, (27)

while Denis found

f2 = −2.228 946 × 10−3, f4 = 4.465 × 10−6, (28)

which agrees with our values taking the uncertainties into account.
Denis did not give estimations for k or J 2.

Nakiboglu’s (1982) results, J 2 = 1.072 7 × 10−3 and J 4 =
−2.99 × 10−6, differ respectively from our values by 15 × 10−7

and 0.3 × 10−7, which are 15 and 1 times our uncertainties. His
mistake in the J 2 estimate, due to the missing factor 6 in eq. (14),
accounts for 8 × 10−7 and the difference in I/M R2 for 9 × 10−7.
The remaining discrepancy of −2 × 10−7 should be explained by a
difference in m.

Note that I/M R2 is the parameter that influences k the most and
that this influence can be quantified by means of Radau’s theory.

Thus, we can correct the fact that the used density model does not
correspond to the observed I/M R2 through

kcorrected = k + kRadau

(
I/M R2|observed

)
− kRadau

(
I/M R2|model

)
. (29)

For instance, applying this correction to the k of PREM (27) yields

kcorrected = 0.932 32 (30)

and with the up-to-date value for m (Table 1)

J2 corrected = 1.071 2 × 10−3 (31)

which, taking the uncertainties into account, correspond to our val-
ues.

3.4 Comparison to observations

For the sake of comparison with a hydrostatic value, the most suit-
able J 2|obs−corr (see Table 1) is the observed value J 2|obs, excluding
both the atmosphere contribution J 2|atm and the permanent direct,
�J 2, and indirect, k�J 2, luni-solar tide effects:

J2|obs−corr = J2|obs − �J2(1 + k) − J2|atm. (32)

For a permanent tide, the degree 2 fluid Love number k = 0.93233 is
appropriate even if most geodetic publications seem to use an elastic
Love number of 0.3. We take J 2|obs = 1.082 626 4 × 10−3 and �J 2

= 3.1108 × 10−8 as in Chambat & Valette (2001). To compute
the atmospheric contribution J 2|atm we consider the atmosphere
as an homogeneous infinitely thin layer as done in Appendix B.
Finally, the permanent tide and atmospheric corrections represent
respectively 60 and 4 times the observational uncertainty.

The hydrostatic J 2 predicted in this paper and Nakiboglu’s one
differ from the observed one by 114 × 10−7 and 99 × 10−7, re-
spectively. Our new hydrostatic J 2 value is further away from the
observed one than that of Nakiboglu by about 15 per cent. The
Earth is more flattened than the hydrostatic model. With the above
values we find that the difference between the equatorial and polar
semi-axis of the Earth exceeds by about 113 ± 1 m the hydrostatic
prediction while Nakiboglu’s estimation was 98 m.

In studies of postglacial true polar wander, one currently uses
the difference between the ‘observed’ k (deduced from 23 using
the observed J 2) and the hydrostatic k. For that coefficient, denoted
β by Mitrovica et al. (2005), we recommend a value of 0.0097 ±
0.0001.

3.5 Conclusion

We have updated the values and uncertainties of hydrostatic Love
number k and gravitational potential coefficients J 2 and J 4. The new

Table 2. Normalised potential coefficients C̄�m = −J�/
√

2� + 1. They
are scaled with GM given in Table 1 and a = 6 378 137 m. The values in
parentheses are the uncertainties referred to the last figures of the nominal
values.

C̄20 × 106 C̄40 × 106

Observed −484.155 5 (2) 0.540 0 (3)
Hydrostatic this study −479.06 (5) 0.986 (10)
Hydrostatic Nakiboglu (1982) −479.73 0.997
Difference observed – −5.10 (5) −0.446 (10)

hydrostatic from this study
Difference observed – −4.43 −0.457

hydrostatic Nakiboglu (1982)
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Hydrostatic flattening 731

J 2 value is further from the observed one than the currently used of
Nakiboglu by about 15 per cent. For the non-hydrostatic geoid we
recommend to use the values of normalized potential coefficients
C̄20 = (−5.10 ± 0.05) × 10−6 and C̄40 = (−0.446 ± 0.010) × 10−6

(see Table 2).
The authors’ MATLAB package that solves Clairaut’s equations

is available at http://frederic.chambat.free.fr/hydrostatic.
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A P P E N D I X A : F I R S T - O R D E R S Y S T E M S

Correct to second-order, f 2 can be written as a sum of a first- and a
second-order term. At first-order we define

y =
(

y1

y2

)
=

(
f2

r ḟ 2

)
(A1)

and at second-order

z =
(

z1

z2

)
=

(
f2 − y1

r ḟ 2 − y2

)
(A2)

z̃ =
(

z3

z4

)
=

(
f4

r ḟ 4

)
. (A3)

Then, using eqs (11–13) it is easy to show that y, z and z̃ are
continuous at the interfaces: [y] = [z] = [z̃] = 0 and are solutions
of the following differential systems:

– at first-order

ẏ = Ay, (A4)

where

A = 1

r

(
0 1

6(1 − γ ) 1 − 6γ

)
, (A5)

with, at the centre,

y2 = 0 (A6)

and, at the external surface,

2y1 + y2 = −5

3
m. (A7)

– at second-order

ż = Az + B, ˙̃z = Ãz̃ + B̃, (A8)

where

Ã = 1

r

(
0 1

20 − 6γ 1 − 6γ

)
, (A9)

B =
(

0
B2

)
, B̃ =

(
0
B̃2

)
, (A10)

B2 = 2 y2

7 r
(9(2 − γ )y1 + (2 − 9γ )y2)

+ 4m
ρ̄(R)

ρ̄(r )
(1 − γ )(y1 + y2), (A11)

B̃2 = 18

35 r

(
2y2(2y1 + y2) − 3γ

(
7y2

1 + 6y1 y2 + 3y2
2

))
, (A12)

with, at the centre,

z2 = 0, (A13)

z3 = 27

35
y2

1 , (A14)

and, at the external surface,

2z1 + z2 = 2

7

(
6y2

1 + 3y1 y2 + y2
2

) + 2

3
m (5y1 + y2), (A15)

4z3 + z4 = 18

35

(
6y2

1 + 5y1 y2 + y2
2

)
. (A16)
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In both cases the potential coefficients are given by formula (5–7),
retaining only the terms of appropriate order.

A P P E N D I X B : AT M O S P H E R I C
C O R R E C T I O N F O R J 2

The coefficient J 2 is linked to the Earth’s density by (e.g. Chambat
& Valette 2001)

−Ma2 J2 =
∫

Earth
ρr 4 P2 sin θ dr dθ dλ. (B1)

Suppose that the atmosphere is homogeneous with density ρ and
bounded by the surfaces s−(r−, θ , λ) and s+(r+, θ , λ). The atmo-
spheric contribution in J 2 is then given by

−Ma2 J2|atm = 1

5
ρ

∫
S1

(s5
+ − s5

−)P2 dω, (B2)

where S1 denotes the sphere of unit radius and ω the solid angle.
Suppose that the mean atmospheric thickness �R is small, then

−Ma2 J2|atm = 1

5
ρ�R

∫
S1

ds5

dr

∣∣∣∣
r=R

P2 dω. (B3)

Correct to first-order, s(r, θ ) = r{1 + f2(r )P2(cos θ )}, and thus

−Ma2 J2|atm = ρ�R

∫
S1

R4
{
1 + 5 f2 P2 + R ḟ 2 P2

}
P2 dω. (B4)

Now, by using the properties of Legendre polynomials and the
definition of the atmospheric mass∫

S1

P2 dω = 0,

∫
S1

P2
2 dω = 4π

5
, Matm = 4πρR2�R, (B5)

we deduce that

−Ma2 J2|atm = Matm R2( f2 + R ḟ 2/5)(R). (B6)

In order to estimate this value and because of its smallness, we can
suppose that the atmosphere and the solid Earth are in hydrostatic
equilibrium. Then relations (22–24) yield

J2|atm = Matm

M

R2

a2
h

8 + 3k

5k
J 1

2 � Matm

M

8 + 3k

5k
J 1

2

� 2.0 × 10−6 J 1
2 � 2.1 × 10−9. (B7)

The J 2|atm value must be subtracted from the observed J 2|obs in
order to remove the atmospheric effect.
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