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S U M M A R Y
In reservoir geophysics applications, seismic imaging techniques are expected to provide as
much information as possible on fluid-filled reservoir rocks. Since seismograms are, to some
degree, sensitive to the mechanical parameters and fluid properties of porous media, inversion
methods can be devised to directly estimate these quantities from the waveforms obtained in
seismic reflection experiments. An inversion algorithm that uses a generalized least-squares,
quasi-Newton approach is described to determine the porosity, permeability, interstitial fluid
properties and mechanical parameters of porous media. The proposed algorithm proceeds
by iteratively minimizing a misfit function between observed data and synthetic wavefields
computed with the Biot theory. Simple models consisting of plane-layered, fluid-saturated and
poro-elastic media are considered to demonstrate the concept and evaluate the performance
of such a full waveform inversion scheme. Numerical experiments show that, when applied to
synthetic data, the inversion procedure can accurately reconstruct the vertical distribution of
a single model parameter, if all other parameters are perfectly known. However, the coupling
between some of the model parameters does not permit the reconstruction of several model
parameters at the same time. To get around this problem, we consider composite parameters
defined from the original model properties and from a priori information, such as the fluid
saturation rate or the lithology, to reduce the number of unknowns. Another possibility is to
apply this inversion algorithm to time-lapse surveys carried out for fluid substitution problems,
such as CO2 injection, since in this case only a few parameters may vary as a function of time.
We define a two-step differential inversion approach which allows us to reconstruct the fluid
saturation rate in reservoir layers, even though the medium properties are poorly known.

Key words: Inverse theory; Permeability and porosity; Controlled source seismology; Com-
putational seismology.

1 I N T RO D U C T I O N

The quantitative imaging of the subsurface is a major challenge in
geophysics. In oil and gas exploration and production, deep aquifer
management and other applications such as the underground stor-
age of CO2, seismic imaging techniques are implemented to provide
as much information as possible on fluid-filled reservoir rocks. The
Biot theory (Biot 1956) and its extensions (e.g. Auriault et al. 1985;
Pride et al. 1992; Johnson et al. 1994) provide a convenient frame-
work to connect the various parameters characterizing a porous
medium to the wave properties, namely, their amplitudes, velocities
and frequency content. The poroelastic model involves more param-
eters than the elastodynamic theory, but on the other hand, the wave
attenuation and dispersion characteristics at the macroscopic scale
are determined by the medium intrinsic properties without having

to resort to empirical relationships. Attenuation mechanisms at mi-
croscopic and mesoscopic scales, which are not considered in the
original Biot theory, can be introduced into alternative poroelastic
theories (see e.g. Pride et al. 2004). The inverse problem, that is,
the retrieval of poroelastic parameters from the seismic waveforms
is much more challenging. Porosity, permeability and fluid satu-
ration are the most important parameters for reservoir engineers.
Being related to seismic wave attenuation, permeability appears
as not only the most difficult parameter to estimate but also the
one which would have the greatest benefits to the characteriza-
tion of porous formations, notably in the oil industry (Pride et al.
2003).

The estimation of poroelastic properties of reservoir rocks is
still in its infancy. One way to solve this problem is to first deter-
mine the seismic wave velocities by using an elastic representation
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of the medium. In a second stage, the velocities are interpreted
in terms of poroelastic parameters by using deterministic rock
physics transforms (Domenico 1984; Berryman et al. 2002). How-
ever, this approach does not resolve the ambiguities between the
parameters. A second class of methods is based on stochastic rock
physics modelling, such as Monte-Carlo methods (Mosegaard &
Tarantola 2002). This approach is then combined with a Bayesian
description of the porous medium to evaluate the probability dis-
tribution of the parameters (Mukerji et al. 2001). For example,
Bachrach (2006) inverts for the seismic impedances to deter-
mine the porosity and fluid saturation. Spikes et al. (2007) es-
timate the clay content, fluid saturation and porosity from the
seismic waveforms. Larsen et al. (2006) use an Amplitude Ver-
sus Offset analysis to infer the properties of porous media. Bosch
(2004) introduces a lithological least-squares inversion technique
by combining seismic data and petrophysics for porosity pre-
diction. However, this method does not make full use of the
seismograms.

The aim of this paper is to investigate the feasibility of a full
waveform inversion (FWI) of the seismic response of plane-layered,
fluid-saturated media to estimate the poroelastic parameters of each
layer using simple numerical experiments. To our knowledge, the
use of the Biot theory in ‘direct’ FWI has been seldom addressed.
Sensitivity kernels have been derived by De Barros & Dietrich
(2008) for 1-D media and by Morency et al. (2009) for 3-D media.
Historically, most of the FWI methods (Lailly 1983; Tarantola 1984;
Mora 1987) have been implemented under the acoustic approxima-
tion, for 2-D model reconstruction (e.g. Gauthier et al. 1986; Pratt
et al. 1998) or 3-D structures (for instance, Ben-Hadj-Ali et al.
2008; Sirgue et al. 2008). Applications to real data are even more
recent (Pratt & Shipp 1999; Hicks & Pratt 2001; Operto et al. 2006).
The elastic case is more challenging, as the coupling between P and
S waves leads to ill-conditioned problems. Since the early works of
Mora (1987) and Kormendi & Dietrich (1991), the elastic problem
has been addressed several times over the last years with method-
ological developments (Gélis et al. 2007; Choi et al. 2008; Brossier
et al. 2009).

In the poroelastic case, eight model parameters enter the medium
description, compared with only one or two in the acoustic case,
and three in the elastic case if wave attenuation is not taken into
account. The advantages of using a poroelastic theory in FWI are
(1) to directly relate seismic wave characteristics to porous media
properties; (2) to use information that cannot be described by vis-
coelasticity or elasticity with the Gassmann (1951) formula and
(3) to open the possibility to use fluid displacement and force to
determine permeability and fluid properties. The assumption of
plane-layered media is admittedly too simple to correctly describe
the structural features of geological media, but it is nevertheless use-
ful to explore the feasibility of an inversion process accounting for
the rheology of porous media. As shown by De Barros & Dietrich
(2008), the perturbation of different model parameters may lead to
similar seismic responses. This observation stresses the fact that the
major issue to solve is to find a viable strategy to efficiently recon-
struct the most relevant parameters of poroelastic media. Nowadays,
exploration seismology more and more relies on 4-D monitoring,
that is, the observation of the space-time variations of the Earth
response. For example, underground CO2 storage operations use
time-lapse surveys to assess the spatial extent of the CO2 plume
and to detect and locate possible CO2 leakage. In this case, the most
important parameters required to describe the time variations of the
medium properties are those related to the injected fluid and to the
fluid in place.

We first outline in Section 2 the poroelastic theory used to solve
the forward modelling of seismic wave propagation in poroelastic
media. This theory is implemented for layered media with the gener-
alized reflection and transmission matrix method of Kennett (1983).
This computation method is checked with the semi-analytical so-
lution of Philippacopoulos (1997) for a homogeneous half-space.
In Section 3, we briefly present the generalized least-squares inver-
sion procedure (Tarantola & Valette 1982) and the quasi-Newton
algorithm that we have implemented following the formalism of
Tarantola (1987). Section 4 of the article is dedicated to accuracy
and stability checks of the inversion algorithm with synthetic data.
Section 5 discusses and quantifies the coupling between model
parameters. Finally, Section 6 deals with strategies developed to
circumvent this coupling problem. We introduce composite model
parameters such as the fluid saturation rate and lithology, and study
their use to monitor time variations of the medium properties via a
two-step differential inversion approach.

2 WAV E P RO PA G AT I O N I N S T R AT I F I E D
P O RO U S M E D I A

2.1 Governing equations

Assuming a e−iωt dependence, Pride et al. (1992) rewrote Biot’s
(1956) equations of poroelasticity in the form

[(KU + G/3) ∇∇ + (G∇2 + ω2ρ) I ] · u

+ [ C∇∇ + ω2ρ f I ] · w = 0

[C∇∇ + ω2ρ f I] · u + [ M∇∇ + ω2ρ̃ I ] · w = 0, (1)

where u and w, respectively, denote the average solid displace-
ment and the relative fluid-to-solid displacement, ω is the angular
frequency, I the identity tensor, ∇∇ the gradient of the divergence
operator and ∇2 the Laplacian operator. The other quantities ap-
pearing in eqs (1) are medium properties. The bulk density of the
porous medium ρ is related to the fluid density ρ f , solid density ρs

and porosity φ

ρ = (1 − φ)ρs + φρ f . (2)

KU is the undrained bulk modulus and G is the shear modulus.
M (fluid storage coefficient) and C (C-modulus) are mechanical
parameters. In the quasi-static limit, at low frequencies, these pa-
rameters are real, frequency-independent and can be expressed in
terms of the drained bulk modulus KD, porosity φ, mineral bulk
modulus Ks and fluid bulk modulus Kf (Gassmann 1951):

KU =
φK D +

[
1 − (1 + φ) K D

Ks

]
K f

φ(1 + �)
,

C =
[

1 − K D
Ks

]
K f

φ(1 + �)
, M = K f

φ(1 + �)

with � = 1 − φ

φ

K f

Ks

[
1 − K D

(1 − φ)Ks

]
. (3)

It is also possible to link the frame properties KD and G to the
porosity and constitutive mineral properties (Korringa et al. 1979;
Pride 2005):

K D = Ks
1 − φ

1 + csφ
and G = Gs

1 − φ

1 + 3csφ/2
, (4)

where Gs is the shear modulus of the grains. The consolidation
parameter cs appearing in these expressions is not necessarily the
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same for KD and G (Korringa et al. 1979; Walton 1987). However,
to minimize the number of model parameters, and following the
recommendation of Pride (2005), we consider only a single con-
solidation parameter to describe the frame properties. Parameter cs

typically varies between 2 and 20 in a consolidated medium, but
can be much greater than 20 in an unconsolidated soil.

Finally, the wave attenuation is explained by a generalized
Darcy’s law, which uses a complex, frequency-dependent dynamic
permeability k(ω) defined via the relationship (Johnson et al.
1994)

ρ̃ = i
η

ω k(ω)
with k(ω) = k0

/ [ √
1 − i

4

n J

ω

ωc
− i

ω

ωc

]
.

(5)

In eq. (5), η is the viscosity of the fluid and k0 the hydraulic (dc)
permeability. Parameter nJ is considered constant and equal to 8 to
simplify the equations. The relaxation frequency ωc = η/(ρ f Fk0),
where F is the electrical formation factor, separates the low-
frequency regime where viscous losses are dominant from the high-
frequency regime where inertial effects prevail. We refer the reader
to the work of Pride (2005) for more information on the parameters
used in this study.

The solution of eq. (1) leads to classical fast P and S waves,
and to additional slow P waves (often called Biot waves) which
can be seen at low frequency as a fluid pressure equilibration wave.
Alternative poroelastic theories could have been considered, such
as the one developed by Sahay (2008), which also considers slow
S waves. Although these theories are more advanced than the Biot
theory, we will use the latter for sake of simplicity.

2.2 Forward problem

The model properties m consisting of the material parameters intro-
duced in the previous section are non-linearly related to the seismic
data d via an operator f , that is, d = f (m). The forward problem
is solved in the frequency–wavenumber domain for horizontally
layered media by using the generalized reflection and transmission
method of Kennett (1983). The synthetic seismograms are finally
transformed into the time-distance domain by using the 3-D ax-
isymmetric discrete wavenumber integration technique of Bouchon
(1981). This approach accurately treats multipathing and all mode
conversions involving the fast and slow P waves and the S wave.
It can also be used to obtain partial solutions to the full response,
notably to remove the direct waves and surface waves from the com-
puted wavefields. Both solid and fluid displacements are taken into
account as the latter are partly responsible for the wave attenuation.
This algorithm allows us to solve eq. (1) at all frequencies, that is, in
the low- and high-frequency regimes, for forces consisting of stress
discontinuities applied to a volume of porous rock and pressure
gradients in the fluid. In this article, we exclusively concentrate on
the low-frequency domain as seismic surveys are carried out in this
regime.

This combination of techniques was first used by Garambois &
Dietrich (2002) to model the coupled seismic and electromagnetic
wave propagation in stratified fluid-filled porous media. We have

implemented a simplified version of this modelling scheme that
retains only the seismic wave propagation. Similar methods have
been developed by Haartsen & Pride (1997) and by Pride et al.
(2002).

To verify the accuracy of the modelling algorithm, we compare
our numerical results with an analytical solution derived by Philip-
pacopoulos (1997, 1998) in the frequency–wavenumber domain for
a homogeneous medium bounded by a free surface. The time do-
main solution is obtained via an inverse Hankel transform followed
by a Fourier transform. This solution has also been used by O’Brien
(2010) to check a 3-D finite difference solution. The properties of the
medium considered for the test are listed in Table 1. The medium
is excited by a vertical point force located 200 m below the free
surface with a 40-Hz Ricker wavelet time dependence. Relaxation
frequency ωc is equal to 16 kHz. Receivers are located at 100 m
depth, regularly spaced horizontally at distances ranging from 0 to
200 m from the source. Fig. 1 shows that the agreement between
our solution and that of Philippacopoulos (1998) is very good for
vertical and horizontal displacements. The misfit values shown in
Fig. 1 are defined as the rms value of the difference between the two
solutions normalized by the rms value of the analytical solution. The
consistency of our modelling algorithm has been further checked
by using the reciprocity theorem, that is, by exchanging the source
and the receiver in various configurations in a layered medium.

Our modelling algorithm is quite general and computes a full 3-D
response, that is, it can handle the P − SV and SH wave propagation
regimes. In this study, we concentrate on backscattered energy, that
is, we consider reflected seismic waves as those recorded in seismic
reflection experiments. We further assume that, whenever they exist,
waves generated in the near surface (direct and head waves, surface
and guided waves) are filtered out of the seismograms prior to the
application of the inversion procedure. In the P − SV case, the
seismic response at the top of the layering can be computed in solid
or fluid media to address land or marine applications.

The sensitivity of the seismic waveforms with respect to the
model parameters is computed by using the poroelastic Fréchet
derivatives recently derived by De Barros & Dietrich (2008). These
operators represent the first-order derivatives of the seismic dis-
placements d with respect to the model properties m. They can be
readily and efficiently evaluated numerically because they are ex-
pressed as analytical formulae involving the Green’s functions of
the unperturbed medium.

In each layer, we consider the eight following quantities as model
parameters: (1) the porosity φ, (2) the mineral bulk modulus Ks,
(3) the mineral density ρs , (4) the mineral shear modulus Gs, (5)
the consolidation parameter cs, (6) the fluid bulk modulus Kf , (7)
the fluid density ρ f and (8) the permeability k0. The fluid viscos-
ity η is one of the input parameters but it is not considered in the
inversion tests as its sensitivity is very small and exactly similar to
that of the permeability (De Barros & Dietrich 2008). This param-
eter set allows us to distinguish the parameters characterizing the
solid phase from those describing the fluid phase. Our parametriza-
tion differs from that used by Morency et al. (2009), as different
parameter sets can be considered. Our inversion code is capable of
inverting one model parameter at a time or several model parameters
simultaneously.

Table 1. Model parameters of the homogeneous half-space model used for the algorithm check.

φ ( ) k0(m 2) ρ f (kg m−3) ρs (kg m−3) Ks (GPa) G (GPa) Kf (GPa) KD (GPa) η (Pa s)

0.30 10−11 1000 2600 10 3.5 2.0 5.8333 0.001
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1546 L. De Barros, M. Dietrich and B. Valette

Figure 1. Left-hand panels: comparison of seismograms computed with our approach (solid black line) with the analytical solution of Philippacopoulos (1998)
(thick grey line), and their differences (thin dashed line). Right-hand panels: Misfit between the two solutions. The comparisons are made for the (a) horizontal
and (b) vertical solid displacements in a homogeneous half-space excited by a vertical point force. P and S denote the direct waves whereas PP, PS, SP and SS
refer to the reflected and converted waves at the free surface.

3 Q UA S I - N E W T O N A L G O R I T H M

The theoretical background of non-linear inversion of seismic wave-
forms has been presented by many authors, notably by Tarantola &
Valette (1982), Tarantola (1984, 1987) and Mora (1987). The inverse
problem is iteratively solved by using a generalized least-squares
formalism. The aim of the least-squares inversion is to infer an op-
timum model mopt whose seismic response best fits the observed
data dobs, and which remains at the same time close to an a priori
model mprior.

This optimum model corresponds to the minimum of a misfit (or
cost) function S(m) at iteration n which is computed by a sample-
by-sample comparison of the observed data dobs with the theoretical
seismograms d = f (m), and by an additional term which describes
the deviations of the current model m with respect to the a priori
model mprior, that is, (Tarantola & Valette 1982; Tarantola 1987)

S(m) = 1/2
(||d − dobs||2D + ||m − mprior||2M

)
. (6)

The norms || . ||2D and || . ||2M are weighted L2 norms, respectively,
defined by

||d||2D = dT CD
−1 d ,

||m||2M = mT CM
−1 m , (7)

where CD and CM are covariance matrices.
The easiest way to include prior knowledge on the medium prop-

erties is through the model covariance matrix (e.g. Gouveia & Scales
1998). Here we just want to limit the domain space without any fur-
ther information. Thus, the model covariance matrix CM is assumed
to be diagonal, which means that each model sample is considered
independent from its neighbours. In practice, for each parameter
in a given layer, we assign a standard deviation equal to a given
percentage of its prior value. The diagonal terms of the matrix are
thus proportional to the square of the prior values of the parame-
ters for the different layers. This ensures that the influence of the
different model parameters is of the same order of magnitude in
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Full waveform inversion in porous medium 1547

the inversion, and that the model part of the cost function (eq. 6) is
dimensionless. The constant of proportionality, that is, the square
of the given percentage, is taken around 0.1.

The data covariance matrix CD is taken as

(CD)i, j = σ e
i σ e

j exp

{
−|ti − t j |

ξ

}
, (8)

where σ e
i is the effective standard deviation of the i th data, defined

as

σ e
i =

√
�t

2 ξ
σ (ti ). (9)

σ (ti ) is the standard deviation of the data at the time ti , �t is the
time step and ξ is a smoothing period. Each data sample is expo-
nentially correlated with its neighbours. Expression (8) amounts to
introducing a H1 norm for the data into the cost function (eq. 6).
Considering the whole signal with the covariance kernel of eq. (8),
where the times ti and tj are between t1 and tn, we can show that the
corresponding ||d ||2D cost function part in eq. (6) is given by (see,
e. g. Tarantola 1987, p. 572–576)

||d||2D =
n∑

i=1

(
di

σ (ti )

)2

+
(

ξ

�t

)2 n∑
i=1

(
�t

σ (ti )

dd

dt
(ti )

)2

+
(

ξ

�t
− 1

2

)((
d1

σ (t1)

)2

+
(

dn

σ (tn)

)2
)

(10)

This shows that the cost function essentially corresponds to the
common least-squares term complemented by an additional term
controlling the derivative of the signal, which vanishes with ξ/�t .
This is equivalent to adjusting both the particle displacement and
particle velocity, a trick that incorporates more information on the
phase of the waveforms. Parameter ξ determines whether the inver-
sion is dominated by the fit of the particle displacement (ξ < �t)
or by the fit of the particle velocity (ξ > �t) in the L2-norm sense.
In practice, and in the following examples, ξ is kept around �t , and
σ (ti ) is assigned a percentage of the signal di. This implies that the
cost function S(m) (eq. 6) is dimensionless and that the data and
model terms can be directly compared.

Our choice to use a quasi-Newton algorithm to minimize the
misfit function S(m) is justified by the small size of the model
space when considering layered media. This procedure was found
to be more efficient than the conjugate gradient algorithm in terms
of convergence rate and accuracy of results (De Barros & Dietrich
2007). Thus, the model at iteration n+1 is obtained from the model
at iteration n by following the direction of pre-conditioned steepest
descent defined by

mn+1 − mn = −Hn
−1.γ n, (11)

where γ n is the gradient of the misfit function with respect to the
model properties mn. Gradient γ n can be expressed in terms of
the Fréchet derivatives Fn and covariance matrices CM and CD

(Tarantola 1987)

γ n = ∂S

∂m

∣∣∣∣
mn

= FT
n C−1

D (dn − dobs) + CM
−1 (mn − mprior).

(12)

In eq. (11), Hn is the Hessian of the misfit function, that is, the
derivative of the gradient function, or the second derivative of
the misfit function with respect to the model properties. We use

the classical approximation of the Hessian matrix in which the
second-order derivatives of f (m) are neglected. This leads to a
quasi-Newton algorithm equivalent to the iterative least-squares al-
gorithm of Tarantola & Valette (1982). The Hessian of the misfit
function for mn is then approximated by

Hn = ∂2 S

∂m2

∣∣∣∣
mn

� FT
n CD

−1 Fn + CM
−1. (13)

As the size of the Hessian matrix is relatively small with the 1-D
model parametrization adopted for laterally homogeneous media,
we keep the full expression given above and do not use further
approximations of the Hessian by considering diagonal or block-
diagonal representations. Since the Hessian matrix is symmetric
and positive definite, it can be inverted by means of a Cholesky
decomposition. We find it more efficient to use a conjugate gradient
algorithm with a pre-conditionning by the Cholesky decomposition
to solve more accurately the system corresponding to eq. (11).

To illustrate the computation of the Fréchet derivatives F for a
given model m, we detail below, in the P − SV case, the expressions
of the first-order derivatives of displacement U with respect to
the solid density ρs and permeability k0. The following analytical
formulae were derived in the frequency ω and ray parameter p
domain by considering a seismic source located at depth zS , a model
perturbation at depth z and a receiver at depth zR (De Barros &
Dietrich 2008):

∂U (zR, ω; zS)

∂ρs(z)
= −ω2 (1 − φ)

[
U G1z

1z + V G1r
1z

]
, (14)

∂U (zR, ω; zS)

∂k0(z)
= ω η

k0
2 


(
2

ω

ωc
+ i n J

) [
W G2z

1z + X G2r
1z

]
.

(15)

In these expressions, U = U (z, ω; zS), V = V (z, ω; zS), W =
W (z, ω; zS) and X = X (z, ω; zS) denote the incident wavefields at
the level of the model perturbation. U and V , respectively, represent
the vertical and radial components of the solid displacements; W
and X stand for the vertical and radial components of the relative
fluid-to-solid displacements. Expressions Gkl

i j = Gkl
i j (zR, ω; z) rep-

resent the Green’s functions conveying the scattered wavefields from
the inhomogeneities to the receivers. Gkl

i j (zR, ω, zS) is the Green’s
function corresponding to the displacement at depth zR of phase
i (values i = 1, 2 correspond to solid and relative fluid-to-solid
motions, respectively) in direction j (vertical z or radial r) gener-
ated by a harmonic point force Fkl (zS, ω)(k = 1, 2 corresponding
to a stress discontinuity in the solid and to a pressure gradient in
the fluid, respectively) at depth zS in direction l (z or r). A total
of 16 different Green’s functions are needed to express the four
displacements U , V , W and X in the P − SV -wave system (4 dis-
placements × 4 forces). The 
 parameter appearing in derivative
∂U/∂k0 is defined by 
 = √

n J − 4 i ω/ωc.
Fig. 2 shows the gradient γ 0, the Hessian H0 and the term

−H−1
0 .γ 0 at the first iteration of the inversion of the solid den-

sity ρs for a 20-layer model. We note that the misfit function is
mostly sensitive to the properties of the shallow layers of the model.
However, we see that the term −H−1

0 .γ 0 used in the quasi-Newton
approach results in an enhanced sensitivity to the deepest layers,
and therefore, in an efficient updating of their properties during
inversion. As shown by Pratt et al. (1998), the inverse of the Hes-
sian matrix plays an important role to scale the steepest-descent
directions, since it partly corrects the geometrical spreading.

As the forward modelling operator f is non-linear, several it-
erations are necessary to converge towards the global minimum
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1548 L. De Barros, M. Dietrich and B. Valette

Figure 2. (a) Gradient γ 0; (b) Hessian matrix H0 of the misfit function and (c) term −H−1
0 .γ 0 at the first iteration of the inversion of the solid density for a

20-layer model.

solution provided that the a priori model is close enough to the true
model. To ensure convergence of the iterative process, a coefficient
εn ≤ 1 is introduced in eq. (11), such as

mn+1 − mn = −εn .H
−1
n .γ n . (16)

If the misfit function S(m) fails to decrease between iterations n and
n+1, the value of εn is progressively reduced to modify model mn+1

until S(mn+1) < S(mn). The inversion process is stopped when the
misfit function becomes less than a pre-defined value or when a
minimum of the misfit function is reached.

4 O N E - PA R A M E T E R I N V E R S I O N :
C H E C K I N G T H E A L G O R I T H M

4.1 One-parameter inversion

To determine the accuracy of the inversion procedure for the dif-
ferent model parameters considered, we first invert for a single
parameter, in this case the mineral density ρs , and keep the others
constant. The true model to reconstruct and the initial model used to
initialize the iterative inversion procedure (which is also the a priori
model) are displayed in Fig. 3. The other parameters are assumed
to be perfectly known. Their vertical distributions consist of four
250-m thick homogeneous layers. Parameters φ, cs and k0 decrease
with depth while parameters ρ f , Ks, K f and Gs are kept strictly
constant.

Vertical-component seismic data (labelled DATA in the plots)
are then computed from the true model for an array of 50 receivers
spaced 20 m apart at offsets ranging from 10 to 1000 m from the
source (Fig. 4). The latter is a vertical point force whose signa-
ture is a perfectly known Ricker wavelet with a central frequency
of 25 Hz. Source and receivers are located at the free surface. As
mentioned previously, direct and surface waves are not included
in our computations to avoid complications associated with these
contributions. Fig. 4 also shows the seismograms (labelled INIT)
at the beginning of the inversion, that is, the seismograms which
are computed from the starting model. In this example, a minimum
of the misfit function was reached after performing 117 iterations
during which the misfit function was reduced by a factor of 2500
(Fig. 5). The decrease of the cost function is very fast during the
first iterations and slows down subsequently. Fig. 3 shows that the

Figure 3. Models corresponding to the inversion for the mineral density ρs :
initial model, which is also the a priori model (dashed line), true model (thick
grey line) and final model (black line). The corresponding seismograms are
given in Fig. 4.

true model is very accurately reconstructed by inversion. As there
are no major reflectors in the deeper part of the model, very little
energy is reflected towards the surface, which leads to some mi-
nor reconstruction problems at depth. In Fig. 4, we note that the
final synthetic seismograms (SYNT) almost perfectly fit the input
data (DATA) as shown by the data residuals (RES) which are very
small.

The inversions carried out for the φ, ρ f , Ks, K f , Gs and cs pa-
rameters (not shown) exhibit the same level of accuracy. However,
as predicted by De Barros & Dietrich (2008) and Morency et al.
(2009) with two different approaches, the weak sensitivity of the
reflected waves to the permeability does not allow us to reconstruct
the variations of this parameter.
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Full waveform inversion in porous medium 1549

Figure 4. Seismograms corresponding to the inversion for the mineral density ρs : synthetic data used as input (DATA), seismograms associated with the
initial model (INIT), seismograms obtained at the last iteration (SYNT) and data residuals (RES) computed from the difference between the DATA and SYNT
sections for the models depicted in Fig. 3. For convenience, all sections are displayed with the same scale, but the most energetic signals are clipped.

Figure 5. Decrease of the cost function (eq. 6) versus the number of itera-
tions in the inversion of the solid density (Figs 3 and 4).

4.2 Inversion resolution and accuracy

To further study the application of the inversion method to field data,
we examine in this section the resolution and accuracy issues of the
inversion algorithm. The resolution of the reconstructed models de-
pends on the frequency content of the seismic data. We have verified
that our inversion procedure is capable of reconstructing the prop-
erties of layers whose thickness is greater than λ/2 to λ/4, where
λ is the dominant wavelength of the seismic data. This behaviour
is similar to the results obtained by Kormendi & Dietrich (1991) in
the elastic case. Since S waves generally have shorter wavelengths
than P waves, we would expect to obtain better model resolution
by inverting only S waves in a SH data acquisition configuration,
rather than using both P and S waves. However, the simultaneous

inversion of P and S waves yields better inversion results due to the
integration of information coming from both wave types.

In the inversion results presented in Figs 3 and 4, the thickness of
the elementary layers used to discretize the subsurface is constant
and equal to 10 m, and the interfaces of the true models are correctly
located at depth. In reality, the exact locations of the major interfaces
are unknown and do not necessarily coincide with the layering
defined in the subsurface representation, unless the model is very
finely stratified. To evaluate the effect of a misplacement of the
interfaces on the inversion results, we consider again the inversion
of the solid density shown in Figs 3 and 4, and introduce a 1 per cent
shift of the interface depths relative to the true model. This error
may represent a displacement of ∼λ/20 for the deepest interfaces.
The inversion then leads to computed seismograms that correctly
fit the input data, and to a final model very close to the true model.
Therefore, this test shows that the inversion algorithm can tolerate
small errors affecting the interface depths. It also indicates that a
discretization of the order of λ/20 should be used to represent the
layering of the subsurface.

The accurate reconstruction of the distributions of model parame-
ters requires large source–receiver offset data to reduce various am-
biguities inherent to the inversion procedure. However, large-offset
data do not always constrain the solution as expected because of the
strong interactions of the wavefields with the structures at oblique
angles of incidence. In particular, large-offset data may contain en-
ergetic multiple reflections which increase the non-linearity of the
inverse problem. Therefore, a trade-off must be found in terms of
source–receiver aperture to improve the estimation of model pa-
rameters while keeping the non-linearity of the seismic response at
a reasonable level. Our tests indicate that the layered models are
badly reconstructed if the structures are illuminated with angles of
incidence smaller than 10◦ relative to the normal to the interfaces.
Conversely, the inversion procedure generally yields good results
for incidence angles greater than 45◦, a value not always reached
in conventional seismic reflection surveys. As the medium to re-
construct is laterally homogeneous (i.e. invariant by translation),
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1550 L. De Barros, M. Dietrich and B. Valette

the inversion process requires only one source and does not require
a very fine spatial sampling of the wavefields along the recording
surface to work properly. For the example given in Figs 3 and 4, 25
traces were sufficient to correctly reconstruct the model properties
down to 1000 m provided that the maximal source–receiver offset
be greater than 1000 m.

A classical approach to address the inversion of backscattered
waves is to gradually incorporate new data during the inversion
process rather than using the available data all together. A common
strategy followed by many authors (for instance Kormendi & Diet-
rich 1991; Gélis et al. 2007) for seismic reflection data is to partition
the data sets according to source–receiver offset and recording time,
and possibly temporal frequency. The inversion is then carried out in
successive runs, by first including the early arrivals, near offsets and
low frequencies, and by integrating additional data corresponding
to late arrivals, large offsets and higher frequencies in subsequent
stages. This strategy is implemented to obtain stable inversion re-
sults by first determining and consolidating the gross features (long
and intermediate wavelengths) of the upper layers before estimat-
ing the properties of the deepest layers and the fine-scale details
(short wavelengths) of the structure. We have checked for a com-
plex medium and single parameter inversions that this progressive
and cautious strategy leads to better results than the straightforward
and indistinct use of the whole data set.

5 M U LT I PA R A M E T E R I N V E R S I O N :
PA R A M E T E R C O U P L I N G

5.1 Model parameters for the inversion of synthetic data

In their sensitivity study of poroelastic media, De Barros & Diet-
rich (2008) showed that perturbations of certain model parameters
(especially cs, φ and Gs on the one hand, and ρs and ρ f on the
other hand) lead to similar seismic responses, thus emphasizing the
strong coupling of these model parameters. In such cases, a multi-
parameter inversion is not only challenging, but may be impossible
to carry out, except for very simple model parameter distributions,
such as ‘boxcar functions’ (De Barros & Dietrich 2007).

We consider simple models to specifically address this issue. The
data sets used in this section are constructed from a generic two-
layer model (see Table 2) inspired by an example given in Haartsen
& Pride (1997): a 100-m thick layer (with properties typical of con-
solidated sand) overlying a half-space (with properties typical of
sandstone). The permeability, porosity and consolidation parameter
differ in the two macrolayers whereas the five other model param-
eters have identical values. This generic model is then subdivided
into 20 elementary layers having a constant thickness of 10 m. One
or several properties chosen among the eight model parameters are
then randomly modified in the elementary layers. The models thus
obtained are used to compute synthetic data constituting the input
seismic waveforms for our inversion procedure.

The data were computed for 50 receivers distributed along the
free surface, between 10 and 500 m from the source location. The
seismic source is a vertical point force, with a 45-Hz Ricker wavelet
source time function.

Figure 6. Normalized rms error of model parameter logs obtained by inver-
sion using an incorrect starting model. The parameters which are inverted
are indicated along the horizontal axis, whereas the parameters which are
perturbed in the starting model are along the vertical axis. The starting model
is not perturbed when the parameters along the horizontal and vertical axes
are identical. Permeability k0 was not inverted in this test.

5.2 Coupling between parameters

We seek to know if a given parameter can be correctly reconstructed
if one of the other model properties is imperfectly known. For each
parameter considered, we evaluate the robustness of the inversion
when a single parameter of the a priori and initial model (given in
Table 2) is modified by +1 per cent everywhere in the model. This
variation does not pretend to be realistic, but is merely introduced
to evaluate the coupling between parameters. To obtain a direct as-
sessment of the resulting discrepancies, we measure the normalized
rms error between the reconstructed parameters m and their true
values mt:

Erms =
√∑

n [m(n) − mt (n)]2∑
n [mt (n)]2

, (17)

where n represents any element of the model parameter arrays m
and mt .

The results of this test are summarized in Fig. 6 where the in-
verted parameters are along the horizontal axis and the perturbed
parameters are along the vertical axis. Fig. 6 displays uneven results
where the reconstruction of some parameters (notably φ, ρ f , ρs and
cs) is only moderately affected by the small perturbations applied to
other model properties, while the inversion of other parameters (Kf ,
Ks and Gs) is strongly influenced by errors in single model proper-
ties. The rms errors greater than 10 per cent usually correspond to
reconstructed models which are very far from reality. Note that no
perturbation has been introduced in the model when parameters are
identical along both axes. In those cases, the inversion is not perfect
(model errors may reach 2 per cent) as there exists minor differences
in the deepest layers due to a lack of seismic information contained
in the seismograms. This sensitivity study shows that parameters
are poorly determined if the initial and a priori models of the other

Table 2. Model parameters of the generic two-layer model used in the inversion tests.

Depth (m) φ ( ) k0(m 2) ρ f (kg m−3) ρs (kg m−3) Ks (GPa) Gs (GPa) Kf (GPa) cs ( ) η (Pa s)

0–100 0.30 10−11 1000 2700 36 40 2.2 16.5 0.001
100–∞ 0.15 10−13 1000 2700 36 40 2.2 9.5 0.001

C© 2010 The Authors, GJI, 182, 1543–1556

Journal compilation C© 2010 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/182/3/1543/599816 by guest on 12 M

arch 2021



Full waveform inversion in porous medium 1551

parameters are not perfectly known, and as a result, multiparameter
inversion results must in general be considered with utmost care.

As predicted by the sensitivity study conducted by De Barros
& Dietrich (2008), the seismic response of a poroelastic medium,
and therefore the inversion of this response are mostly sensitive to
parameters ρs, φ, cs and Gs. In Fig. 6, the horizontal lines corre-
sponding to these parameters display the largest errors. It is seen
that the inversions of the bulk moduli Ks and Kf are unstable if the
four parameters mentioned above are not well defined in the starting
model. We also note that the inversion for Gs is only sensitive to
ρs , and that the inversion for φ or cs does not depend on Gs. On the
other hand, a poor knowledge of the permeability k0, of the fluid
modulus Kf or of the fluid density ρ f in the starting model has little
or no influence on the inversion of the other parameters. Among the
four most sensitive parameters, ρs and Gs can usually be estimated
with good accuracy from geological knowledge. In addition, these
parameters do not show large variations. Consequently, φ and cs are
the most important parameters to estimate in the starting model for
a successful inversion of the medium properties.

5.3 Multiparameter inversion

By definition and construction of the full waveform fitting pro-
cedure, the observed data are generally well reproduced by the
synthetics at the end of the inversion process. However, when pa-
rameters are coupled, the resulting models are wrong even though
the corresponding waveforms appear to properly represent the data.
For example, Fig. 7 shows the models obtained by the simultane-
ous inversion of two strongly coupled parameters, namely, poros-
ity φ and consolidation parameter cs. The corresponding data are
shown in Fig. 8. It is seen that in a given layer, the error made
on one parameter is partly compensated by an error of oppo-
site sign on the other parameter, thereby minimizing the misfit
function. The impossibility to simultaneously reconstruct several
model parameters at the same time means that the extra informa-
tion introduced by the peculiarities of the seismic wave propaga-
tion in poroelastic media (slow P wave, conversion of the fluid
displacement into solid displacement and attenuation and disper-
sion effects) is not sufficient, for the source–receiver geometry
under consideration, to overcome the intrinsic ambiguities of the

poroelastic model and its description in terms of eight material
properties.

6 I N V E R S I O N S T R AT E G I E S

We explore in this section two strategies to get around the parameter
coupling, by first considering composite model parameters and a
priori information, and then a differential inversion procedure suited
for time-lapse surveys.

6.1 Composite model parameters

The first strategy to circumvent the difficulty of multiparameter
inversion is to use as much external information as possible and
to combine model parameters that are physically interdependent. In
our approach, composite model parameters can be easily introduced
in the inversion algorithm by combining the Fréchet derivatives of
the original model parameters (see, e.g. De Barros & Dietrich 2008).

For example, we may know from a priori information the nature
of the two fluids saturating a porous medium, for example, water
and air, and assume standard values for the properties of each fluid,
for example, Kf = 2.1 GPa and ρ f = 1000 kg m−3 for water. We
can then introduce the fluid saturation rate Sr as the ratio of the
volume V f 1 occupied by the more viscous fluid to the total pore
volume Vf . The sensitivity operators with respect to the fluid sat-
uration rate are computed by using mixture laws, that is, by using
an arithmetic average (Voigt’s law) for the density and a harmonic
average (Reuss’s law) for the fluid modulus,

Sr = V f 1

V f
= ρ f − ρ f 2

ρ f 1 − ρ f 2
= K f 1

K f

K f − K f 2

K f 1 − K f 2
, (18)

where subscripts 1 and 2 denote the properties of the two fluids. We
can similarly define the volume rate Ts of a mineral for a medium
consisting of two minerals, as the volume occupied by one of the
minerals normalized by the total solid volume. As before, we use
Voigt’s law to link up this parameter with the solid density and
Reuss’s law for the shear and bulk moduli. These mixture laws are
not the most accurate ones to describe the properties of biphasic
fluids or bicomponent minerals (Mavko et al. 1998), however, we
will use them for sake of simplicity.

Figure 7. Models for the simultaneous inversion of the porosity (left-hand panel) and consolidation parameter (right-hand panel). Both panels show the initial
model, which is also the a priori model (dashed line), the true model (thick grey line) and the final model (black line). The corresponding seismograms are
displayed in Fig. 8.
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1552 L. De Barros, M. Dietrich and B. Valette

Figure 8. Seismograms corresponding to the models depicted in Fig. 7: synthetic data used as input (DATA), seismograms associated with the initial model
(INIT), seismograms obtained at the last iteration (SYNT) and data residuals (RES) computed from the difference between the DATA and SYNT sections. For
convenience, all sections are displayed with the same scale, but the most energetic signals are clipped.

We can then invert for the new composite parameter Ts (resp. Sr)
instead of considering density ρs (resp. ρ f ) and moduli Ks and
Gs (resp. Kf ), by assuming that the other parameters are indepen-
dently defined. Since the quantities Sr and Ts vary between 0 and
1 and are equipartitioned, care must be taken to ensure that these
bounds are not exceeded. To satisfy these constraints, we introduce
an additional change of variable to deal with Gaussian distribu-
tion parameters, as needed in the least-squares approach. Following
Mora et al. (2006), and generically denoting the Sr and Ts param-
eters by variable X , we define a new parameter X ′ using the error
function erf by writing

X ′ = erf−1 2X − Xmax − Xmin

Xmax − Xmin

and

dX

dX ′ = Xmax − Xmin√
π

e−X ′2
.

(19)

In this way, the new parameter X ′ has a Gaussian distribution centred
around 0 with a variance of 1/2, which is equivalent in probability
to an equipartition of the variable X over the interval ]0,1[. The X
parameter (Ts or Sr) can never reach the values 0 or 1 as these values
are infinite limits for the X ′ parameter. However, this limit can be
accurately approached without any stability problems.

Fig. 9 shows an inversion example to obtain the variations of the
volume rate of silica when the grains are constituted by silica (Ks =
36 GPa, Gs = 40 GPa and ρs = 2650 kg m−3) and mica (Ks =
59.7 GPa, Gs = 42.3 GPa and ρs = 3050 kg m−3). The other model
parameters are those given in Table 2 which are assumed fixed
and known. The unknowns of the inverse problem are the distribu-
tions of the ρs, Ks and Gs parameters characterizing the minerals,
which are lumped together as the Ts parameter. The source and re-
ceiver geometry and characteristics are the same as those described
in Section 5.1. Fig. 10 displays the synthetic data computed from
the models of Fig. 9, the seismograms at the last iteration of the

Figure 9. Models corresponding to the inversion for the volume rate of
silica Ts: initial model (dashed line), true model (thick grey line) and final
model (black line). The corresponding seismograms are displayed in Fig. 10.

inversion process and the data residuals. Fig. 9 shows that the vol-
ume rate of silica is very well reconstructed. A total of 18 iterations
were performed before reaching the minimum of the misfit function,
which was divided by 950 during the inversion process.

These examples show that a viable inversion strategy is obtained
by introducing (1) a priori informations (e.g. the type of fluids)
and (2) a relationship between the former and the new param-
eters (e.g. relationships between K f , ρ f and Sr). This approach
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Full waveform inversion in porous medium 1553

Figure 10. Seismograms corresponding to the models depicted in Fig. 9: synthetic data used as input (DATA), seismograms associated with the initial model
(INIT), seismograms obtained at the last iteration (SYNT) and data residuals (RES) computed from the difference between the DATA and SYNT sections. For
convenience, all sections are displayed with the same scale, but the most energetic signals are clipped.

can be generalized as soon as these two requirements are fulfilled.
Following the same process, let us mention here that the number
of parameters describing the medium can be further reduced if
the properties characterizing the solid part of the porous medium
(mineral properties ρs, Ks and Gs, consolidation parameter cs and
porosity φ) can be measured via laboratory experiments. This may
seem obvious but if the medium can be represented by two different
facies (sand and shale, for example), we can invert for the volume
percentage of each facies. In this case, the number of unknowns
would be reduced to two: the type of facies (sand or shale), and its
fluid content.

6.2 Differential inversion

A second possibility to reduce the ambiguities of multiparameter in-
version is to consider and implement a differential inversion. Instead
of dealing with the full complexity of the medium, we concentrate
on small changes in the subsurface properties such as those occur-
ring over time in underground fluid-filled reservoirs. This approach
may be particularly useful for time-lapse studies to follow the ex-
tension of fluid plumes or to assess the fluid saturation as a function
of time.

For example, the monitoring of underground CO2 storage sites
mainly aims at mapping the expansion of the CO2 cloud in the
subsurface and assessing its volume. Time-lapse studies performed
over the Sleipner CO2 injection site in the North Sea (see e.g. Arts
et al. 2004; Clochard et al. 2010) highlight the variations of fluid
content as seen in the seismic data after imaging and inversion. In
this fluid substitution case, the parameter of interest is the relative
saturation of saline water/CO2 although the fluid density is affected
as well by the CO2 injection. We can then rearrange the model pa-
rameters to invert for the relative H2O/CO2 saturation. A differential
inversion process will allow us to free ourselves from the unknown
model parameters, to a high degree. This approach is valid for any
type of fluid substitution problem, such as water-table variation, oil
and gas extraction or hydrothermal activity.

The first step in this approach is to perform a baseline or reference
survey to estimate the solid properties before the fluid substitution
occurs. We have shown in the section on multiparameter inver-
sion that the model properties are poorly reconstructed in general
(Fig. 7), whereas the seismic data are reasonably well recovered
(Fig. 8). Thus, in spite of its defects, the reconstructed model re-
spects to some degree the wave kinematics of the input data. In
other words, the inverted model provides a description of the solid
Earth properties which can be used as a starting model for sub-
sequent inversions. The latter would be used to estimate the fluid
variations within the subsurface from a series of monitor surveys
(second step). To test this concept, we perturb the fluid proper-
ties of the true model of Fig. 7 to simulate a fluid variation over
time. Two 30-m thick layers located between 50 and 80 m depth
and between 110 and 140 m depth are water depleted due to gas
injection. The water saturation varies between 60 and 80 per cent
in these two layers (Fig. 11). We assume that air is injected in the
water, with properties Kf = 0.1 MPa and ρ f = 1.125 kg m−3).
We consider air properties, even though is not corresponding to
injection problems, to keep the problem as general as possible with
regard to any kind of fluid substitution problem (involving CO2,
gas, etc.). The starting models for the porosity φ and consolida-
tion parameter cs are the ones reconstructed in Fig. 7. The initial
seismograms (INIT) of Fig. 12 are the same as the output data
(SYNT) of Fig. 8 (with different normalization). Our goal is to esti-
mate the fluid properties by inverting the seismic data for the water
saturation.

The model obtained is displayed in Fig. 11. We see that the loca-
tion and extension of the gas-filled layers are correctly estimated.
The magnitude of the water saturation curve, which defines the
amount of gas as a function of depth, is somewhat underestimated
in the top gas layer but is nevertheless reasonably well estimated.
In the bottom gas layer, the inversion procedure only provides a
qualitative estimate of the water saturation. The data residuals are
quite strong in this example because they correspond to the sum
of the residuals of both inversion steps. These computations show
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1554 L. De Barros, M. Dietrich and B. Valette

Figure 11. Models corresponding to the inversion for the water saturation
Sr: initial model (dashed line), true model (thick grey line) and final model
(black line). The corresponding seismograms are given in Fig. 12.

that the differential inversion approach is capable of estimating the
variations of fluid content in the subsurface without actually know-
ing the full properties of the medium.

7 C O N C LU S I O N

We have developed a FWI technique with the aim of directly estimat-
ing the porosity, permeability, interstitial fluid properties and me-

chanical parameters from seismic waveforms propagating in fluid-
filled porous media. The inversion algorithm uses a conventional
generalized least-squares approach to iteratively determine an earth
model which best fits the observed seismic data. To investigate the
feasibility of this concept, we have restricted our approach to plane-
layered structures. The forward problem is solved with the general-
ized reflection and transmission matrix method accounting for the
wave propagation in fluid-filled porous media with the Biot theory.
This approach is successfully checked against a semi-analytical so-
lution. The input data of our inversion procedure consists of shot
gathers, that is, backscattered energy recorded in the time-distance
domain.

The numerical experiments carried out indicate that our inver-
sion technique can—in favourable conditions–reproduce the fine
details of complex earth models at reasonable computational times,
thanks to the relatively fast convergence properties of the quasi-
Newton algorithm implemented. The inversion of a single model
parameter yields very satisfactory results if large-aperture data are
used, provided that the other parameters are well defined. As ex-
pected, the quality of the inversions mainly reflects the sensitivity
of the backscattered wavefields to the different model parameters.
The best results are obtained for the most influential parameters,
namely, the porosity φ, consolidation parameter cs, solid density ρs

and shear modulus of the grains Gs. As a general rule, perturbations
in fluid density ρ f , solid bulk modulus Ks and fluid bulk modulus
Kf have only a weak influence on the wave amplitudes. Permeability
k0 is the most poorly estimated parameter.

The number of model parameters entering the Biot theory (eight
in our case) is not a problem by itself. However, the interdepen-
dence between some of these parameters is very challenging for the
inversion since the information pertaining to one parameter may be
wrongly transferred to another parameter. This is notably true for
parameters cs, φ and Gs on the one hand, and for parameters ρs

and ρ f on the other hand. As a result, sequential or simultaneous
inversions for several model parameters are usually impossible, in

Figure 12. Seismograms corresponding to the models depicted in Fig. 11: synthetic data used as input (DATA), seismograms associated with the initial model
(INIT), seismograms obtained at the last iteration (SYNT) and data residuals (RES) computed from the difference between the DATA and SYNT sections. For
convenience, all sections are displayed with the same scale, but the most energetic signals are clipped.
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Full waveform inversion in porous medium 1555

the sense that the models obtained are not reliable. The additional
information carried by the waveforms propagating in poroelastic
media does not help to better constrain the multiparameter inver-
sion for the source–receiver configuration considered in this article.

Several strategies can be used to circumvent the coupling be-
tween the model parameters, either by using auxiliary information
or by considering only perturbations in the medium properties over
time. In the former case, the solution consists in defining compos-
ite parameters from the original medium properties, by using basic
knowledge on the material properties. For example, a priori infor-
mation on the nature of the saturating fluids can be exploited to
invert for the fluid saturation rate. In other cases, we may consider
inverting for the volume rate between two different lithologies if
the rock formations are known beforehand from well log data. Our
inversion algorithm can easily be modified to introduce new model
parameters given that the Fréchet derivatives of the seismograms
are expressed in semi-analytical form.

In time-lapse studies, such as for the seismic monitoring of un-
derground CO2 storage, further simplifications occur as the fluid
substitution problem only involves a limited number of material
properties. The two-step approach proposed in this work for dif-
ferential inversions of the reference and monitor surveys begins by
estimating an optimum yet inaccurate earth model from the refer-
ence data set, which serves as a starting model for the inversion of
the monitor data sets. This approach proved successful and promis-
ing for the reconstruction of the fluid saturation rate as a function
of depth.

It is likely that 2-D or 3-D poroelastic inversions will lead to
similar conclusions in terms of coupling between model parameters.
Therefore, the most interesting use of such FWI algorithms will
probably be in combination with conventional elastic inversions to
estimate the wave velocities and bulk density first, and finish with
the fine scale details of the poroelastic properties with a priori
knowledge of some of the parameters, as suggested in this study.
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