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[1] We compare the geologic histories, the deep structures,
and the present‐day kinematics of deformation of the Hima-
laya and the adjacent Tibetan Plateau with those of the Zagros
and Iranian Plateau to test geodynamic processes of conti-
nental collision. Shortly after India and Arabia collided with
Eurasia, horizontal shortening manifested itself by folding
and thrust faulting of sedimentary rock detached from India’s
and Arabia’s underlying crystalline basement. Subsequently,
slip on thrust faults stacked slices of India’s basement to
build the Himalaya on India’s northern margin. Such fault-
ing has not yet developed in the Zagros, where collision is
more recent and Arabia penetrates into Eurasia more slowly
than India does, so that postcollision convergence with
Eurasia is less. The greater elevation, thicker crust, and more
marked heterogeneity of the upper mantle beneath the
Tibetan than beneath the Iranian Plateau also reflect a more
advanced stage of development. Moreover, while thrust or
reverse faulting and crustal shortening continue on the mar-
gins of both plateaus, normal faulting, suggesting horizontal
extension and crustal thinning, occurs within Tibet but not

in Iran. Hence, the balance of forces that built the high
Tibetan Plateau must have changed, apparently some time
since ∼15 Ma. Removal of Tibetan mantle lithosphere could
have altered that balance. If mantle lithosphere beneath the
Iranian Plateau has been removed, however, the change in
force balance has been too small to initiate normal faulting.
Low seismic wave speeds in the uppermost mantle just
beneath the Moho of both plateaus suggest (to us) that lith-
osphere beneath both is thin, consistent with late Cenozoic
removal of it, but alternative explanations might account
for these low speeds. Despite its apparently thin, and hence
presumably weak, mantle lithosphere, much of central Iran
undergoes little deformation. It illustrates how a crustal
block can behave rigidly not necessarily because it is strong
but because deviatoric stresses can be small. Whereas differ-
ences between the two regions clearly depend on the amount
that Arabia and India have penetrated into Eurasia, which
scales with both the dates of collision and rates of conver-
gence, we see no differences in the operative processes that
depend on the present‐day rates of convergence.
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1. INTRODUCTION

[2] The two most prominent mountain belts built by con-
tinental collision, the Zagros and the Himalaya, illustrate
many of the same processes but at different rates, with dif-
ferent amounts of total convergence, and apparently at
differing stages of development. Thus, comparisons of their
present‐day structures and of the kinematics of their ongoing

deformation offer both illustrations of processes common to
collisions in general and differences that reveal aspects of
collisional zones as they evolve.
[3] Both the Zagros and the Himalaya have been built

by the collision of what appears to be strong lithosphere
(beneath Arabia and India) with seemingly weaker material
that included segments of Andean‐type margins along the
southern edge of the Eurasian plate. For the Zagros, the
Arabian platform, which has been stable since Precambrian
time and lies adjacent to the Arabian shield, plunges beneath
the crust of central Iran, which has progressively become
part of Eurasia. For the Himalaya the Indian shield has been
underthrust beneath southern Tibet. Collision in the Zagros
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seems to have begun sometime between the end of the
Eocene epoch and before the Miocene epoch, between ∼35
and ∼23 Ma. Most believe that India’s collision with Eurasia
occurred between 55 and 45 Ma (though see section 2.2 for
a discussion of controversy here). The mountain belts are
manifestations of sustained convergence as Arabia and India
have penetrated into the Eurasian continent. In both cases,
that convergence has resulted not only in the building of
mountain ranges over the northeastern edges of the Arabian
and Indian plates but also in widespread deformation 1000–
3000 km from the collision zones. Both belts are now
bounded by high plateaus, high surfaces with modest relief
compared with their mean elevations, except on their mar-
gins (Figure 1). Because the collision between India and
Eurasia occurred before that between Arabia and Eurasia
and because the average convergence rates between the
former are higher (50–60 mm/yr since 45 Ma) than the latter
(18–25 mm/yr since 25 Ma), the scales of the two mountain
belts and associated widespread deformation differ.
[4] We discuss both the similarities of these two regions

and their differences with the goal of advancing our under-
standing of basic, large‐scale processes of collision. Some
differences reflect different stages in the penetration of the
Arabian and Indian plates into Eurasia [e.g., Barazangi,
1989], but others offer tests of how different properties of
the lithosphere or different kinematics in the two regions
manifest themselves in the resulting widespread deforma-
tion. We exploit these differences to address how both
crustal and mantle dynamics may evolve during the colli-
sion and penetration of one continent into another. Readers
will be quick to note that aspects of both regions remain

poorly known or disputed, and we try to make controversies
apparent.

2. BACKGROUND

2.1. Present‐Day Topography and Geographical
Differences
[5] The Tibetan and Iranian plateaus dominate topo-

graphic maps not only of Asia but also of the entire Alpide
belt of Mesozoic and Cenozoic mountain building that
stretches from the Iberian peninsula and Morocco eastward
to Indonesia (Figure 1). Both plateaus are bounded on the
south and southwest by important mountain ranges, the
Zagros and Himalaya, which have formed in Cenozoic
time. To the north and northeast of the plateaus, additional
high terrain reflects continuing crustal deformation, which
includes crustal thickening and continued mountain building.
[6] Both regions of high terrain are the loci of major earth-

quakes that claim lives at rates among the highest on Earth
and that attest to continuing tectonic activity (Figure 2).
Most great intracontinental earthquakes have occurred in
eastern Asia and not in Iran (Figure 2). Presumably, this
results, at least in part, from more rapid ongoing deforma-
tion in eastern Asia than Iran but perhaps also from a longer
history and greater amount of deformation that have created
more mature faults with longer homogeneous segments in
eastern Asia.
[7] In terms of deaths, however, when scaled to areal

extent, the populations of Iran and eastern Asia have suf-
fered comparable losses, in part because so much of eastern
Asia is remote and unpopulated. Moreover, people living in

Figure 1. Map of Asia showing topography and major faults. The two belts, Zagros and Himalaya,
lie adjacent to stable regions of Arabia and India, where elevations are low, and to higher terrain in
the Iranian Plateau, northeast of the Zagros, and in the Tibetan Plateau north and east of the Himalaya.
Both plateaus are bounded on their other sides by mountain belts. Tibet is notably higher than Iran, and
high terrain extends much farther north and northeast of Tibet than it does from Iran.
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arid climates like in Iran build houses in areas where there
its water, which in turn commonly lie at the edges of
mountain ranges, not only where rain falls but also where
slip on active faults, during earthquakes, maintains those
topographic differences [Jackson, 2006].
[8] Not all of the high topography in these regions has

developed since the collisions of Arabia and India with
Eurasia, but most surely has. Although the simple geo-
graphical concept of a plateau applies to both regions,
mountain ranges of varying heights and widths surround
both plateaus, and these ranges are loci of active deforma-
tion. Currently, internal drainage occurs in both plateaus,
and hence, erosion of elevated terrain manifests itself as a
reduction in relief as debris is deposited in basins adjacent to
the eroding terrain.
[9] The two plateaus also differ, most obviously in Tibet’s

mean elevation being nearly 5000 m but with virtually all of
Iran lying at lower elevation and the mean elevation for the

Iranian Plateau being only ∼1000–1500 m (see Table 1 for a
summary of quantitative comparisons). Similarly, although
the widths of the Zagros and Himalaya are comparable
(∼200–300 km), the Himalaya stands much higher. More-
over, the Himalaya has much greater access to moist air
(from the Arabian Sea and Bay of Bengal) than the Zagros,
which lie downwind of the Arabian desert. With orographic
rainout of that moisture, erosion of the Himalaya seems to
be much faster than that of the Zagros. Glaciers carve high
terrain in the Himalaya but have had little impact on the
Zagros. Canyons in the Himalaya are deeper. Correspond-
ingly, sediment accumulation is modest in the minor fore-
deep southwest of the Zagros (including the Persian Gulf
with only ∼50 m of water and a maximum depth of 90 m);
by contrast, a relatively deep basin south and southwest of
the Himalaya, the Ganga Basin, is full, and most sediment
today passes over it and continues to the Indus and Bengal
fans in the Arabian Sea and Bay of Bengal.

TABLE 1. Quantitative Comparison of the Two Mountain Belts and Plateaus

Himalaya‐Tibet Zagros‐Iran

Width of mountain belt 200–300 km 200–300 km
Crustal thickness beneath plateaus ∼70 km (over a wide area) <50 km (except in narrow belts)
Mean elevation 5000 m 1000–2000 m
Date of collision 45–55 Ma 23–35 Ma
Postcollision tectonic event ∼15 Ma ∼12 Ma
Onset of normal faulting 13–8 Ma in the future?
Precollision rate 110 mm/yr 31 mm/yr
Postcollision rate 50–60 mm/yr 25 mm/yr
Posttectonic rate 32–44 mm/yr 20 mm/yr
Himalaya/Zagros shortening rates 18–20 mm/yr 6–10 mm/yr
Postcollision plate convergence 2500–3500 km 500–800 km
Himalaya/Zagros shortening 300–900 km 50–150 km

Figure 2. Map of Asia showing significant earthquakes between 1900 and 2005 and those between 1973
and 2005 with M ≥ 6 from compilations by the U.S. Geological Survey (http://neic.usgs.gov/neis/epic/
epic_global.html) but with modifications from Molnar and Deng [1984] for eastern Asia and from
Ambraseys and Jackson [1998] for the eastern Mediterranean. For events with M ≥ 8, we have included a
couple with M = 7.9 (e.g., 1931 and 2001). Note that the largest earthquakes tend to occur in eastern Asia.
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2.2. Precollision Geologic History and the Timing
of Collisions
[10] Since Paleozoic time, the Asian continent has grown

larger with the collisions of fragments broken from Gond-
wana in late Paleozoic time and successively added to the
southern margin in early Mesozoic time [e.g., Şengör,
1979a, 1984; Şengör et al., 1988; Stöcklin, 1968], a result
amply confirmed by paleomagnetic studies [e.g., Besse et
al., 1998; McElhinny et al., 1981; Muttoni et al., 2009;
Soffel and Förster, 1980; Soffel et al., 1975, 1996; Wensink,
1979, 1982, 1983; Wensink et al., 1978; Wensink and
Varekamp, 1980]. Some fragments, like the Tarim Basin
north of Tibet or the Lut Block within the Iranian Plateau
(Figure 1) [e.g., Stöcklin, 1968, 1974, 1977], define rela-
tively intact blocks of crust apparently sufficiently strong to
have resisted deformation since they joined Eurasia. Some
fragments, however, are so small that they must consist of
only upper crust, detached from the underlying, presumably
strong, mantle lithosphere, and others comprise deformed
belts that mark ancient sutures and subduction zones, such
as those trending east‐west across Tibet [e.g., Allégre et al.,
1984; Chang and Cheng, 1973; Chang et al., 1986; Matte
et al., 1996], in northern Pakistan [e.g., Tahirkheli et al., 1979;
Tapponnier et al., 1981] and the Pamir [e.g., Burtman and
Molnar, 1993], or within Iran [Stöcklin, 1968, 1974, 1977].
Thus, throughout Mesozoic time, southern Asia was in a
state of continual growth and modification as fragments
accreted. Moreover, the collisions of Arabia and of India
with Eurasia were preceded by tens of millions of years of
subduction of oceanic lithosphere, which built volcanic belts,
thinned mantle lithosphere, and also may have added crust
to Asia.
[11] As a result of these late Paleozoic and Mesozoic

additions to southern Eurasia and of Cenozoic subduction of
oceanic lithosphere beneath the southern margin of Asia,
southern Eurasia appears to have been underlain by weaker
lithosphere than that beneath the Precambrian shields and
platforms that underlie India, Arabia, and most of Eurasia
north of Iran or Tibet [e.g., Molnar and Tapponnier, 1981].
Here, however, there seems to be an important structural
difference between precollisional Iran and Tibet. Idealized
cross sections across the Sanandaj‐Sirjan Zone of Creta-
ceous and early Cenozoic arc‐like magmatic rock in Iran
show a normal crustal thickness [e.g., Ahmadian et al., 2009;
Omrani et al., 2008]. Cretaceous and early Cenozoic marine
sedimentary rock crops out over much of Iran, and although
unconformities and lacunae attest to emergent regions, there
seems to be little doubt that most of this region lay near sea
level until approximately Oligocene time [e.g., Berberian
and King, 1981; Davoudzadeh et al., 1997; Morley et al.,
2009; Reuter et al., 2009; Schuster and Wielandt, 1999;
Stöcklin, 1968, 1974, 1977]. Moreover, Verdel et al. [2007]
inferred intense, east‐west crustal extension, normal faulting,
and therefore presumably crustal thinning during Eocene
time (40–44 Ma). By contrast, much evidence suggests that
southern Tibet behaved as an Andean margin bounded by
thrust faults, underlain by thick granitic intrusions, and pre-

sumably with thick crust and high elevation, as in the
present‐day central Andes [e.g., Burg and Chen, 1984; Burg
et al., 1983; Dürr, 1996; England and Searle, 1986; Kapp
et al., 2003; Murphy et al., 1997; van der Beek et al.,
2009; Volkmer et al., 2007]. Lithosphere, weakened by
thermal processes associated with subduction and still warm
following accretion of fragments, then facilitated deforma-
tion of southern Eurasia as India and Arabia penetrated into
this region [e.g., Molnar and Tapponnier, 1981] but with
Tibet apparently starting with a high, if narrow, plateau and
most of Iran lying near sea level.
[12] Arabia and India are not only two of the largest

fragments to be added to Asia since early Paleozoic time but
also the most recent such fragments. For both the Zagros
and the Himalaya, it appears that continents with rather
typical rifted margins followed oceanic lithosphere into
subduction zones and collided with southern Eurasia.
[13] Southwest of the Main Zagros Thrust, a wide zone of

folded sedimentary rock crops out along the entire length
of the Zagros. Sediment accumulated on the northeastern
margin of the Arabian platform from Precambrian through
Cretaceous time initially on a stable platform and later on
a continental margin after fragments of crust rifted from
the Arabian platform in Permian and Jurassic time [e.g.,
Alavi, 2004; Colman‐Sadd, 1978; Falcon, 1974; Koop and
Stoneley, 1982; Stöcklin, 1968, 1977; Trowell, 1995]. From
analyses of sequences of sediment in many tens of drill cores,
Trowell [1995] calculated that the region had undergone
a total of ∼10%–25% extension largely in two phases, in
Permian and Jurassic times. Studies of crustal structure sup-
port the rifting interpretation: numerous estimates of crustal
thickness based on seismic refraction [e.g., Mooney et al.,
1985], surface wave dispersion [Al‐Amri, 1999; Mokhtar
et al., 2001; Rodgers et al., 1999], receiver functions
[Al‐Damegh et al., 2005; Al‐Lazki et al., 2002; Pasyanos
et al., 2007], or both of the latter methods combined [Gök
et al., 2008] suggest that crustal thicknesses in central
Arabia exceed 40 km and may reach 45 km in places, but
the thickness of the crystalline crust beneath the sediment
just southwest of the Zagros (in Iraq and Kuwait) is only
∼35 km, like that beneath the Zagros [Hatzfeld et al., 2003;
Paul et al., 2006, 2010] (as discussed in section 3.3). Only
in Cenozoic time has sediment derived from the Iranian side
contributed to the sedimentary sequence in the Zagros.
[14] Comparable detail does not seem to exist for much of

the ancient margin of India, but few doubt that a rifted
margin existed before collision [e.g., Corfield et al., 2005;
Garzanti, 1999; Liu and Einsele, 1994; Myrow et al., 2003;
Wiesmayr and Grasemann, 2002]. Gaetani and Garzanti
[1991] reported a history for the northwestern Himalaya
resembling that of Arabia: shallow water deposition until
Permian time, when rifting seems to have created a conti-
nental margin. Virtually all descriptions of the sedimentary
sequence farther southeast include a similar history of sed-
imentation first on a platform and then on a rifted margin
(also in Late Permian or early Triassic and again in Jurassic
time, as for the Arabian margin) [e.g., Burg and Chen, 1984;
Corfield et al., 2005; Garzanti, 1999; Liu and Einsele, 1994;
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Ratschbacher et al., 1994; Searle, 1983; Steck, 2003; Steck
et al., 1993a, 1993b; Wiesmayr and Grasemann, 2002]. Sub-
sequent deformation, however, has left little evidence that
constrains the details of the precollisional structure of the
margin [e.g., Garzanti et al., 2005], but thicknesses of
sedimentary rock reach ∼10 km and call for several kilo-
meters of crust thinning during rifting [e.g., Corfield et al.,
2005; Liu and Einsele, 1994].
[15] As noted in section 1, the collision between India

and Eurasia preceded that between Arabia and Eurasia. For
both, however, controversies continue to highlight incon-
sistencies in the data used to infer the date of collision. For
the Himalaya, most agree that collision occurred some time
between 45 and 55 Ma, the age of the last marine sediment
deposited on the northern margin of India [e.g., Garzanti
and Van Haver, 1988; Green et al., 2008; Khan et al.,
2009; Najman, 2006; Rowley, 1996, 1998; Zhu et al.,
2005], but recently, Aitchison et al. [2000, 2007, 2008]
have challenged this view. They suggested that what is
commonly treated as the collision between India and Eurasia
actually was a collision between India and an island arc that
lay south of Eurasia. They argued that the last seafloor
vanished as recently as ∼34 Ma. Indeed, the northwestern
part of India seems to have collided with an arc before final
closure of an ocean but much earlier than 34 Ma [e.g.,
Tahirkheli et al., 1979; Tapponnier et al., 1981]. Coward et
al. [1987], for example, inferred an arc‐continent collision
in this region at 90–100 Ma. More recently, Khan et al.
[2009] argued that the Kohistan arc in the Pakistan Hima-
laya was accreted to the Indian subcontinent near 60 Ma
and both collided with Eurasia near 50 Ma. Similarly, Ding
et al. [2005] inferred the emplacement of ophiolites onto
India at ∼65 Ma, but they too deduce that collision with
southern Eurasia had occurred by 45 Ma. Following Garzanti
[2008], we accept the evidence for collision closer to 50 Ma
than 34 Ma as sound, but readers should note that this issue
is not closed.
[16] The Zagros share aspects of Himalayan structure,

but opinions about their history also differ. Some have
argued for a Cretaceous collision [Alavi, 1994; Berberian
and King, 1981; Mohajjel and Fergusson, 2000], some
have suggested an early Cenozoic age [e.g., Ghasemi and
Talbot, 2006; Homke et al., 2009; Mazhari et al., 2009],
and some inferred from other data that collision manifested
itself only as recently as ∼5 Ma [e.g., Allen et al., 2004;
Blanc et al., 2003; Falcon, 1974; Haynes and MacQuillan,
1974; Kashfi, 1976; Ricou et al., 1977], but opinions are
now converging on collision during the period between late
Eocene and early Miocene, as suggested by Koop and Stoneley
[1982]. Potential suture zones follow the Main Zagros
Thrust [e.g., Agard et al., 2005; Haynes and MacQuillan,
1974; Ricou et al., 1977] and along the Sanandaj‐Sirjan
Zone to its northeast [e.g., Alavi, 1994; Pamić et al., 1979].
Agard et al. [2005, 2006] inferred from dates of blueschist,
intrusions, and ophiolitic material that subduction had
occurred until ∼35 Ma and that collision occurred before
23–25 Ma. Subsequent thrust slip on the Main Zagros
Thrust (also known as the “Zagros Crush Zone” for the rock

within it has been highly deformed) seems to have carried
intact Arabian crust beneath the ancient southern margin of
Eurasia. Agard et al. [2005] inferred 50–70 km of such
convergence from repetitions of overthrust slices of sedi-
mentary rock and other units, but we presume that their
estimate is a lower bound on such convergence. Moreover,
revised dating of the sedimentary sequence in the Zagros
shows that beginning in early Miocene, and perhaps late
Oligocene time (20–25 Ma), material eroded from terrain
northeast of the present‐day Zagros, and hence from the
Eurasian side, was deposited on the ancient Arabian margin
[Ballato et al., 2010; Fakhari et al., 2008]. Using zircons
derived from the adjacent magmatic belt and deposited north
of the Zagros, Horton et al. [2008] also argued for this date
of collision. Finally, Hessami et al. [2001b] showed that
folding in the Zagros had begun before late Miocene time,
despite widespread belief that it began since that time.
[17] Part of the confusion over timing of collision in the

Zagros has arisen because suturing may have involved two
events, collision of an arc in Mesozoic time and with the
Arabian platform later [e.g., Ghasemi and Talbot, 2006].
Controversy surrounds the number of ophiolite suites and
ocean basins that closed in this region and keeps open the
possibility of a date of collision earlier than late Eocene [e.g.,
Mazhari et al., 2009; Mohajjel et al., 2003]. Moreover,
different phases of deformation within the Sanandaj‐Sirjan
Zone, which include not only thrust slip and convergence
but also an important component of right‐lateral shear [e.g.,
Mohajjel and Fergusson, 2000; Sarkarinejad and Azizi,
2008; Sarkarinejad et al., 2008], make it difficult to dis-
tinguish the termination of subduction from other styles of
deformation.

3. KINEMATICS

3.1. Kinematics of Plate Motions and the Early History
of Deformation
[18] Plate reconstructions for both Arabia [McQuarrie

et al., 2003] and India [e.g., Copley et al., 2010; Dewey et
al., 1989; Molnar and Stock, 2009; Molnar and Tapponnier,
1975; Molnar et al., 1993; Patriat and Achache, 1984] with
respect to Eurasia show sustained convergence for tens of
millions of years before either collision occurred (Figure 3).
In both regions decreases in convergence rates occurred
near the times of collision. For the Himalaya, the conver-
gence rate dropped 30%–40% near 45 Ma, from ∼120 to
∼80 mm/yr in the northeastern corner of India and from
∼110 to ∼60 mm/yr in the northwestern corner (Figure 4)
[Molnar and Stock, 2009]. Subsequently, between 20 and
10 Ma, the convergence rates seem to have slowed another
∼45% (∼83 to ∼44 mm/yr and ∼59 to ∼34 mm/yr in the
two corners of India). Similarly, Arabia’s convergence rate
slowed by ∼35% since ∼20 Ma, following collision with
Eurasia (from ∼31 mm/yr to ∼20 mm/yr for a point in the
northwestern part of the Zagros) (Figure 4) [McQuarrie et
al., 2003]. The simple interpretation is that when collision
occurred, the buoyancy of continental crust inhibited con-
tinued subduction, and with continued convergence, the
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force per unit length along the subduction zone provided by
the weight of downgoing slabs decreased [e.g., Copley et al.,
2010; Molnar and Tapponnier, 1975].
[19] (Note that Copley et al. [2010], who used different

reconstructions in the various oceans than did Molnar and
Stock [2009], reported no major change in rate between 20
and 10 Ma but rather a monotonic reduction in convergence
rate since ∼50 Ma. The set of reconstructions used by
Copley et al. [2010] would also call for a history of con-
vergence between Arabia and Eurasia different from that of
McQuarrie et al. [2003]. We proceed with the assumption
that the reconstructed histories of plate motion lie within
the uncertainties given by McQuarrie et al. [2003] and by
Molnar and Stock [2009] and as shown in Figures 3 and 4.)
[20] Despite these similarities in the histories of conver-

gence, two differences between the Zagros and the Himalaya
stand out in Figure 4. First, India’s average rate of pene-
tration into Eurasia since collision has been roughly twice
that of Arabia’s rate (∼50–65 mm/yr versus ∼25 mm/yr),
which makes all processes due to collision and penetration
occur faster in the Himalaya and surrounding regions than
in Iran. Second, the earlier collision between India and
Eurasia requires not only a longer period over which the
region responded to collision but also, because of the higher

rate, a greater penetration of India than Arabia into Eurasia.
Among consequences of these differences, the most obvi-
ous is the difference in mean elevations [e.g., Ben Avraham
and Nur, 1976].
[21] It appears that deformation occurred across much of

the Tibetan Plateau shortly after the India‐Eurasia collision
and somewhat later in the Iranian Plateau after the Arabia‐
Eurasia collision. For Tibet, numerous observations, sum-
marized by Dayem et al. [2009], show deformation in
northern Tibet shortly after collision. For the Zagros and the
Iranian Plateau, observations and constraints on timing seem
to be fewer than for Tibet, but some suggest that deforma-
tion has occurred far from the Zagros since late Miocene
time, if not earlier. Morley et al. [2009] describe some
38 km of shortening between the Zagros and Alborz since
late Miocene time, in the region just west of central Iran.
Deformation in the Alborz Mountains seems to have begun
later, near 20–17.5 Ma according to Ballato et al. [2008,
2010] or perhaps more recently at 12 Ma [Guest et al.,
2007], when exhumation there accelerated [Guest et al.,
2006]. From estimates of amounts of slip and present‐day
rates of slip for faults in the Kopet Dagh, Hollingsworth et
al. [2006, 2008] suggested that the current phase of tectonic
activity dates from ∼10 Ma, though Shabanian et al. [2009a]

Figure 3. Positions of coastlines of Arabia and India with respect to Eurasia reconstructed to their
positions at different times in the past, using parameters given by McQuarrie et al. [2003] and
Molnar and Stock [2009]. Stars mark positions of coastlines of the two continents at the approximate
times of their collisions with Eurasia.
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argued for a more recent, more important change in tectonic
style in the Kopet Dagh.

3.2. Geological Structure and Evolution of the Zagros
and Himalaya
[22] In Figure 5, we contrast simplified cross sections

across the Zagros and Himalaya. These are drawn to
emphasize differences in the deeper structure, at the expense
of details of folding in the uppermost layers, particularly in
the Zagros.
[23] Although the large‐scale structure of the Himalaya

recognized by Heim and Gansser [1939] and Gansser [1964]
has undergone modification, their basic image remains valid
to first order (Figure 5). The suture between India and the
southern margin of Eurasia now lies within the Tibetan
Plateau. To its north, adjacent to virtually the entire suture
zone, a belt of granitic rock records tens of millions of years
of arc volcanism and subduction of oceanic lithosphere. To
its south, between the high peaks of the Himalaya and the
suture, one finds a sequence of sedimentary rock that was
deposited on the northern edge of India from Paleozoic until
early Cenozoic time. This sedimentary rock was deformed
in a typical fold‐and‐thrust belt [e.g., Burg and Chen, 1984;
Corfield et al., 2005; Ratschbacher et al., 1994; Wiesmayr
and Grasemann, 2002]. Along much of the Himalaya, a
system of gently northward dipping (essentially inactive)
normal faults separate that sequence from the basement on
which it was deposited [e.g., Burchfiel et al., 1992; Burg
and Chen, 1984; Burg et al., 1984; Dézes et al., 1999;

Herren, 1987; Valdiya and Goel, 1983]. The crystalline
rock of the Greater Himalaya has been thrust southward a
minimum of ∼100 km on the Main Central Thrust [Brunel,
1975; Brunel and Andrieux, 1977; Fuchs and Sinha, 1978;
Gansser, 1966; Pearson and DeCelles, 2005; Srivastava
and Mitra, 1994; Steck, 2003; Steck et al., 1993a, 1993b;
Stöcklin, 1980] and apparently much more [e.g., DeCelles
et al., 2002; Robinson et al., 2006] onto the Lesser Himalaya,
though some contend that placing tight constraints on values
more than a few hundred kilometers is not possible [e.g.,
Avouac, 2003; Hodges, 2000; Steck, 2003]. We ignore here
the fact that the Main Central Thrust consists of splays of
faults, which now can be mapped as separate structures with
substantial slip on each [e.g., Burg and Chen 1984; Célérier
et al., 2009a, 2009b; Pearson and DeCelles, 2005; Steck et
al., 1993a, 1993b; Valdiya, 1980a, 1980b]. Rock cropping
out in the Lesser Himalaya, below klippen of crystalline
rock from the Greater Himalaya, consists largely of sedi-
mentary rock that has been weakly metamorphosed, if
metamorphosed at all. The age of this sedimentary rock
is poorly constrained in most regions, but where dated,
it ranges from late Precambrian to as young as Miocene
[e.g., DeCelles et al., 1998; Myrow et al., 2003; Najman
et al., 2002; Pearson and DeCelles, 2005; Sakai, 1983].
At the southern front of the range, the entire package of
rock comprising the Lesser and Greater Himalaya has
been thrust onto the Indian shield and onto sedimentary
rock deposited on it. A wide sedimentary basin, the Ganga
Basin overlain by the Indo‐Gangetic Plain, lies south and
southwest of the Himalaya and contains as much as 4–5 km
of sediment derived largely by erosion of the Himalaya
[Karukaranan and Ranga Rao, 1979; Mathur and Evans,
1964; Raiverman et al., 1983; Sahni and Mathur, 1964;
Sastri et al., 1971].
[24] This structure, which characterizes most of the

∼2500 km length of the Himalaya, results from a sequence
of events that includes suturing at 55–45 Ma, with ophiolitic
mélange thrust onto the Indian margin [e.g., Gansser, 1964;
Heim and Gansser, 1939; Le Fort, 1975; Mattauer, 1975]
and with folding of the sedimentary sequence beginning at
that time [Wiesmayr and Grasemann, 2002]. Moreover,
melting and intrusion of granite at 44 Ma into the sequence
of sedimentary rock deposited on the northern margin of the
Indian subcontinent attests to underthrusting of that rock to
depth shortly after the collision [Aikman et al., 2008]. Some
time later, but not yet unambiguously dated, slip on the
Main Central Thrust carried rock comprising the northern
edge of the Indian shield southward onto the intact part of
the shield. Sediment deposited both in the Bengal fan [Galy
et al., 1996] and in the Bengal Basin of Bangladesh
[Najman et al., 2008] contain metamorphic minerals that
cooled from hotter than 350°C before ∼30 Ma and whose
isotopic content is similar to that of rock now exposed in the
Greater Himalaya. Thus, a relatively deeply eroded, and
hence possibly high, Himalayan range seems to have existed
by ∼30 Ma. The Main Central Thrust was active at ∼20 Ma,
for an apparently poorly constrained duration before then,
and apparently until ∼12 Ma [e.g., Hodges et al., 1996;

Figure 4. History of convergence between Arabia and Eur-
asia and between India and Eurasia. Two points on India
(27°N, 95°E, and 30°N, 72°E) and one on Arabia (32.70°N,
50.38°E) were reconstructed to their positions at different
times in the past (by Molnar and Stock [2009] and by
McQuarrie et al. [2003], respectively), and here the dis-
tances that the points subsequently moved are plotted versus
those times. Note the earlier collision, the faster conver-
gence, and the greater amount of movement since collision
between India and Eurasia than between Arabia and Eurasia.
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Hubbard and Harrison, 1989; Kohn et al., 2001, 2004;
Pearson and DeCelles, 2005], but little evidence suggests
that it is active now, and it is certainly not active as a major
fault. Although most seismicity, including both moderate
earthquakes [e.g., Baranowski et al., 1984; Ni and Barazangi,
1984] and microearthquakes [Pandey et al., 1995] and dis-
cussed further in section 3.3, occurs beneath the surface
trace of the Main Central Thrust, most of these earthquakes

take place at depths near ∼15 km, and most of those with
reliable fault plane solutions show slip on planes dipping
gently northward or northeastward. Thus, rapid active slip
must occur on a fault below the Main Central Thrust.
[25] As noted in section 1, both the Zagros and Himalaya

have been built adjacent to suture zones and to magmatic belts
associated with subduction of oceanic lithosphere before
collision occurred. Beyond these similarities, the surface

Figure 5. Simplified geologic cross sections across the (top) Zagros and (bottom) Himalaya, drawn to
include the entire crust. The cross section for the Himalaya is modified from one given by Avouac
[2003], and for the Zagros we used one from Mouthereau et al. [2007] as a guide. Note that the
Zagros are built almost entirely of folded sedimentary rock deposited on the Arabian platform, but in
the Himalaya major thrust faults cut the entire crust. The portion of the Himalaya equivalent to the
Zagros currently crops out between the crystalline rock of the Greater Himalaya and Indus‐Tsangpo
suture. Reverse faults in the basement of the Zagros may be coalescing into a shear zone of finite width
(shown by a red dashed line with question marks) within the middle to lower crust of Arabian platform
beneath the sedimentary rock.
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geology of the Zagros bears little resemblance to that of
the Himalaya. Virtually all rock exposed in the Zagros is
sedimentary in origin, deposited on the northeastern margin
of Arabia. The Zagros have been built by northeast‐southwest
shortening, which has occurred largely by folding, and
hence by thickening, of that shallow sedimentary rock
approximately in isostatic equilibrium (Figure 5). Layers
have been detached along weak horizons of evaporites, and
for many geologists, the Zagros exemplify thin‐skinned
deformation [e.g., Colman‐Sadd, 1978; Hessami et al.,
2001b; McQuarrie, 2004; Molinaro et al., 2005; Oveisi
et al., 2007, 2009]. The idea that the sedimentary rock
has been detached from the basement seems inescapable,
given the open folding of it and the widespread presence of
weak horizons at different depths, including abundant salt.
In addition, unlike the Himalaya, whose width varies little
along the ∼2500 km long chain, the width of the Zagros in
the southeast is virtually double that to its northwest,
northwest of the Kazerun line. (See Figure 7a for the loca-
tion of the Kazerun line, which, in present‐day tectonics
discussed in section 3.3, defines a roughly north‐south zone
of right‐lateral shear.) Accordingly, the regional average
slope in the southeast is approximately half that in the
segment northwest of that line (Figure 8). Widespread salt
domes emanating from the Cambrian Hormuz salt layer
attest to the presence of a very weak layer at the base of the
sedimentary sequence southeast of the Kazerun line. Their
sparse presence northwest of it has led many to deduce that
the greater width of the southeastern Zagros results from the
presence of the Hormuz salt, which allows only low shear
stress on the base of the overlying wedge of stronger sedi-
mentary rock [e.g., Jahani et al., 2009; Mouthereau et al.,
2006; Sepehr and Cosgrove, 2004, 2005; Sepehr et al.,
2006; Talbot and Alavi, 1996]. Many balanced cross
sections across the Zagros, in turn, begin with the assumption
that all of the deformation of sedimentary rock occurs in strata
detached from the basement.
[26] Recently, a new view has emerged in which some

thrust or reverse faults in the basement penetrate the
sedimentary cover. Although weak horizons within the
sedimentary rock redistribute strain, both recent efforts to
balance cross sections across the Zagros that take into
account the elevation of the basement [e.g., Berberian,
1995; Molinaro et al., 2005; Mouthereau et al., 2006, 2007]
or that exploit geophysical imaging of the top of the base-
ment [e.g., Bosold et al., 2005; Sherkati et al., 2005] suggest
that the basement now deforms across much of the Zagros
and no longer merely serves as an effectively rigid sub-
stratum. Mouthereau et al. [2006] buttress these arguments
with an analysis of the mechanics involved in deformation
of both sedimentary layers overlying salt and a straining
basement. In section 3.4, we exploit this new view further.
[27] The locus of deformation in the Zagros seems to have

propagated from the suture, at the Main Zagros Reverse
Fault, beginning near the end of Eocene time southwest-
ward toward the Persian Gulf shore by the Mid‐Pleistocene
time [e.g., Hessami et al., 2001b; Shearman, 1976]. If we
assume that the folding occurs concurrently with modest

deformation of the basement, as suggested by the similar
distribution of surface deformation evidenced by GPS
measurements, active seismicity, and late Cenozoic folding,
we might infer that faulting in the basement has also
propagated in time from the inner to the outer part of the
Zagros Mountains [Hatzfeld et al., 2010].
[28] For eastern Asia, assuming a date of collision of 45–

55 Ma, northwestern and northeastern India have moved
∼2500–3500 km and 3000–4000 km (Figure 4), respec-
tively, toward stable Eurasia since collision. Estimates of
the amount of underthrusting of India beneath southern
Tibet, all of which may be lower bounds, range from 300 to
700 km [e.g., Coward and Butler, 1985; Coward et al.,
1987, 1988a; DeCelles et al., 2002; Hauck et al., 1998;
Johnson, 2002; Ratschbacher et al., 1994; Schelling, 1992;
Schelling and Arita, 1991; Searle, 1986; Searle et al., 1997;
Srivastava and Mitra, 1994], and Robinson et al. [2006]
allowed for as much as 900 km. This latter value is con-
sistent with steady underthrusting of India at its current rate
of ∼20 mm/yr since 45 Ma.
[29] Estimates of both crustal shortening in the Zagros

and total plate convergence between Arabia and Eurasia are
much smaller. Northwest of the Kazerun line balanced cross
sections yield amounts of shortening from as little as 25 km
[Sherkati and Letouzey, 2004], to ∼45 km [Bosold et al.,
2005] and 49 km [Blanc et al., 2003], and to as much as
65 km [Sherkati et al., 2006] or 57 and 67 km [McQuarrie,
2004]. Southeast of this line they range from 45 km
[Molinaro et al., 2005], to 50 km [Sherkati et al., 2006],
and to 65–78 km [Mouthereau et al., 2007] and even 85 km
[McQuarrie, 2004]. These values approximately match the
50–70 km that Agard et al. [2005] inferred for thrust slip at
the Main Zagros Thrust north of the Kazerun line or that
Paul et al. [2006, 2010] inferred from the thickness of the
crust. Depending upon how one interprets the relationship
of that thrust faulting and the folding in the Zagros, we
might treat the folding and the overthrusting as independent
estimates of the same amount of convergence but mani-
fested differently in different sections of a cross section;
alternatively, we might add them, treating them as having
formed during separate phases of deformation after colli-
sion. In the latter view, surfaces of décollement, where
sedimentary units separated from the basement, must pass
into the crust southwest of the Main Zagros Thrust on thrust
faults that have not yet been defined clearly. In the former
view convergence of Arabia with central Iran would occur
by folding of the sedimentary rock in the Zagros and by
thrust slip farther north where the surface of décollement is
rooted in the deeper crust. The widespread belief, however,
that folding in the Zagros is largely young, since 10 Ma,
and perhaps since 5 Ma, compared with earlier thrust slip at
the Main Zagros Thrust, favors treating these estimates of
shortening as separate.
[30] Even if one adds the amounts for the two regions

(folding of sedimentary rock and slip on the Main Zagros
Thrust), the sum of ∼100–150 km is notably smaller than
the calculated amount of convergence of ∼500–800 km
between Arabia and Eurasia since 35–23 Ma (Figure 4)
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[McQuarrie et al., 2003]. If we take into account the
northeast‐southwest orientation of the crustal shortening but
the nearly north‐south orientation of relative plate motion,
we might assume that the amount of convergence absorbed
by deformation across the Zagros has been yet larger, by
roughly 1.4 (= 1/cos 45°) times, but such an assumption
requires that a large strike‐slip component be absorbed
within the Zagros. Some paleomagnetic declination anoma-
lies as large as 20° [Aubourg et al., 2008] do allow for this
possibility, but other such measurements show no resolvable
declination anomalies [Homke et al., 2004].
[31] In summary, it seems unlikely that deformation in the

Zagros can account for as much as half of the convergence
between Arabia and Eurasia, and quite possibly, it accounts
for only ∼20% of that convergence. Both of these amounts,
shortening across the Zagros and total convergence between
Arabia and Eurasia since collision, are much smaller than
the corresponding amounts of the Himalaya and for India
with respect to Eurasia. Moreover, estimated amounts of
shortening across the Himalaya cannot be constrained well,
and balancing the budget of crustal material in both eastern
and mideastern Asia continues to pose a challenge.

3.3. Present‐Day Kinematics Based on GPS
Measurements
[32] The penetrations of Arabia and of India into Eurasia

manifest themselves in active deformation over broad regions

north and east of the margins of the Arabian and Indian
plates (Figure 6). Much of the convergence of Arabia with
Eurasia occurs northeast of the Zagros, across the Iranian
Plateau and surroundings, and that of India with Eurasia
occurs north and northeast of the Himalaya across Tibet and
farther north. As discussed below, some of the remaining
convergence results in crustal thickening and mountain
building, but some is absorbed by lateral transfer of material
out of the paths of Arabia and of India with respect to
Eurasia (Figure 6). The oblique convergence of Arabia with
Eurasia at the northwest trending Zagros induces right‐
lateral shear across the northwestern Zagros, which in turn
transforms into westward translation of crust in northwest-
ern Iran and Turkey [e.g., McClusky et al., 2000; Reilinger
et al., 2006]. Similarly, part of the north‐northeastward
penetration of India into Tibet is absorbed by eastward and
southward transfer of material around the eastern end of the
Himalaya [e.g., Gan et al., 2007; Holt et al., 1991, 2000;
King et al., 1997; Wang et al., 2001; Zhang et al., 2004].
[33] Approximately half of the present‐day plate conver-

gence rate between Arabia or India and Eurasia is absorbed
at the two mountain belts. Both GPS measurements [e.g.,
Bettinelli et al., 2006; Bilham et al., 1997; Feldl and Bilham,
2006; Jade et al., 2004; Jouanne et al., 2004; Larson et al.,
1999] and detailed studies of Quaternary faulting [Lavé and
Avouac, 2000; Powers et al., 1998] show convergence
across the Himalaya of ∼18–20 mm/yr, compared to India’s

Figure 6. Map of Asia showing topography and GPS velocities in a Eurasian reference frame. Yellow
dots show GPS control points with speeds smaller than 2 mm/yr; arrows show velocities of points moving
more rapidly than 2 mm/yr with respect to Eurasia. Note the more rapid convergence of India than Arabia
with respect to Eurasia, and in both regions much of the convergence is absorbed across a wide region
north of the Zagros and Himalaya. Note also the rapid eastward and southward lateral transport of eastern
Tibet around northeastern India and rapid westward transport of the region north of northwestern Arabia.
The region between the Indian and Arabian plates and east of the Iranian Plateau seems to be part of
Eurasia, for speeds of control points there are less than 2 mm/yr. Velocities are taken from Bettinelli
et al. [2006], Gan et al. [2007], Jade et al. [2004], Mohadjer et al. [2010], Reilinger et al. [2006],
Socquet et al. [2006], Tavakoli et al. [2008], Walpersdorf et al. [2006], and A. Walpersdorf (personal
communication, 2009).
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present‐day convergence rate with Asia of ∼35 mm/yr in
the west and 45 mm/yr in the east. Because of the obliquity
of convergence in the western Himalaya, the northeast‐
southwest shortening accounts for a smaller rate of plate
convergence than farther east, and much of that conver-
gence is absorbed farther north, with nearly 20 mm/yr
across the western Tien Shan alone [Abdrakhmatov et al.,
1996; Reigber et al., 2001]. The shortening rate across
the Zagros, which decreases from 8 to 10 mm/yr in the
segment southeast of the Kazerun line to 4–6 mm/yr
northwest of it (Figures 7 and 8) [Hatzfeld et al., 2010;
Hessami et al., 2006; Nilforoushan et al., 2003; Tatar et al.,
2002; Vernant et al., 2004; Walpersdorf et al., 2006], is less
than half of the convergence rates between Arabia and
Eurasia of ∼18 mm/yr in the northwest and ∼25 mm/yr at
the Hormuz strait [e.g., Reilinger et al., 2006; Sella et al.,
2002; Vernant et al., 2004; Vigny et al., 2006]. Even with
allowance for a 45° obliquity of the range to the direction
that Arabia moves with respect to Eurasia, oblique con-
vergence across the Zagros cannot account for more than
half of the Arabia‐Eurasia relative plate motion. To appre-
ciate this, suppose that the fraction of plate convergence
accommodated by shortening across the Zagros equals the
shortening rate divided by the cosine of the obliquity
(cos 45°) and hence is 1.4 times greater than the shortening
rate. Then oblique convergence across the Zagros would
account for 6–9 mm/yr of the 18 mm/yr of relative plate
motion in the northwest and 11–14 mm/yr of 25 mm/yr
in the southeast.
[34] In both regions, most of the convergence detected at

the Earth’s surface occurs at the fronts of the belts, on the
southwestern edge of the Zagros and on the southern and
southwestern margin of the Himalaya. For the Himalaya,
thrust faulting and folding in the sedimentary rock at the
foot of the range absorb most of the present‐day conver-
gence [e.g., Baker et al., 1988; Lavé and Avouac, 2000;
Powers et al., 1998], a result consistent with the discovery
of surface traces of ruptures associated with huge earth-
quakes there [Kumar et al., 2001, 2006; Lavé et al., 2005].
For the Zagros a detailed study of Quaternary folding in
one region also demonstrates that most of the present‐day
convergence is absorbed across three or four frontal anti-
clines at the foot of the Zagros [Oveisi et al., 2007, 2009],
though this region, near the southeastern end of the Kazerun
line (discussed below), may not be representative of the
tectonic style along the Zagros. GPS velocities for Iran
also suggest concentrated shortening at the foot of the range
(Figures 7 and 8) [e.g., Hatzfeld et al., 2010; Walpersdorf
et al., 2006]. GPS data from the Himalaya imply that the
main thrust fault is presently locked at shallow depths to
at least 15 km and therefore beneath the southernmost 80–
100 km of the belt (Figures 7 and 8) [e.g., Bilham et al.,
1997; Feldl and Bilham, 2006; Larson et al., 1999]. A
small amount of permanent strain is absorbed within the
Himalaya by slip at ∼1–2 mm/yr [Wobus et al., 2005],
where topographic profiles steepen abruptly and perhaps
above where the underlying thrust fault also steepens [e.g.,

Lyon‐Caen and Molnar, 1983; Molnar, 1987; Pandey et
al., 1995].
[35] The relatively narrow widths, approximately 50–

100 km, where strain at the surface is concentrated at the
edges of the Zagros and Himalaya, imply that faults that
slip at depth are locked at relatively shallow depths of 10–
15 km. Thus, most of the convergence at upper crustal
depths seems to occur either by slip on a gently dipping
thrust fault in the Himalaya or by slip on a nearly flat shear
zone (décollement) at the base of (or within) the sedimen-
tary rock of the Zagros. We presume that shear within the
middle to lower crust of the Zagros is still sufficiently slow
that detecting the resulting northeast‐southwest contraction
of the upper crust above it with GPS is not yet possible.
Convergence of 2–4 mm/yr of the southwestern edge of
the Zagros with respect to the Arabian platform, however,
suggests that some deformation may occur beneath the
Persian Gulf, either aseismically and permanently or as
elastic strain accumulation (Figure 7).
[36] The orientations of convergence across the two

mountain ranges and the respective styles of deformation
differ. For the Himalaya, both slip vectors of earthquakes
(discussed in section 3.4) [e.g., Baranowski et al., 1984;
Molnar and Chen, 1982;Molnar and Lyon‐Caen, 1989] and
GPS velocities of points in the high Himalaya and southern
Tibet (Figure 7) [Jade et al., 2004] show radially outward
displacement of southern Tibet and Himalaya onto the
Indian plate [Bendick and Bilham, 2001]. This radially
outward convergence with the effectively rigid Indian lith-
osphere implies divergence of material in southern Tibet,
which manifests itself clearly both with grabens oriented
orthogonally to the Himalaya [e.g., Armijo et al., 1986]
and in fault plane solutions of earthquakes within Tibet
(Figure 9, discussed in section 3.4) [e.g., Molnar and Lyon‐
Caen, 1989].
[37] Relative to Arabia, GPS velocities of control points

lying in the higher part of the Zagros and the adjacent
Iranian Plateau are not perpendicular to the belt as those in
the lower part are. Thus, this velocity field includes a
strike‐slip component along the Zagros (Figures 7 and 8)
[e.g., Hatzfeld et al., 2010; Walpersdorf et al., 2006]. In the
northwestern Zagros, such shear occurs both as slip on the
Main Recent Fault (Figure 8) and by distributed shear
across the Zagros [Authemayou et al., 2006; Sarkarinejad
and Azizi, 2008]. In the southeastern Zagros, the strike‐
slip shear is smaller but again seems to be distributed across
the range. Moreover, paleomagnetic declinations show
evidence of rotation consistent with a broad zone of simple
shear [Aubourg et al., 2008]. The two segments of the
Zagros are separated by a zone of strike‐slip shear, the
Kazerun line, where not only GPS measurements [e.g.,
Tavakoli et al., 2008; Walpersdorf et al., 2006] but also
disruptions to the overall northwest‐southeast trend of folds
[e.g., Hessami et al., 2001a; Lacombe et al., 2006; Mobasher
and Babaie, 2008], fault plane solutions of some earth-
quakes [Baker et al., 1993; Talebian and Jackson, 2004],
and offsets of mapped surface traces [Authemayou et al.,
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Figure 7. GPS velocities for (a) the Zagros and adjacent areas in a reference frame fixed to Arabia
(A. Walpersdorf, personal communication, 2009) and (b) the Himalaya and southern Tibet in a reference
frame fixed to India, with velocities taken from Bettinelli et al. [2006], Gan et al. [2007], and Jade et al.
[2004]. For Figure 7a, angular velocities of Vigny et al. [2006] were used to convert velocities relative to
Eurasia or to the ITRF2000 reference frame given in published studies, and for Figure 7b, those of
Bettinelli et al. [2006] were used. Notice that for control points within the Zagros the component of
velocity parallel to the trend of the Zagros is larger in the northwest than in the southeast, but in general,
speeds increase from northwest to southeast. By contrast, velocities point radially outward from Tibet,
perpendicular to the local trend of the Himalayan arc, and no obvious change in speed occurs from west
to east. Black lines labeled A–A′ and B–B′ in Figure 7a and C–C′ in Figure 7b show locations of profiles
of GPS velocities and other data in Figure 8.
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2009] show strike‐slip faulting on several roughly parallel
faults.
[38] The Kazerun line has no obvious equivalent in the

Himalaya. As noted in section 3.2, the width of the Zagros
and its northeast‐southwest regional slope northwest of the
line differ from those to the southeast. Moreover, although
exceptions exist [e.g., Sherkati et al., 2006], most imagine a
greater amount of shortening across the Zagros southeast
than northwest of the Kazerun line, consistent with the
difference in present‐day rates. These southeastward
increases in rates and in amounts of shortening result in
part from the axis of rotation describing Arabia’s motion
with respect to Eurasia lying closer to the northwestern
than southeastern Zagros. As important, however, is the
fact that the northerly movement of Arabia relative to
central Iran includes a large strike‐slip component in the
Zagros, which is partly accommodated by slip on the Main
Recent Fault north of the Kazerun line but not south of
it [e.g., Authemayou et al., 2009; Tavakoli et al., 2008].
Right‐lateral slip along Kazerun line then transfers slip
on the Main Recent Fault into a convergent component
in the southeastern Zagros. The present‐day rate of strike‐
slip shear across the Kazerun line at its northwestern end
equals, approximately, the difference in convergence rates
across the Zagros northwest and southeast of it.
[39] In detail, the variation in the oblique component of

convergence across the Zagros reflects complexity absent in
the Himalaya. First, the orientation of Arabia’s plate motion
with respect to Eurasia, shown by velocities of GPS control
points on Arabia (Figure 6), varies from north‐northeast at
the southeastern end of the Zagros where rates are highest

(∼25 mm/yr) to due north in the central Zagros to slightly
north‐northwest in the northwestern Zagros, where rates are
lowest (∼18 mm/yr). Because the trend of the Zagros does
not change along strike, shortening across the northwestern
part contributes less to that overall convergence than does
convergence across the southeastern part. We might expect
the same to apply to the western Himalaya, but in that region
little evidence suggests that convergence is slower than
farther east [e.g., Jade et al., 2004], despite more rapid
India‐Eurasia relative plate motion at the longitude of the
eastern Himalaya than at the longitude of the western
Himalaya. Both the amount and the distribution of shear
parallel to the Zagros also vary along the belt (Figures 7
and 8). In the northwest, shear is partitioned into pure
right‐lateral strike slip along the Main Recent Fault, and
largely, but not completely, convergent movement across
that segment of the Zagros. The Main Recent Fault follows
closely the suture zone between Arabia and Eurasia, but
right‐lateral slip on it ends where it connects to the Kazerun
line [e.g., Authemayou et al., 2009]. Right‐lateral slip along
fault segments in the Kazerun line then transforms the slip
on the Main Recent Fault to oblique convergence across
the Zagros to the southeast. Slip on these segments in the
Kazerun line decreases toward the south. The region of
localized crustal shortening studied by Oveisi et al. [2007,
2009] lies just east of where the Kazerun line projects to the
southern margin of the Zagros fold belt.
[40] In summary, present‐day GPS velocities across the

Zagros, with their large oblique convergence and varying
rates along the belt, differ markedly from those across
the Himalaya. Convergence across the Himalaya, between

Figure 8. Cross sections across the Zagros and Himalaya summarizing topography, seismicity and fault plane solutions,
and both horizontal components of GPS velocities relative to (a–h) Arabia and (i–l) India. Figures 8a–8h show profiles
A–A′ and B–B′ across the Zagros in Figure 7a, and Figures 8i–8l show profile C–C′ across the Himalaya in Figure 7b. In
Figures 8a, 8e, and 8i showing profiles of topography, note the much steeper topographic front for the northwestern
profile A–A′ than for the southeastern profile B–B′ across the Zagros. In Figures 8b, 8f, and 8j, we show background
seismicity and back hemisphere stereographic projections of focal spheres for earthquakes with reliable fault plane solutions
and focal depths. Background seismicity is plotted at a constant depth because errors in focal depths could give misleading
impressions of the distribution of activity; red circles show events with M ≥ 6, yellow circles are for M ≥ 5, and white
circles are for M < 5. Seismicity beneath the Zagros (A–A′ and B–B′) is concentrated in the crust beneath the lower,
southwestern half of the belt. In the Himalaya (C–C′), it lies beneath the segment where the range steepens. Fault plane
solutions of moderate earthquakes show steep dips (30°–60°) of nodal planes beneath the Zagros (see also Figure 9a). Blue
beach balls are from a compilation by J. A. Jackson (personal communication, 2009), and red ones are from the Harvard
Centroid Moment Tensor (CMT) catalog (http://www.seismology.harvard.edu/CMTsearch.html). For the Himalaya, for
moderate earthquakes (blue beachballs, CMT and studies cited in section 3.3) at depths of ∼15 km beneath the Himalaya,
fault planes dip gently (∼15°) northward beneath the Himalaya. At greater depth and beneath Tibet, solutions of both
moderate earthquakes and microearthquakes (red beach balls [de la Torre et al., 2007]) show reverse and normal faulting
(see Figures 9b and 9c). In Figures 8c, 8g, and 8k, the components of velocity parallel to the ranges (strike‐slip com-
ponents) are larger on profile A–A′ across the Zagros than on the southwestern profile B–B′ and profile C–C across the
Himalaya. Positive values correspond to right‐lateral shear. In Figures 8d, 8h, and 8l, convergent components are greater
on profile B–B′ than on A–A′ across the Zagros and greatest across the Himalaya (profile C–C′). In all cases, present‐day
strain accumulation is concentrated near the foot of each belt. In Figures 8d, 8h, and 8l, where velocities perpendicular to
the belts are plotted, we also show velocities calculated assuming slip on gently dipping thrust faults beneath the belts but
locked at depths shallower than 10 or 15 km; d gives the dip in degrees of the fault, z is the locking depth in km, and v is
the slip rate in mm/yr on the portion free to slip. In A–A′ and B–B′, ZFF marks the trace of the Zagros Foredeep Fault,
MFF marks the Mountain Front Fault, HZF marks the High Zagros Fault, MRF marks the Main Recent Fault, and MZT
marks the Main Zagros Thrust (Figure 5) [Berberian, 1995]. In C–C′, MFT marks the Main Frontal Thrust, MBF marks the
Main Boundary Fault, MCT marks the Main Central Thrust, and YTS marks the Yarlung Tsangpo Suture (Figure 5).
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southern Tibet and the Indian shield, occurs at a nearly
identical rate along the arc and is oriented normal to it.

3.4. Present‐Day Kinematics of Deformation From
Fault Plane Solutions of Earthquakes
[41] Fault plane solutions of earthquakes also reveal dif-

ferent patterns in the Himalaya and Zagros (Figure 9) that
may reflect different stages of development of the two belts.
Alternatively, they might result from differences in material
properties.

[42] Fault plane solutions of earthquakes in the Himalaya
resemble those at subduction zones. Solutions for occasional
events beneath the Ganga Basin show normal faulting due to
the stretching of the upper part of the lithosphere as it
bends down to form the basin, analogous to those for earth-
quakes beneath deep‐sea trenches (Figures 7 and 9) [Isacks
et al., 1968; Stauder, 1968]. Most solutions (Figures 8 and
9) show thrust slip, perpendicular to the belt, on gently
dipping planes (dips <25° and commonly <15°). These
earthquakes reflect the underthrusting of intact Indian lith-

Figure 9
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osphere beneath the Lesser Himalaya, if not the entire belt
[e.g., Baranowski et al., 1984; Molnar and Chen, 1982;
Molnar and Lyon‐Caen, 1989; Ni and Barazangi, 1984]. It
appears that the underthrusting of India beneath the Himalaya
occurs mostly by slip in very large earthquakes, not just
those with magnitudes of ∼8, like those that have occurred
in the twentieth century [e.g., Bilham et al., 2001; Seeber
and Armbruster, 1981], but more importantly in much
larger events with recurrence intervals of several hundred to
a thousand years [e.g., Kumar et al., 2001, 2006; Lavé et al.,
2005]. In addition, a few earthquakes deep in the crust or
upper mantle show reverse faulting at depth within the
Indian plate [de la Torre et al., 2007; Ni and Barazangi,
1984]; they may reflect compression of the bottom of the
plate due to its flexure, but because other events that occur
within the Indian plate also show reverse faulting [e.g.,
Gahalaut et al., 2004; Saikia, 2006], those beneath the
Himalaya may simply result from large horizontal com-
pressive stresses perpendicular to the range.
[43] We are not aware of important seismicity in Arabia

southwest of the folds in the Zagros or fault plane solutions
of earthquakes near that region that show normal faulting
and stretching of the top surface of a flexed Arabian plate
(Figure 9). Thus, either flexure is modest, or the horizontal
compressive stress within the Arabian lithosphere suffices
to nullify the extensional deviatoric stress that develops
on the top of a flexed plate. Nearly all earthquakes within
the Zagros show reverse faulting, with planes dipping at
30°–60° and with P axes oriented roughly perpendicular to
the belt (Figures 8 and 9) [e.g., Jackson and McKenzie,
1984; Maggi et al., 2000; McKenzie, 1972a; Talebian and
Jackson, 2004]. A few solutions also show strike‐slip fault-
ing associated with segments of the Kazerun fault system.
Of particular importance is the fact that most of these
earthquakes occurred in the basement beneath the thick
(∼10 km) sedimentary cover of the Zagros [Hatzfeld et al.,
2010; Jackson and Fitch, 1981; Maggi et al., 2000; Ni
and Barazangi, 1986; Talebian and Jackson, 2004; Tatar
et al., 2004]. Although controversy persists, most imagine
that the faulting in the basement occurs independently of
the folding of the sedimentary cover because the cover is

detached from the basement along weak layers of evaporites
[e.g., Falcon, 1974; Jahani et al., 2009; Talbot and Alavi,
1996]. Walker et al. [2005b] showed one example of sur-
face faulting associated with an earthquake in the Zagros,
but they emphasized that this was a rare occurrence. Thus,
most moderate earthquakes reflect straining of the sub-
ducting Arabian plate, not the underthrusting of that plate
beneath the mountain belt. Yet that seismic strain rate is
low; summation of seismic moment tensors of these earth-
quakes cannot account for the rate of shortening measured
with GPS [e.g., Jackson and McKenzie, 1988;Masson et al.,
2005; North, 1974].
[44] Fault plane solutions of earthquakes within Tibet

show a mixture of normal and strike‐slip faulting with both
requiring east‐west extension [e.g., Langin et al., 2003;
Molnar and Chen, 1983; Molnar and Lyon‐Caen, 1989;
Molnar and Tapponnier, 1978; Ni and York, 1978; J. R.
Elliott et al., Extension on the Tibetan Plateau: Recent
normal faulting measured by InSAR and body‐wave seis-
mology, submitted to Geophysical Journal International,
2010]. A summation of moment tensors of earthquakes
within Tibet suggests that east‐west extension occurs at
roughly twice the rate of north‐south compression [e.g.,
Molnar and Chen, 1983; Molnar and Lyon‐Caen, 1989].
Normal faulting leads to vertical compression (crustal thin-
ning), and the conjugate strike‐slip faulting, with left‐
lateral slip on northeast striking planes and right‐lateral on
northwest striking planes, contributes north‐south shorten-
ing. We are aware of no reliable solution that shows thrust
or reverse faulting within the plateau where it is higher than
∼4000 m [Molnar et al., 1993; Elliott et al., submitted
manuscript, 2010]. Thrust and reverse faulting, however,
do occur north and northeast of Tibet: in the Tien Shan
[e.g., Maggi et al., 2000; Nelson et al., 1987; Tapponnier
and Molnar, 1979], on the northeast margin of Tibet in the
Qilian Shan [e.g., Molnar and Lyon‐Caen, 1989], and far-
ther northeast in the Altay and Gobi‐Altay [e.g., Bayasgalan
et al., 2005].
[45] By contrast, no normal faulting occurs within the

Iranian Plateau (Figure 9). Instead, fault plane solutions
show largely strike‐slip and some reverse faulting [e.g.,

Figure 9. Plots of lower hemisphere diagrams of fault plane solutions of shallow focus earthquakes in (a) the Zagros
and Iranian Plateau, (b) the Himalaya and Tibet, and (c) a small portion of the Himalaya and Tibet that illustrates well
the contrast in fault plane solutions of earthquakes in these regions. Beach balls show lower hemisphere stereographic
projections of the focal sphere, with dark quadrants showing regions of extensional strain, white quadrants showing
regions of compressional strain, and boundaries between light and dark quadrants giving the orientations of the two nodal
planes. One nodal plane ruptured during the earthquake, and the normal to the other defines the orientation of slip on the
fault plane. For the Zagros (Figure 9a), most solutions show reverse faulting, horizontal compressive strain, and nodal
planes that dip 30°–60°. Across the Iranian Plateau, most solutions show strike‐slip faulting, but some show reverse fault-
ing. For the Himalaya (Figures 9b and 9c), a couple of solutions show normal faulting beneath the Ganga Basin, south of
the range, but most earthquakes within the Himalaya show one nodal plane dipping gently north and thrust slip on it. For
Tibet, however, a mixture of normal and strike‐slip faulting occurs. Thick black lines labeled NS and SZ in Figure 9a and
HC in Figure 9b show locations of profiles in Figure 11. CMT solutions are from http://www.seismology.harvard.edu/
CMTsearch.html. Solutions based on P and S waves are from Molnar and Lyon‐Caen [1989] for Tibet and the Himalaya
and from a compilation by J. A. Jackson (personal communication, 2009) for Iran. In Figure 9c, black beach balls shows
solutions from the CMT catalog or from Molnar and Lyon‐Caen [1989], and those in gray are from de la Torre et al.
[2007]. Numbers next to each give focal depths in kilometers.
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Berberian and Yeats, 1999; Hatzfeld et al., 2010; Jackson
and McKenzie, 1984, 1988; Jackson et al., 1992; Priestley
et al., 1994; Talebian and Jackson, 2004]. Active faulting
and surface ruptures of most major earthquakes in Iran north-
east of the Zagros show strike‐slip faulting [e.g., Ambraseys,
1963; Ambraseys and Jackson, 1998; Ambraseys and
Melville, 1982; Berberian et al., 1984, 1992, 1999, 2001;
Binet and Bollinger, 2005; Fattahi et al., 2007; Funning
et al., 2005; Hessami et al., 2003; Hollingsworth et al.,
2006, 2007; Jackson et al., 2006; Landgraf et al., 2009;
Le Dortz et al., 2009; Meyer and Le Dortz, 2007; Meyer
et al., 2006; Nazari et al., 2009a, 2009b; Peyret et al.,
2008; Ritz et al., 2006; Shabanian et al., 2009a, 2009b;
Talebian and Jackson, 2002; Tirrul et al., 1983; Walker
and Jackson, 2002, 2004; Walker et al., 2005a, 2009], but
some require reverse faulting [e.g., Ambraseys and Jackson,
1998; Berberian et al., 2000; Fattahi and Walker, 2007;
Fattahi et al., 2006; Fielding et al., 2004; Parsons et al.,
2006; Talebian et al., 2006; Tatar et al., 2007; Walker et al.,
2003, 2004]. Similarly, microearthquake studies demonstrate
reverse slip in several regions [e.g., Tatar and Hatzfeld,
2009; Yamini‐Fard et al., 2006, 2007]. Thus, deformation
of the Iranian Plateau differs markedly from that of Tibet.
[46] As noted in section 3.3, in both the Himalaya and

the Zagros, current surface deformation seems to be local-
ized at the fronts of the belts, where gently dipping thrust
faults or surfaces of deécollement approach or reach the
surface. Two major differences between the Himalaya and
Zagros, however, stand out.
[47] First, as discussed in section 3.3, shortening across

the Himalaya is oriented normal to the belt, and the rate is
nearly constant along it. In the Zagros, a large component of
oblique convergence occurs, and both the rate and orienta-
tion across the belt vary along it.
[48] Second, whereas the construction of the present‐day

Himalaya owes its existence to large magnitudes of thrust
slip on major faults that formed within Indian lithosphere,
no obvious equivalent seems to have developed within the
Arabian lithosphere. Agard et al. [2005] suggested that slip
continues on segments of the Main Zagros Thrust, albeit at
only 3–4 mm/yr since 15–20 Ma. Yet GPS measurements
give no indication of present‐day convergence, and we
suspect that slip on this thrust fault has ceased. From the
tens of kilometers of shortening associated with folding of
sedimentary rock detached from the underlying strata and
basement, we, like most workers, presume that much of the
convergence between Arabia and the southwest margin of
the Iranian Plateau has accumulated by slip on a flat fault, or
surface of décollement, beneath the thick, folded sedimen-
tary cover of the Zagros and above the basement. Following
a more recent view [e.g., Berberian, 1995; Molinaro et al.,
2005; Mouthereau et al., 2006, 2007; Sherkati et al., 2005],
however, we also imagine that that style of deformation is
giving way to an increasingly important role for deformation
within the underlying basement.
[49] In some sense the Himalayan equivalent to the wide

belt of folded sedimentary rock that dominates the Zagros
landscape lies north and northeast of the belt of high

Himalayan peaks in what is often termed the Tethyan Hima-
laya, but this folding is no longer active [e.g., Corfield et al.,
2005; Ratschbacher et al., 1994;Wiesmayr and Grasemann,
2002]. The zone of folded sedimentary rock deposited on
the Indian shelf is now less than 100 km wide, much nar-
rower than the Zagros, but it may have been comparably
wide before erosion removed much of it, leaving only
metamorphic rock to crop out today in the Greater Himalaya
and farther south. As we discuss further below, the
equivalents of the Main Central Thrust and Main Boundary
Fault (which separates the largely Mesozoic and older rock
of the Himalaya from the late Cenozoic sedimentary rock
of the Ganga Basin) (Figure 5) do not seem to have formed
yet in the Zagros.
[50] Since Jackson [1980] suggested that reverse faulting

may occur by reactivation of normal faults, such as those
forming at continental margins, many now imagine that the
deformation in the basement beneath the Zagros reflects
such reactivation [e.g., Mouthereau et al., 2007; Ni and
Barazangi, 1986]. Presumably, the same process occurred
in the Himalaya before the Main Central Thrust became the
locus of convergence between India and southern Tibet. The
rupturing of a major fault like the Main Central Thrust,
however, might not occur instantaneously in geologic time.
Instead, reverse faulting within the northern Indian continent
might have been distributed over a wide area until one such
fault could coalesce with a presumably ductile shear zone in
the lower crust, which then became the Main Central Thrust.
Finding evidence for such reverse faulting in the highly
deformed rock of the Greater Himalaya must be hard, but
Steck [2003] and his colleagues [Robyr et al., 2002; Steck
et al., 1993a, 1993b, 1999; Vannay and Steck, 1995; Wyss
et al., 1999] showed that early in the history of deformation
of the high Himalayan crystalline rock, thrust or reverse
faulting took place on faults that dip south. Schlup et al.
[2003] showed that such deformation must have occurred
early in the collision history, before 40 Ma. Brown and
Nazarchuk [1993] inferred similar structures 1000 km east
[see also Godin et al., 1999a, 1999b], and Godin et al.
[2001] showed this deformation to have occurred before
35 Ma. It is easy to imagine that most evidence of such
reverse faulting in the brittle upper crust has been destroyed,
particularly that of faults that dipped northward, if they
existed. Moreover, the faults recognized by Steck, Brown,
Godin, and colleagues might have formed initially as normal
faults, though we are not aware of evidence suggesting this.
In any case, it follows that we may be living in a time of
transition during which the upper 10–15 km of the Zagros
crust shortens by distributed strain, before a major thrust
fault can slice through the entire crust, as occurred when the
Main Central Thrust formed in the Himalaya.

4. DEEP STRUCTURE

4.1. Crustal and Upper Mantle Structure of the Zagros
and Himalaya
[51] The two belts share the similarity that lithospheric

plates have been flexed down and have underthrust the
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southern margin of Eurasia, but the deeper structures of
the belts differ in important ways. It appears that these
differences arise largely because of the greater amounts of
convergence in the Himalaya than in the Zagros or from
an alternative point of view, the earlier stage in the devel-
opment of the Zagros than that of the Himalaya [e.g.,
Barazangi, 1989; Ni and Barazangi, 1986]. Studies of the
deep structure beneath the Zagros and Himalaya contribute
to and confirm the geological cross sections (Figure 5)
discussed in section 3.2.
[52] Gravity anomalies across the Zagros and Hima-

laya demonstrate large deviations from isostasy in some
areas, which require lithospheric strength for their support
(Figure 10). For both regions, Bouguer anomalies become
progressively negative as mean elevations increase, as they
must in a state approximately in isostatic equilibrium. Profiles
of Bouguer anomalies across both belts, and especially
across the Himalaya, have proven to be useful for constraining
deeper structure, but such constraints are demonstrated
more clearly by isostatic anomalies and by free‐air anoma-
lies. For both regions, free‐air anomalies, based on satellite
measurements and terrain‐corrected terrestrial measurements
(Figure 10), define belts of negative anomalies over the
basins adjacent to the mountain ranges, positive anomalies
over the ranges themselves, and negligibly small anomalies
over the adjacent plateau. The paired belts of negative
and positive free‐air anomalies result in part from the “edge
effect” associated with the juxtaposition of crust and
mantle with different crustal thicknesses in isostatic equi-

librium, but these anomalies also indicate mass deficits and
excesses. The near‐zero free‐air anomalies over the two
plateaus attest to isostatic equilibrium, but they provide no
constraint on the degree to which that equilibrium derives
from thick crust or low‐density mantle.
[53] The belts of negative free‐air anomalies beneath

both the sedimentary basin southwest of the Zagros, which
includes the Persian Gulf, and the Ganga Basin south and
southeast of the Himalaya result in part from mass deficits.
As calculations that match observed anomalies show, they
attest to a gentle dip of the Moho beneath these areas,
where lithosphere has been flexed down by the weight
of the Zagros thrust atop the Arabian plate [Snyder and
Barazangi, 1986] and of the Himalaya atop the Indian plate
[e.g., Cattin et al., 2001; Duroy et al., 1989; Jin et al., 1996;
Karner andWatts, 1983; Lyon‐Caen andMolnar, 1983, 1985;
McKenzie and Fairhead, 1997; Tiwari et al., 2006;Warsi and
Molnar, 1977]. The much more negative anomaly beneath
the Ganga Basin than beneath the Persian Gulf accords with
greater lithospheric flexure.
[54] The positive free‐air anomalies over the Zagros and

the Himalaya require an excess of mass, which in both cases
is supported by the strong lithosphere beneath the belts.
Snyder and Barazangi [1986] had used the gradient in
Bouguer anomalies across the Zagros to infer marked crustal
thickening from southwest to northeast, but receiver func-
tions (Figure 11) indicate a deepening of the Moho of, at
most, a few kilometers [Paul et al., 2006, 2010]. Paul et al.
[2006] showed that the negative Bouguer and relatively

Figure 10. Map of Asia showing free‐air gravity anomalies of the Gravity Recovery and Climate
Experiment (GRACE) gravity model GGM02C [Tapley et al., 2005]. Scale in mgal at the bottom.
Note the small values over the stable regions; the belts of negative anomalies adjacent to the Zagros, the
Himalaya, and other mountain ranges; the belts of positive anomalies over the Zagros, the Himalaya, and
other ranges; and the small values over the Tibetan and Iranian plateaus.
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small positive free‐air anomaly seem to be due to a thick-
ening toward the northeast of sedimentary rock and low‐
density upper crust.
[55] The greater positive free‐air anomalies over the

Himalaya than the Zagros (Figure 10) require a substan-
tially greater excess mass. Moreover, although not easily

seen from the map in Figure 10, calculations of gravity
anomalies for profiles across the Himalaya indicate that
insofar as the principal density contrasts are those at the
Earth’s surface and at the Moho, the Moho must dip more
steeply, by 10°–15°, beneath the Greater Himalaya than
farther south [e.g., Warsi and Molnar, 1977]. Accordingly,

Figure 11. Cross sections (based on receiver functions) for (a and b) the Zagros and (c) the Himalaya
aligned at the suture zones (MZRF in Figures 11a and 11b and YTS in Figure 11c). In Figure 11a, we
show an interpretation of a migrated receiver function presented by Paul et al. [2010], Figure 11b is from
Paul et al. [2006], and Figure 11c is from Wittlinger et al. [2009]. For locations of profiles, see Figure 9a
for Figures 11a and 11b and Figure 9b for Figure 11c. In Figures 11a and 11b, distance is measured with
respect to the Main Recent Fault. The average elevation profile is shown on the top of each, with the
locations of seismograph stations (black triangles) projected onto the profile. In Figure 11b, we show a
common conversion point, depth‐migrated cross section, and in Figure 11c, we show common con-
version point, depth‐migrated cross sections for S waves converted to P waves. In Figures 11b and 11c,
red and brown show depths of interfaces at which the impedance above the interface is smaller than that
below and hence where, in general, low‐speed material overlies higher‐speed material. Blue shows the
opposite, interfaces where, in general, high‐speed material overlies lower‐speed material. Solid black
lines in Figures 11a and 11b and the dashed black line in Figure 11c show the Moho. The dashed lines in
Figures 11a and 11b show the crustal‐scale thrust fault inferred by Paul et al. [2006, 2010], based also
on gravity data for Figure 11b. For Figures 11a–11c, time has been converted to depth using wave
speeds inferred from the migrated seismograms. Open circles at horizontal distances between −100 and
−150 km and depths between 60 and 80 km show the earthquake clusters located by Monsalve et al.
[2006] farther east and projected onto the profile.
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the flexural rigidity of the lithosphere beneath the Greater
Himalaya must be smaller than it is farther south [e.g.,
Cattin et al., 2001; Duroy et al., 1989; Jin et al., 1996;
Karner and Watts, 1983; Lyon‐Caen and Molnar, 1983,
1985; Tiwari et al., 2006]. Images of crustal thickness, using
both seismic reflections from controlled sources [e.g.,
Hauck et al., 1998; Hirn et al., 1984a; Zhao et al., 1993] and
receiver functions [Mitra et al., 2005; Nábělek et al., 2009;
Schulte‐Pelkum et al., 2005; Wittlinger et al., 2009], con-
firm a steepening of the Moho beneath the Himalaya
(Figure 11). As calculations of gravity anomalies show,
support for the large free‐air anomalies over the Ganga
Basin and Himalaya apparently derives from the strength of
the Indian plate, which has been flexed down to form the
basin but is strong enough to support part of the weight of
the Himalaya, if with a markedly smaller flexural rigidity
beneath the Greater than Lesser Himalaya [Burov and Watts,
2006; Cattin et al., 2001; Duroy et al., 1989; Hetényi et al.,
2006; Jin et al., 1996; Karner and Watts, 1983; Lyon‐Caen
and Molnar, 1983, 1985; Tiwari et al., 2006].
[56] Two profiles of receiver functions across the Zagros

differ somewhat from one another but show some thicken-
ing of crust northeast of the Main Zagros Thrust and indica-
tions of a northeastward continuation of that fault to depth
(Figure 11) [Paul et al., 2006, 2010]. The northwest pro-
file, in particular, displays an obvious dipping zone where
P waves are converted to S waves and where the underlying
material has the lower S wave speed [Paul et al., 2010].
When projected to the surface, this interface approaches the
surface trace of the Main Zagros Thrust, suggesting that it
marks the continuation of that fault at depth. It dips gently,
at ∼15°, and can be traced ∼250 km farther northeast to the
Moho beneath central Iran. The approximate thickness of
the low‐speed material of 5–8 km is consistent with its
being sedimentary rock that has been underthrust beneath
crystalline basement of central Iran. A similar, but weaker
and less continuous, interface can be seen on the southeast
profile (Figure 11), and it too might mark the continuation
of the Main Zagros Thrust.
[57] Northeast of the surface trace of that fault, crust

thickens from 43 ± 2 km beneath the Zagros fold‐and‐thrust
belt to 69 ± 2 km along the southeast profile but to only
56 ± 2 km beneath the northwest profile (Figure 11) [Paul
et al., 2006, 2010]. The thickened crust for the southeastern
profile accounts for the negative Bouguer gravity anomalies
along this segment of the gravity profile [Paul et al., 2006].
Thus, the extent of low‐density crust and the projection of
the Main Zagros Thrust to the Moho yield estimates of the
extent to which the Arabian platform has underthrust the
southwestern edge of the Iranian Plateau. Paul et al. [2010]
estimated 59 km of such shortening for the southern profile
and 49 km for the northern profile, values that accord with
the geologic estimates of 50–70 km by Agard et al. [2005]
and Mouthereau et al. [2007].
[58] The dipping surface that Paul et al. [2006, 2010]

imaged using receiver functions (Figure 11) resembles a
surface beneath the Himalaya that has been imaged both with
reflections from controlled seismic sources [e.g., Hauck et al.,

1998; Zhao et al., 1993] and with receiver functions, S (or P)
waves converted from P (or S) waves at it [e.g., Mitra et
al., 2005; Nábělek et al., 2009; Schulte‐Pelkum et al., 2005;
Wittlinger et al., 2009]. They differ, however, in that the
surface beneath the Zagros seems to mark the suture zone
between Arabia and Eurasia, which we infer no longer to be
active. By contrast, the surface beneath the Himalaya marks
the active thrust fault along which apparently intact Indian
crust slides beneath slivers of Indian crust detached from
that below it and beneath southernmost Tibet.

4.2. Crustal Thickness and Upper Mantle Structure
of the Iranian and Tibetan Plateaus
[59] The two plateaus differ in crustal thickness. The

Iranian Plateau, which stands roughly 1000–1500 m high, is
underlain by crust whose thickness seems to differ little
from that of adjacent regions (Figure 12). Beneath the pla-
teau crustal thicknesses are reported as ∼40–50 km, and
beneath surrounding lowlands they seem to be closer to 35–
40 km. Beneath Tibet, which stands 4500–5500 m high,
crustal thicknesses are everywhere greater than 60 km,
typically 70 km, and in places possibly as large as 80 km
(Figure 12). Thus, they exceed crustal thicknesses of sur-
roundings (35–40 km) from possibly as little as 20 km to as
much as 45 km.
[60] Studies using receiver functions for Iran show vari-

ability in crustal thickness, but except near the Main Zagros
Thrust [e.g., Paul et al., 2006, 2010; Yamini‐Fard et al.,
2006], most estimates are between 40 and 50 km, com-
pared with only ∼35 km for the Arabian platform immedi-
ately adjacent to the Zagros [e.g., Gök et al., 2008; Pasyanos
et al., 2007] and for much of the Zagros, where crustal
thicknesses also include ∼35 km of basement with ∼10 km
of sedimentary rock above [e.g., Hatzfeld et al., 2003; Paul
et al., 2006, 2010]. Northeast of the thickest crust and,
hence, beneath the southwest edge of the Iranian Plateau,
Paul et al. [2006] measured a crustal thickness of ∼42 km
using receiver functions. Elsewhere, again using receiver
functions, Doloei and Roberts [2003] obtained 46 ± 2 km
for the region near Tehran, just south of the Alborz, if
beneath the Alborz values reach ∼51–54 km [Sodoudi et al.,
2009]. Farther east, Nowrouzi et al. [2007] inferred crustal
thickness of 44–50 km beneath the Iranian portion of the
Kopet Dagh. Thus, although crustal thickening has occurred
in the mountain belts that surround the Iranian Plateau,
there is little evidence to suggest that the crust beneath the
interior of the plateau has thickened much, no more than
10 km and perhaps none at all in some areas.
[61] For Tibet, data of many types call for crustal thick-

nesses in excess of 60 km: seismic reflection profiling [e.g.,
Galvé et al., 2002a, 2006; Hirn et al., 1984a, 1984b; Ross
et al., 2004; Zhao et al., 2001], wide‐angle reflections of
converted phases [Tseng et al., 2009], receiver functions
[e.g., Chen et al., 2005; Hetényi et al., 2006; Kind et al.,
2002; Owens and Zandt, 1997; Schulte‐Pelkum et al.,
2005; Shi et al., 2004; Wittlinger et al., 2004, 2009; Xu
et al., 2007; Yuan et al., 1997], and surface wave disper-
sion [e.g., Chen and Molnar, 1981; Cotte et al., 1999; Holt
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and Wallace, 1990; Priestley et al., 2008; Rodgers and
Schwartz, 1997, 1998] or combinations of such data
[Galvé et al., 2002b; Mejia, 2001; Rai et al., 2006]. Col-
lectively, these data also suggest that the crust is thickest in
the south and southwest, decreasing from 70–80 to 60–70 km
in northern and northeastern Tibet. This northward decrease
is demonstrated most clearly by Tseng et al. [2009], who
used S waves from nearby earthquakes, sufficiently close
that the P wave that reflects off the Earth’s surface from the
incident S wave is totally reflected at the Moho; thus, this
SsPwp phase is recorded as a strong signal following the
direct S wave. The time interval between the direct S wave
and SsPwp is directly proportional to crustal thickness.
Tseng et al. [2009] showed a monotonic decrease in crustal
thickness from ∼75 km beneath southern Tibet to less than
65 km beneath the southern part of northern Tibet. Although
some of this thick crust may have existed before the collision
with India, most of it, particularly beneath northern Tibet,
presumably results from India’s penetration into Eurasia.
[62] Insofar as mean elevations, E, of both areas are iso-

statically compensated, even only approximately, by a Moho
deepened by an amount H, we expect E and H to be related
by H = Erc/Dr, where Dr = rm − rc, with rm and rc being
the densities of mantle and crust. The excess crustal thick-
ness, which is what seismologists commonly estimate, is
given by H + E = Erm/Dr. Without allowance for different
densities of upper and lower crust, we might assume that
rc = 2.8 × 103 kg/m3, rm = 3.3 × 103 kg/m3, and Dr =
0.5 × 103 kg/m3 and obtain H = 5.6E. For different average
densities of upper and lower crust, we might allow for rc =

2.7 × 103 kg/m3 but with Dr = 0.35 × 103 kg/m3, for which
H = 7.7E. Thus, for perfect Airy isostatic equilibrium, we
should expect crustal thicknesses to be 7–8 times those of
the mean elevations. For Iran, the ∼1500 m mean elevation
would call for excess crustal thicknesses of ∼10–12 km;
assuming both Airy isostasy and that initial thicknesses
were 35–40 km, comparable to that of surrounding regions,
crustal thicknesses beneath Iran would be 45–50 km. For
Tibet, we expect excess thicknesses of 30–35 km from the
∼5000 m mean elevation and hence crustal thicknesses of
∼70 km. To a first, if only crude, approximation, the two
plateaus are in Airy isostatic equilibrium.
[63] Differences in upper mantle structure beneath the

plateaus and their surroundings almost surely require that
part of the isostatic compensation of both high plateaus be
due to density differences in the mantle, if the contribution
from low‐density mantle is surely smaller than that due to
thick crust. In Figure 13a we present a map of anomalies in
S wave speeds at 125 km depth computed by E. Debayle
(personal communication 2009) on a global scale with a
horizontal resolution of ∼400 km from fundamental and
higher‐mode surface wave dispersion. This map shows a
low‐speed anomaly beneath Tibet and a smaller one beneath
Afghanistan, but that beneath Iran is not obvious, in part
because the few regional stations make resolution poorer
than ∼400 km. In any case, surface wave dispersion [e.g.,
Asudeh, 1982a; Kaviani et al., 2007; Kustowski et al., 2008;
Maggi and Priestley, 2005; Villaseñor et al., 2001], Pn speeds
[Al‐Lazki et al., 2003, 2004; Asudeh, 1982b; Chen et al.,
1980; Hearn and Ni, 1994], and P and S wave tomogra-

Figure 12. Map of Asia showing crustal thickness smoothed from the 2° × 2° compilation, CRUST 2.0,
of G. Laske, G. Masters, and C. Reif [Bassin et al., 2000; http://mahi.ucsd.edu/gabi/rem.html]. Note the
much thicker crust beneath Tibet than beneath Iran. Depths are only approximate; the gradient across
Tibet shown well by Tseng et al. [2009], for instance, is not resolved here.
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Figure 13. Maps of Asia showing S wave speeds at (a) 125 km and (b) 200 km based on surface
wave tomography and provided by E. Debayle (personal communication, 2009). They are based on
both fundamental and higher‐mode Rayleigh and Love waves [Debayle and Sambridge, 2004;
Debayle et al., 2001; Maggi and Priestley, 2005; Priestley et al., 2006]. Note that at 125 km, much of
the northern part of the Tibetan Plateau is underlain by relatively low speed material, but low speeds
are not apparent beneath Iran. A similar plot (not shown) for 100 km, however, reveals relatively low
speeds beneath the Iranian Plateau. At 200 km, however, both are underlain by high‐speed material,
particularly in their southern parts. This difference between low speed near 100 km and high speed near
200 km is common to studies of the upper mantle of this region [e.g., Debayle et al., 2001; Kustowski
et al., 2008; Priestley and McKenzie, 2006; Priestley et al., 2006; Shapiro and Ritzwoller, 2002;
Villaseñor et al., 2001].
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phy conducted on a regional scale [Alinaghi et al., 2007;
Hafkenscheid et al., 2006; Kaviani et al., 2007; Paul et al.,
2010] all call for lower P and/or S wave speeds in the
uppermost mantle beneath the Iranian Plateau, and Turkey,
than beneath the Zagros and adjacent Arabian platform.
Correspondingly, attenuation of Sn, the shear wave that
propagates in the uppermost mantle, is high beneath the
Iranian and Turkish plateaus but not beneath the Arabian
platform or Eurasia [e.g., Al‐Damegh et al., 2004; Kadinsky‐
Cade et al., 1981; Molnar and Oliver, 1969; Sandvol et
al., 2001]. Low speeds and high attenuation are usually
interpreted as implying relatively high temperatures, higher
than those beneath shields and stable platforms. Moreover,
the contrast between these regions is commonly revealed
to be sharp, with high wave speeds beneath the Zagros
and lower speeds beneath the region to the northeast [e.g.,
Al‐Lazki et al., 2003, 2004; Hafkenscheid et al., 2006; Kaviani
et al., 2007; Paul et al., 2010]. Surface wave tomography
consistently shows these lower speeds and higher attenua-
tion to characterize the upper mantle to depths of ∼100 km
[e.g., Debayle et al., 2001; Kaviani et al., 2007; Kustowski
et al., 2008; Priestley and McKenzie, 2006; Villaseñor et al.,
2001] (Figure 13b). Readers may notice the apparent con-
tradiction between abundant evidence cited above for rela-
tively low P and S wave speeds and high attenuation
beneath the Iranian Plateau and normal if slightly high
speeds in Figure 11a; this is due to the choice of 125 km. A
plot for shallower depths, however, would introduce the risk
of error beneath Tibet because of contamination by the thick
crust there. At depths greater than ∼100 km and beneath the
Zagros, higher speeds, at least of S waves, are found in all
surface wave studies (Figure 11).
[64] For southern Tibet, surface wave dispersion shows

that at depths near 100 km S wave speeds are quite high, like
those beneath a shield, but they are much lower under
northern Tibet [e.g., Brandon and Romanowicz, 1986; Holt
and Wallace, 1990; Kustowski et al., 2008; Priestley et al.,
2006; Rodgers and Schwartz, 1997, 1998; Shapiro and
Ritzwoller, 2002; Villaseñor et al., 2001]. The relatively
low speeds in the upper mantle beneath northern Tibet are
corroborated by a variety of other observations: low Pn
speeds [Beghoul et al., 1993; Hearn et al., 2004; Liang and
Song, 2006; McNamara et al., 1997; Meissner et al., 2004;
Zhao and Xie, 1993], delays of S waves from earthquakes
there [Molnar, 1990; Molnar and Chen, 1984], delays in SS
phases reflected beneath this area [Dricker and Roecker,
2002; Lyon‐Caen, 1986; Woodward and Molnar, 1995],
and high attenuation of Sn [Barazangi and Ni, 1982;Molnar
and Oliver, 1969; Ni and Barazangi, 1983]. Thus, a wealth
of evidence calls for a low‐speed, highly attenuating upper-
most mantle beneath northern Tibet and hence the sugges-
tion that today this area is relatively hot, as would be the
case if mantle lithosphere were thin.
[65] At greater depth, centered near ∼200 km, S wave

speeds are relatively high beneath most of Tibet (Figure 13b)
[e.g., Debayle et al., 2001; Kustowski et al., 2008; Priestley
and McKenzie, 2006; Priestley et al., 2006; Rapine et al.,
2003; Shapiro and Ritzwoller, 2002; Villaseñor et al.,

2001; Zhou and Murphy, 2005]. Thus, the structure beneath
Tibet shares similarities with Precambrian shields in that
high speeds exist at depths of 200–250 km [Priestley and
McKenzie, 2006; McKenzie and Priestley, 2008]. Two very
different interpretations have been assigned to this wide-
spread high‐speed zone, and reasons to doubt both are not
hard to see.
[66] Shortly after Jordan [1975] proposed that the litho-

sphere beneath Precambrian shields was much thicker
than beneath old oceanic lithosphere, he suggested that the
thick lithosphere (which he dubbed “tectosphere”) might
form where horizontal shortening over a wide region not
only thickened crust, as has occurred beneath Tibet, but
also the mantle lithosphere [Jordan, 1978, 1988]. Recently,
McKenzie and Priestley [2008] revived this view for the
high S wave speed regions beneath both Iran and Tibet and
proposed a very thick (∼250 km) lithosphere beneath both
Tibet and the Zagros. Obviously, the low speeds in the
uppermost mantle, down to ∼100 km or more beneath
northern Tibet and beneath the Iranian Plateau, which seem
inescapable from all inferences of seismic wave speeds,
appear to be inconsistent with thick lithosphere. Both Chen
and Molnar [1981] and McKenzie and Priestley [2008]
showed, however, that for sufficient radiogenic heating in
the thickened crust, albeit with different initial conditions
and different bottom boundary conditions to the lithosphere,
the adjacent mantle just below the Moho could warm
hundreds of degrees Celsius tens of millions of years after
thickening occurred. The conditions necessary for suffi-
cient warming are, at least in our opinion, near the extreme
for plausibly accounting for the low speeds beneath south-
ern Tibet. McKenzie and Priestley [2008] illustrated the
case of crust initially 25 km thick and shortened and thick-
ened instantaneously to 75 km. They assumed a mantle
lithosphere sufficiently thick that initially, the surface might
have lain below sea level, a state not appropriate for
northern Tibet. The concentration of radioactivity in the
upper 20 km of 2 mW/m3 is relatively large. Even after
40 Ma, their calculated warming of the uppermost mantle
is modest, with depths initially at ∼500°C reaching only
∼650°C and with the 900°C isotherm remaining below
160 km for 150 Myr. Thus, if applied to northern Tibet,
where the present‐day crustal thickness of <65 km [Tseng
et al., 2009] was probably not reached until 10–20 Ma,
radiogenic heating from the crust seems only remotely
plausibly capable of accounting for the low‐speed upper-
most mantle. Moreover, with less crustal thickening beneath
the Zagros and Iranian Plateau than Tibet and a more recent
collision, even if McKenzie and Priestley’s [2008] calcula-
tion did account for the low seismic wave speeds beneath
northern Tibet, radiogenic heating in thickened crust seems
unlikely to account for the low speeds in the uppermost
mantle beneath the Iranian Plateau.
[67] Alternatively, the high‐speed material may mark

the presence of cold lithospheric mantle that has been
convectively removed from beneath Tibet and either has
ponded at these depths or is passing through this portion of
the upper mantle [e.g., Houseman and Molnar, 2001]. We
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adopt this view, but readers should recognize that it is
neither required nor devoid of difficulties. Accordingly, the
inference that the high‐speed zone beneath Tibet centered
near 200 km reflects such ponding of convectively removed
mantle lithosphere requires adopting additional assump-
tions. First, essentially all studies showing this high‐speed
zone show that speeds are higher beneath southern and
southwestern Tibet than beneath northern or northeastern
Tibet. In this respect, images of P wave and S wave speeds
in the upper mantle beneath Tibet between 100 and 200 km
from body and surface wave tomography, respectively,
resemble one another [see Li et al., 2008, Figure 10]. These
images differ beneath northern Tibet, however, where Pwave
speeds are shown to be relatively low but S wave speeds are
relatively high. For southern Tibet, many imagine that the
high‐speed zone between ∼100 and ∼300 km results simply
from Indian lithosphere plunging at a gentle angle beneath
southern Tibet [e.g., Tilmann et al., 2003; Zhou and Murphy,
2005], but Grand [2002] inferred that high S wave speeds
extend deeper than 300 km.
[68] Perhaps more problematic for an interpretation in

terms of ponding of mantle lithosphere beneath northern
Tibet is the apparent termination of high S wave speeds at a
depth between 200 and 250 km; if lithosphere were con-
vectively removed, why would it collect at this depth and
not deeper? In fact, Chen and Tseng [2007] found relatively
high P wave speeds at depths near 650 km beneath Tibet,
and they inferred that this material represents foundered
mantle lithosphere from beneath Tibet. Later, Tseng and
Chen [2008] reported normal S wave speeds in the same
region and postulated that hydrated mantle lithosphere,
which would have accumulated beneath Tibet during sub-
duction, had later become detached and then had sunk to
these depths. Anyhow, regarding ponding of convectively
removed lithosphere at ∼250 km, we remind readers that in
the depth range of ∼100 to ∼250 km, temperature profiles
approach the solidus for typical mantle material; if the
presence of partial melt reduced viscosity substantially, then
the base of that partially molten zone would also mark an
increase in viscosity. We are not aware of direct evidence,
however, of a marked increase in viscosity at this depth.
[69] The high S wave speeds centered near 200 km

beneath both plateaus may be due, at least in part, to a
greater sensitivity of wave speeds to temperature near this
depth than at greater depths. The temperature dependences
of P and S waves (∂V/∂T) are relatively constant at low
temperatures, but as temperatures approach the solidus, they
become much larger [e.g., Goetze, 1977], so that wave
speeds are more sensitive to temperature near 200 km than
deeper [e.g., Cammarano et al., 2003]. Thus, the presence
of a high‐speed zone near 200 km might give us an exag-
gerated image of lateral heterogeneity. In this respect, per-
haps it is noteworthy that the most sharply resolved example
of an apparently sinking blob of mantle lithosphere, the
“Isabella anomaly” beneath the southwest edge of the Sierra
Nevada and southeast portion of the Great Valley of
California, is clear to a depth of ∼220 km but not deeper
[Reeg et al., 2007].

[70] Surface waves, whose lateral resolution is ∼400 km
[e.g., Debayle et al., 2001; McKenzie and Priestley, 2008;
Priestley and McKenzie, 2006], cannot distinguish lateral
heterogeneity on the horizontal length scale likely for con-
vective processes in the uppermost mantle. If mantle litho-
sphere beneath Tibet were being removed today, however,
its upper mantle should be laterally heterogeneous, and
several studies suggest that it is. In an attempt to match
body wave seismograms for paths passing under Tibet, Zhao
et al. [1991] reported that no single layered model worked
and that lateral heterogeneity was required. Constraints on
the structure deeper than ∼200 km beneath Tibet derive
largely from P and S wave tomography, and although
differences in wave speeds are not great, essentially all
studies call for lateral heterogeneity. Zhou et al. [1996]
showed that differences in P wave arrival times from
earthquakes in central and southwestern Tibet require
marked differences in upper mantle structure, and assuming
that the structure beneath southern Tibet accounted for
most of the residuals, they inferred that a high‐speed zone
striking parallel to the Himalaya must plunge nearly ver-
tically to a depth of ∼400 km beneath southwestern Tibet
and the adjacent Himalaya. Pandey et al. [1991], relying on
recordings in Nepal, also showed high speeds reaching to
300 km beneath the Karakorum of southwesternmost Tibet.
Seismograph stations in most of the Himalaya and Tibet,
however, are sparse, and body wave tomography does not
sample its upper mantle well. Nevertheless, Hafkenscheid
et al. [2006] and Li et al. [2008] also show high P wave
speeds reaching to such depths on some profiles across
the Himalaya and the adjacent parts of southwestern
and southern Tibet. Using a north‐south line of seismo-
graphs deep into the interior of Tibet, Tilmann et al. [2003]
reported a nearly vertical, high‐speed zone at depths
between ∼100 and ∼400 km. Using these and other data,
Li et al. [2008] show a high‐speed zone in the same area but
shifted deeper to ∼300–600 km. Although interpretations of
the origin of this high‐speed material differ, its presence
argues for lateral heterogeneity beneath the depth interval
(150–250 km) where high S wave speeds are common.
Finally, in eastern Tibet, Ren and Shen [2008] show regions
of high and low P wave speeds plunging into the mantle to
depths of nearly 400 km and with lateral dimensions of
∼100 km. These zones also require marked lateral hetero-
geneity. Only a small fraction of Tibet is instrumented well
enough to allow definition of lateral heterogeneity with
lateral dimensions of ∼100 km, but where sufficiently dense
networks have been deployed, such heterogeneity seems to
be present in the upper mantle beneath the plateau.
[71] Body wave tomography of the upper mantle beneath

the Iranian Plateau also allows for lateral heterogeneity
but with less resolution than for Tibet. Hafkenscheid et al.
[2006] show a high‐speed zone continuing beneath the
Zagros and perhaps marking subducted ocean lithosphere
that led the Arabian shield into the subduction zone. By
contrast, in a focused attempt to detect such a slab of lith-
osphere, Kaviani et al. [2007] found that delays within the
crust masked an equivocal travel time advance due to such
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a slab, and they could neither demonstrate nor deny its
existence. Kadinsky‐Cade and Barazangi [1982] interpreted
a single earthquake at a depth of 107 km and with a T axis
plunging northeast as a hint of remnant lithosphere beneath
the southeast end of the Zagros. Maggi et al. [2000], how-
ever, associated this event with subduction of oceanic lith-
osphere beneath the Makran coast, although the epicenter
lies slightly west of the west end of that subduction zone.
Unequivocal evidence of either oceanic lithosphere attached
to Arabia or heterogeneity in the upper mantle that might
reflect ongoing convective removal of lithosphere beneath
the Iranian Plateau remains to be found.
[72] In summary, the crust and upper mantle structures of

Iranian and Tibetan plateaus differ in several respects. Crust
is much thicker beneath Tibet. The upper mantle beneath
both includes high‐speed material not only beneath the
Zagros and Himalaya but also beneath the adjacent por-
tions of the Iranian and Tibetan plateaus, consistent with
the underthrusting of platform‐ or shield‐like lithosphere
beneath the belts. Beneath the Iranian Plateau and the
northern part of Tibet, however, seismic wave speeds from
the Moho to depths of ∼100 km are lower than those typical
of stable shields and platforms, and attenuation is high.
Thus, we presume that the upper mantle is relatively warm
and lithosphere is thin there. At greater depths (>150 km)
beneath both plateaus (Figure 13b), S wave speeds again are
quite high, suggesting the presence of relatively cold
material whose origin remains a subject of discussion and
which might indicate thick lithosphere, whose upper part is
warm because of radiogenic heating in the overlying crust
[McKenzie and Priestley, 2008]. At greater depths, several
studies show lateral variations in P and S wave speeds
beneath Tibet, consistent with active mantle dynamics
beneath the plateau, but such evidence from Iran remains
inconclusive. Finally, as with all differences between Iran
and Tibet, the contrasts are greater beneath Tibet, with
lower wave speeds just below the Moho and with a greater
extent of high speeds at depths of ∼200 km.

5. DISCUSSION: IMPLICATIONS FOR MOUNTAIN
BUILDING AND THE GROWTH OF HIGH PLATEAUS

[73] We have focused mostly on how the Zagros and
Himalaya and their adjacent plateaus differ from one
another, but perhaps it is worth recounting first how they are
similar. Both the Zagros and the Himalaya formed after
stable continental crust (a platform and a shield) and sedi-
mentary rock deposited on their continental shelves plunged
into subduction zones along the southern margin of Eurasia.
Virtually all rock of both mountain ranges was part of
Arabian or Indian, not Eurasian, crust. In both cases, when
collision occurred, the rates of convergence between the two
plates, Arabia and Eurasia in one case and India and Eurasia
in the other, slowed by ∼35% and ∼30%–45%, respectively,
presumably because the thick continental crust made the
subducting plates more buoyant than when only oceanic
lithosphere was consumed. As these continents penetrated
into Eurasia, sedimentary rock deposited on their north-

eastern and northern margins shortened horizontally by
folding and thrust faulting as the loci of deformation pro-
gressively moved onto the Arabian and Indian continents.
Later the underlying basement deformed by reverse and
thrust faulting, with the locus of deformation stepping
southward into the impinging continents. Convergence
continues today, as both GPS and seismicity attest.
Following both collisions, wide plateaus grew within the
adjacent southern portions of Eurasia, as Arabia and India
penetrated into them. Shortening and isostatically com-
pensated thickening of crust account for most of the
present‐day elevations of the plateaus, but portions of both
are also underlain by uppermost mantle with lower seismic
wave speeds than beneath the adjacent stable regions.
Hence, it appears that mantle lithosphere beneath at least
parts of both plateaus is thin or absent and presumably has
been removed since the collisions (but as noted in section 4.2,
not all agree either that lithosphere is thin or that it has been
removed). Crustal shortening continues in the mountain
belts that surround the plateaus, not just in the Zagros
and Himalaya, suggesting that both plateaus are growing
outward.
[74] Turning to the differences between the Zagros and

Himalaya and between the Iranian and Tibetan plateaus,
we discuss those that seem to offer insights into how col-
lision zones evolve. These include the development of
major thrust fault systems, the growth of high plateaus
including the roles of crustal thickening and underlying
mantle dynamics, and the significance of movements of
apparently rigid crustal blocks in that growth.

5.1. Initiation of “Main” Throughgoing, Intracrustal
Thrust Faults
[75] The Himalaya seems to be at a stage that is far

advanced beyond that of the Zagros [e.g., Barazangi, 1989;
Ni and Barazangi, 1986]. Convergence has occurred by slip
on major, termed “Main,” thrust faults that dip gently
beneath the range (Figures 5 and 14). Following collision,
the first such fault, the Main Central Thrust, broke through
the Indian crust, and today it appears as a wide shear zone
with several splays. Subsequently, the locus of slip at the
surface moved southward to the Main Boundary Fault,
which separates pre‐Mesozoic rock from Cenozoic deposits.
Currently, slip occurs on the Main Frontal Thrust, a listric
splay that cuts the late Cenozoic sedimentary cover and
manifests itself as a piedmont fold belt within the Ganga
Basin south of where it joins the gently dipping fault that
presumably was active when slip occurred on the Main
Boundary Fault.
[76] The Zagros also have been built by the horizontal

shortening, initially by folding of thick sedimentary rock at
the surface and, apparently more recently, also by reverse
faulting in the basement that once underlay Arabia’s conti-
nental margin (Figures 5 and 14). Although Arabian crust
appears to have been underthrust beneath the margin of the
Iranian Plateau [e.g., Agard et al., 2005, 2006; Paul et al.,
2006, 2010], crustal thickening within much of the Zagros
has primarily involved the sedimentary strata that formed on
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the ancient margin of Arabia. Apparently, only little thick-
ening of the basement itself has occurred. The same folding
of sedimentary rock occurred in the Himalaya, but all of
this record now lies north or northeast of the high peaks in
what is sometimes also called the Tethyan Himalaya and
geographically is now part of southern Tibet. The active
tectonic processes that continue to build the Himalaya
reveal themselves south of and beneath the Greater Hima-
laya. They have involved the shearing of deeper basement
of India’s northern continental margin from the rest of India
and the thrusting of these thin sheets of basement rock atop
the rest of India, as the intact portion of the Indian sub-
continent has plunged beneath southern Tibet (Figure 5).
When (and if) the analogous process in the Zagros happens,
it should involve the creation of a gently dipping thrust fault
through the basement beneath the present‐day Zagros and
the thrusting of that sheet of crystalline basement and the
overlying sedimentary rock onto the Arabian shield. The
surface outcrop of such a fault would lie within and
northwest of the present‐day Persian Gulf.
[77] The present‐day seismicity and active tectonics of

the Zagros suggest that this initiation of a new thrust fault
may be occurring today and will be established soon [e.g.,
Mouthereau et al., 2006, 2007]. Fault plane solutions of
earthquakes in the Zagros do not show a gently dipping
nodal plane like those for earthquakes in the Himalaya, and
thus, no major thrust fault seems to have formed yet. At
the same time, most modern analyses of the deformation
of the Zagros suggest that the basement of the Zagros is
involved in the current deformation [Berberian, 1995;
Bosold et al., 2005; Molinaro et al., 2005; Mouthereau et
al., 2006, 2007; Sherkati et al., 2005]. Although much of
the horizontal shortening of the sedimentary layers in the
Zagros has occurred by folding of sedimentary rock
detached from the basement along weak layers of salt or
other material, deformation in the Zagros is no longer
strictly, nor is it entirely, thin skinned. The seismicity shows
that active faulting beneath the Zagros occurs largely by
reverse faulting [e.g., Jackson and McKenzie, 1984; Maggi
et al., 2000; McKenzie, 1972a; Talebian and Jackson, 2004]
but that activity is more intense beneath the lower, south-
western half of the Zagros than beneath the higher part
(Figures 8 and 9). Moreover, GPS measurements show a
concentration of strain accumulation in this southwestern
part of the Zagros. Where accurately located, small earth-
quakes occur in clusters with a different spacing from
the folds at the surface, suggesting that those folds do not
result from slip on adjacent, active faults in the basement
[Tatar et al., 2004]. Fault plane solutions of these accurately
located earthquakes suggest that most, but not all, clusters
mark faults dipping northeast in the upper crust. We imagine
that these seismic faults merge into a ductile shear zone in
the middle to lower crust (Figure 14).
[78] In most images of the strength of the crust, a brittle

layer overlies a ductile layer, which in turn overlies a
stronger uppermost mantle [e.g., Brace and Kohlstedt,
1980]. Many associate the boundary between brittle and
ductile deformation with an isotherm near 350°C, where

Figure 14. Cartoons illustrating a hypothesized develop-
ment of major thrust faults that cut through the entire crust,
using the Zagros and Himalaya to illustrate stages in that
development. The fifth panel shows underthusting of
oceanic lithosphere beneath a continent, with Arabia or
India following that lithosphere. The fourth panel shows
the state after the margin of that continent has been thrust
to depth beneath the overriding continent and folding of
the sedimentary cover has begun. In the third panel, reverse
faulting occurs over a broad part of the upper crust, while
aseismic shear occurs within the lower crust; we imagine
that this represents the current state in the Zagros. In the
second panel, displacement of tens or hundreds of kilo-
meters has occurred, and the shear zone has contracted to
become a fault as the underthrusting continent slides beneath
colder upper crust. In addition, the lithosphere to its left has
been flexed down to form a foreland basin. In the first panel,
this process has been repeated, a second major thrust fault
has developed, and slip of 150 km or more on it has accrued;
we imagine this to mimic crudely the upper lithospheric
structure of the present‐day Himalaya.
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quartz flows at relatively low stress [e.g., Chen and Molnar,
1983; Meissner and Strehlau, 1982; Sibson, 1982]. Because
quartz deforms more readily than feldspars or pyroxenes at
crustal temperatures [e.g., Bürgmann and Dresen, 2008;
Mackwell et al., 1998; Rybacki and Dresen, 2004; Rybacki
et al., 2008], many allow for a stronger lowermost crust, rich
in feldspar and pyroxene, than middle crust. (We note also
that some consider the strength of continental lithosphere to
lie largely in the crust and not in the mantle [Jackson et al.,
2008;McKenzie and Priestley, 2008; Priestley et al., 2008].)
Thus, it makes sense for a major, gently dipping thrust fault
to form within the middle to lower crust (and not at the
Moho). Yet such a fault must also rupture the upper crust,
which almost surely requires slip initially on a reverse fault
(dip ∼ 45°). Reverse faulting currently occurs within the
Zagros and specifically in the portion of the Zagros where
elevations are relatively low and closer to the intact Arabian
shield than the high, northeastern part of the Zagros. Thus,
we imagine that the Arabian shield has plunged beneath the
Iranian Plateau, as images based on receiver functions
suggest [Paul et al., 2006, 2010], but that convergence
along this zone is resisted and slip on it no longer occurs.
Today, the underthrusting of the Arabian shield induces
horizontal compressive strain, which manifests itself in both
seismicity and reverse faulting beneath the folded and
thrust‐faulted sedimentary cover. Loading of that basement
may include some ductile shear at middle to lower crustal
depths beneath the higher parts of the Zagros.
[79] With some reasonable assumptions, we may estimate

the total strain within the basement. The increase in eleva-
tion from the Persian Gulf to central Iran includes steps in
the basement due to reverse faulting. Berberian [1995]
inferred 6 km of total vertical difference, from offsets in
sedimentary layers at different faults. Mouthereau et al.
[2006] showed a similar amount. If we assumed that the
reverse faults dip at 30°–60°, as fault plane solutions of
earthquakes imply, this 6 km would translate into 3.5–10 km
of horizontal shortening. Recognizing that reverse slip on
faults dipping at 60° is not likely [e.g., Sibson, 1990],
however, and that a range of dips of 30°–45° seems more
sensible, likely amounts of shortening of the basement
are 6–10 km. At GPS‐measured convergence rates of
5–9 km/Myr across the Zagros, these amounts suggest that
this basement involvement began between ∼0.7 and 2 Ma.
[80] Constraints on the structure, seismicity, and GPS

geodesy imply that beneath the southwestern part of the
Zagros, the upper Arabian crust not only has been thrust
beneath the Zagros but also currently undergoes northeast‐
southwest shortening. The absence of seismicity beneath the
northeast portion of the Zagros and its approximately con-
stant rate of convergence with the stable Arabian shield
suggest that this section of upper crust moves southwest
with respect to Arabia with little active deformation and
hence effectively rigidly (Figure 14). The convergent strain
across the low‐elevation, southwestern parts of the Zagros,
which is seen at the surface with GPS (Figure 8) and with
active folding [e.g., Oveisi et al., 2007, 2009] and in the
upper crust as seismicity, must be absorbed at depth. We

presume that aseismic shear within the middle and lower
crust accommodates the convergence between the intact
portion of the Arabian plate and the upper crust of the high‐
elevation, northeastern parts of the Zagros. Thus, we
imagine that shear occurs within a nearly horizontal zone of
finite thickness in the middle and lower crust beneath the
higher Zagros (Figure 14). Shear on that zone would load
the brittle upper crust farther southwest, where earthquakes
release accumulated strain. The third panel of Figure 14
presents this view, and the first and second panels show
subsequent evolution that would lead to a structure similar
to that in the present‐day Himalaya.
[81] This inference of straining of the basement beneath

the Zagros and the eventual initiation of a new thrust fault in
the lower crust is not without inconsistencies. The summa-
tion of seismic moments of earthquakes [e.g., Jackson and
McKenzie, 1988; Masson et al., 2005; North, 1974] yields
a rate of shortening of the basement that is markedly lower
than the rate of shortening measured with GPS. Accord-
ingly, much of Arabia’s convergence with Eurasia must
occur by a process that earthquakes do not record.

5.2. Growth of High Plateaus and a Role for Mantle
Dynamics
[82] Again, the different histories of deformation of Tibet

and Iran point to different stages of development. Tibet has
undergone large (if poorly quantified) north‐south shorten-
ing [e.g., Chang et al., 1986; Chen et al., 1993; Coward et
al., 1988b; Dewey et al., 1988], but today it extends east‐
west. The Iranian Plateau, by contrast, has undergone less
shortening, rose more recently, and does not yet extend by
normal faulting.
[83] A thin viscous sheet in a gravity field and penetrated

by a rigid object provides a simple model that accounts for
many aspects of large‐scale deformation of continental lith-
osphere [e.g., Bird and Piper, 1980; England and Houseman,
1986; England and McKenzie, 1982, 1983; Flesch et al.,
2001; Houseman and England, 1986; Jiménez‐Munt and
Platt, 2006; Vilotte et al., 1986]. With only two free para-
meters, the thin viscous sheet yields surface elevations
that match the hypsometry and the pattern of the regional
rotations in eastern Asia [England and Houseman, 1986],
as well as the simple relationship between gradients in
gravitational potential energy and gradients in strain rates
[England and Molnar, 1997]. A basic assumption used
to exploit the thin viscous sheet is that deformation varies
little with depth through the thickness of the lithosphere,
and two sets of observations support this assumption, at
least as applied to eastern Asia. First, fault plane solutions
of shallow focus earthquakes in southern Tibet and those in
the underlying uppermost mantle show the same pattern of
east‐west extension by normal faulting on north‐south
planes and conjugate strike‐slip faulting [e.g., Chen et al.,
1981; Chen and Yang, 2004; de la Torre et al., 2007;
Molnar and Chen, 1983; Zhu and Helmberger, 1996].
Second, orientations of strain or strain rate in Tibet mea-
sured from geological or geodetic observations at the
Earth’s surface are aligned parallel to orientations of the
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faster and slower quasi–S wave deduced in studies of shear
wave splitting [e.g., Davis et al., 1997; Flesch et al., 2005;
Holt, 2000; Lev et al., 2006; Sol et al., 2007; C.‐Y. Wang
et al., 2008]. Of course, in its simplest form with no shear
stresses on horizontal planes, the thin viscous sheet is
inapplicable to the margins of Tibet, like the Himalaya.
[84] Insofar as the thin viscous sheet is applicable to a

region in front of strong indenting continental lithosphere,
like Arabia or India, the lateral extent of the deforming
region should scale with the width of the indenter, so that an
extensive region should undergo strain concurrently
[England et al., 1985]. In addition, the locus of the most
rapid shortening and thickening should migrate into the
sheet away from the edge of indenter as the latter penetrates
into the sheet [e.g., England and Houseman, 1986; England
and McKenzie, 1982, 1983; Houseman and England, 1986;
Vilotte et al., 1986]. As noted in section 3.1, geologic evi-
dence for Tibet suggests not only an initially wide zone of
deformation, facilitated by the presence of strong regions on
Tibet’s northern margin [Dayem et al., 2009; England and
Houseman, 1985; Flesch et al., 2001; Vilotte et al., 1984],
but also the suggestion of a subsequent northward growth
of the locus of the most intense deformation [e.g., Métivier
et al., 1998; Tapponnier et al., 2001]. Although the tem-
poral pattern of deformation in Iran is less well constrained
than in Tibet, the apparent rise of the Alborz near ∼20 Ma
[Ballato et al., 2008, 2010] or perhaps more sharply at only
12 Ma [Guest et al., 2007] and the inference that the Kopet
Dagh dates from ∼10 Ma [Hollingsworth et al., 2006, 2008]
suggest that deformation on the surroundings of the Iranian
Plateau began after Arabia collided with Eurasia but not
necessarily long after that time.
[85] At present, deformation in the two regions differs in

two obvious ways. First, in Tibet, approximately east‐west
crustal extension occurs by a combination of normal fault-
ing, which implies crustal thinning, and conjugate strike‐slip
faulting (Figure 9). In Iran, normal faulting is essentially
absent. Second, the Himalaya is overthrust onto India in a
direction radially outward, perpendicular to the local trend
of the belt, not parallel to India’s convergence with respect
to Eurasia (Figure 7). In the Zagros, however, the obliquity
of Arabia’s convergence with Eurasia pervades deformation
across much of the Zagros and the Iranian Plateau, and
convergence across the belt varies in both rate and orien-
tation along it (Figure 7). These two differences can be
understood as reflecting a difference in the development of
the two regions.
[86] In the Zagros and the Iranian Plateau, the penetration

of Arabia into Eurasia manifests itself in part by lateral
transport of material out of Arabia’s path, as northwestern
Iran and eastern Turkey move westward past the relatively
strong lithosphere beneath the Black and Caspian seas and
toward the Aegean Sea (Figure 6). Reverse faulting and
crustal thickening occur not just beneath the Zagros but also
beneath the Alborz and Kopet Dagh to the north and beneath
short ranges that link strike‐slip faults in the region sur-
rounding the Lut Block. Throughout most of Iran, however,
crust beneath the plateau has not thickened much, if at all

(see Figure 12 for a general illustration of this). Yet this
region stands high, and its surface uplift must have occurred
since the collision for Oligocene marine sediment covers
parts of central Iran [e.g., Berberian and King, 1981;
Davoudzadeh et al., 1997; Morley et al., 2009; Reuter et al.,
2009; Schuster and Wielandt, 1999; Stöcklin, 1968, 1974,
1977]. We suppose, but are by no means convinced, that
mantle lithosphere has been removed from beneath central
Iran, presumably as a result of convective instability, and
the added buoyancy of hotter material beneath this region
requires that its surface stand high. The forces that conspire
to sustain Arabia’s penetration into Eurasia seem, however,
to have done so with little diminution in strength for the
speed with which Arabia moves seems to have changed little
since 20 Ma (Figure 4).
[87] By contrast, the widespread normal faulting and

crustal thinning in Tibet call attention to a change in the
style of deformation and in the balance of forces acting on
the plateau. First, high plateaus cannot be built by normal
faulting. Almost surely, the crust beneath most of Tibet has
thickened since India collided at 45–55Ma [e.g.,Chang et al.,
1986; Chen et al., 1993; Coward et al., 1988b; Dewey et al.,
1988], but normal faulting implies crustal thinning, not
thickening. When crustal thickening of Tibet ended and
crustal thinning began are not constrained well. We do not
concern ourselves here with normal faulting that occurred
along the southern edge of Tibet near 20 Ma [e.g., Burchfiel
et al., 1992; Burg et al., 1984; Herren, 1987; Valdiya and
Goel, 1983]. The oldest precisely dated northerly trending
normal fault within Tibet seems to have been active at
∼13.5 Ma [Blisniuk et al., 2001], and other normal faults
date from ∼8 (±3) Ma [e.g., Harrison et al., 1995; Pan and
Kidd, 1992]. One implication of both this normal faulting
and the radially outward overthrusting of southern Tibet
onto India is that some change occurred in the balance of
forces on the margin of Tibet and stress within it. England
and Houseman [1989] discussed possible changes and
argued that the only sensible possibility is that mantle lith-
osphere was removed from beneath Tibet and the plateau
rose 1000 m or more. The increased elevation of the plateau
would then increase the vertical compressive stress, trans-
forming it from the minimum principal compressive to the
maximum compressive stress. Concurrently, the force per
unit length that the plateau and surrounding areas apply to
one another would increase and resist further horizontal
shortening within Tibet, so that deformation of lower sur-
rounding territory would become favored.
[88] England and Houseman [1989] discussed the possi-

bility that the plateau became weaker and that this weak-
ening facilitated normal faulting, and they showed this
possibility to be illogical. In regions of crustal shortening
and thickening, the forces (per unit length) that build the
thick crust must do work against dissipative processes,
such as friction on faults or viscous flow in continuous
medium, and against gravity to create potential energy.
Accordingly, if the region became weaker but the hori-
zontal driving force (per unit length) remained the same,
the resistance to gravity must necessarily increase; if that
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happened, the crust would thicken, which would require
reverse or thrust, not normal, faulting. Weakening of a high
terrain built by horizontal compression and crustal thick-
ening cannot, at least in the absence of other changes or
additional assumptions, initiate crustal thinning.
[89] We presume that this major difference between the

Tibetan and Iranian plateaus results from their being at
different stages. The lower seismic wave speeds beneath the
plateaus than beneath their surroundings suggest warmer
upper mantle, consistent with both having lost at least
some of their mantle lithosphere (though again, we remind
readers that this inference is controversial).
[90] For Tibet, numerous observations suggest that the

region surrounding Tibet underwent accelerated deforma-
tion since ∼15 Ma, possibly in response to removal of
mantle lithosphere. Such removal of cold dense material and
its replacement with warmer material would have led to a
rise of its surface of ∼1000 m [e.g., Molnar and Stock,
2009]. Moreover, as discussed in section 3.1, India’s rate
of convergence with Tibet decreased by 45% near 15 Ma, as
might be expected if the force per unit length that Tibet
applies to India increased (though as noted in section 3.1,
Copley et al. [2010] question this decrease in rate). Thus,
insofar as the deformation surrounding Tibet and the change
in the convergence rate of India with Eurasia offer tests of
the idea that mantle lithosphere was removed from beneath
Tibet, such removal passes these tests. Also, as noted
in section 4.2, virtually all studies of upper mantle struc-
ture of Tibet call attention to low speeds in the uppermost

mantle beneath northern Tibet but high speeds at depths of
∼200 km (and possibly greater). Speeds in this depth range
resemble those of Precambrian shields, and some have
suggested that horizontal compression of Tibetan litho-
sphere if manifested by thickening of it would create such
a structure [Jordan, 1978, 1988; McKenzie and Priestley,
2008]. We suspect instead that this high‐speed material
marks the active removal, and perhaps ponding, of cold
material that formerly was part of Tibet’s mantle lithosphere
that became convectively unstable during horizontal short-
ening and that is sinking or has sunk through the underlying
asthenosphere (Figure 15) [e.g., Houseman and Molnar,
2001]. We can also imagine that mantle lithosphere may
have been removed more than once; following removal,
subsequent thickening, again due to horizontal shortening,
could have made mantle lithosphere unstable again. The
volcanic history of Tibet suggests that melting of mantle
lithosphere occurred not just in the past 15 Ma but much
earlier in some areas [Arnaud et al., 1992; Chung et al.,
1998, 2003, 2005; Ding et al. 2003; Guo et al., 2006; Hou
et al., 2004; Liu et al., 2008; Miller et al., 1999; Roger
et al., 2000; Wang et al., 2005; Q. Wang et al., 2008; Yin
and Harrison, 2000], consistent with earlier periods of
removal.
[91] The absence of significant crustal thickening within

central Iran, but with crustal thickening on the margins,
suggests (at least to us) that thin lithosphere beneath central
Iran may have formed because lithosphere beneath the
surrounding ranges became unstable as it thickened; then

Figure 15. Cartoon cross sections contrasting hypothesized evolutions of deep structure beneath the
(a and b) Tibetan and (c and d) Iranian plateaus. Figures 15b and 15d show precollision states with
India and Arabia following oceanic lithosphere into the asthenosphere beneath southern Eurasia. For
Tibet (Figures 15a and 15b), we imagine continued convergence of 2000–3000 km (but not with
amounts scaled accurately); thickening of Eurasian crust to build the wide, high Tibetan Plateau;
removal of mantle lithosphere possibly in several downwelling plumes or sheets; possible ponding
of that material at depths where viscosity increases sufficiently to retard further sinking; and the
absence of intact mantle lithosphere beneath much of northern Tibet. Evidence for such plumes or
sheets is sparse, but some tomograms do show lateral heterogeneity on this scale [e.g., Li et al.,
2008; Ren and Shen, 2008; Tilmann et al., 2003]. For Iran (Figures 15c and 15d), there has been
notably less convergence between Arabia and Eurasia than between India and Eurasia. Nevertheless,
with lithospheric thickening beneath parts of Iran, we suppose (tentatively) that mantle lithosphere
became unstable and sank beneath the margins of the Iranian Plateau, leaving thinned mantle litho-
sphere beneath the plateau. As beneath Tibet, that detached mantle lithosphere is shown to have ponded
where viscosity may increase, but this suggestion is yet more tentative than for Tibet. For Iran obliquity
of various mountain ranges (Zagros, Alborz, Kopet Dagh, and others) makes a 2‐D cross section more
misleading than for Tibet, and assigning specific localities to regions of downwelling is risky.
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sinking of that thickened mantle lithosphere drew at least
the deeper part of the mantle lithosphere beneath central
Iran into downwelling sheets or plumes (Figure 15). We do
not know when (or if) mantle lithosphere was removed
from central Iran, but a guess might be ∼10–12 Ma, when
deformation in the Alborz and Kopet Dagh seems to have
accelerated. Compared with Tibet, however, such an event
(if it occurred) manifested itself much more subtly than it
seems to have beneath Tibet. For instance, no marked

decrease in the convergence rate between Arabia and Eur-
asia has occurred since the slowing of convergence at the
time of collision (Figure 4).
[92] One might ask why removal of mantle lithosphere

beneath both plateaus has not manifested itself similarly.
First, clearly, the Iranian Plateau has not grown to the lat-
eral dimensions or to the height of Tibet. More interesting
and important, however, is the fact that crust within the
Iranian Plateau has not yet thickened much, if at all.
Removal of mantle lithosphere and replacement with hotter
asthenosphere requires that the remaining crust rise in order
to maintain isostatic equilibrium. In principle, removal of
the same amount of mantle lithosphere from beneath two
regions of different crustal thickness will lead to identical
amounts of surface uplift. Yet when such mantle lithosphere
is removed, the change in potential energy per unit area is
greater beneath the region with the thicker crust (Figure 16)
[e.g., Molnar and Stock, 2009]. For regions in isostatic
equilibrium the change in potential energy per unit area
turns out to be equal to the change in horizontal force per
unit length that the elevated region applies to its sur-
roundings [e.g., Molnar and Lyon‐Caen, 1988]. Thus,
removal of mantle lithosphere from beneath central Iran
should have increased the force per unit length that Iran
applies to Arabia or to Eurasia, but that increase should
have been smaller than the change in the force per unit
length that Tibet applies to India or Eurasia if the same
amount of mantle lithosphere were removed from beneath
it. We suspect that removal of mantle lithosphere from
beneath Tibet altered the balance of forces (per unit length)
beneath Tibet sufficiently to cause deformation in Tibet to
change from dominantly north‐south crustal shortening to
the present‐day east‐west extension. The increased pressure
difference would cause Tibet to flow radially outward onto
the Indian plate, whether that radial translation is attributed
to change in force per init length applied to a brittle sub-
stance, like a Coulomb solid [e.g., Dahlen and Suppe,
1988], or to a viscous substance acting like a gravity cur-
rent [e.g., Copley and McKenzie, 2007]. The removal of the
same amount of mantle lithosphere from beneath Iran,
however, might merely lead to a redistribution of crustal
shortening and thickening beneath the Iranian Plateau and,
in particular, beneath its margins.
[93] The change in potential energy per unit area, or force

per unit length, due to removal of mantle lithosphere is
given by [e.g., Molnar and Stock, 2009]

DPE ¼ DEg �chþ �mL=2ð Þ; ð1Þ

where DE is the amount of surface uplift, g is gravity, h is
the crustal thickness, and L is the initial thickness of mantle
lithosphere. With g = 9.8 m/s2, rc = 2.8 × 103 kg m−3, and
rm = 3.3 × 103 kg m−3, ifDh = 1.5 km and L = 100 km, then
for h = 35 or 70 km, DPE = 3.9 × 1012 or 5.3 × 1012 N/m,
respectively. The former is comparable with typical values
assigned to “ridge push,” the force per unit length that thin
lithosphere at mid‐ocean ridges applies to old, thick oceanic
lithosphere [e.g., Chapple and Tullis, 1977; Forsyth and

Figure 16. Profiles of lithostatic pressure versus depth for
regions with different initial elevations and different crustal
thicknesses, before and after mantle lithosphere is removed.
(Scales are distorted so that differences between profiles
are apparent; thus, differences in surface elevations of
order 1–5 km ought not be compared directly with crustal
thicknesses of 35–70 km.) Pressure increases with depth
with a gradient proportional to the product of density
and gravity. For Airy isostatic equilibrium, the excess
crustal thickness at depth is proportional to the elevation
of the surface. If mantle lithosphere of mean density rm is
removed and replaced by asthenospheric material of mean
density ra, the crustal thickness remains unchanged, but
the surface will rise because of the addition of buoyant mate-
rial, and the profile of lithostatic pressure versus depth will
shift. The pressure at any depth below sea level beneath a
high surface is greater than that beneath a lower surface.
The integrated difference in profiles of lithostatic pressure,
from the surface to the depth of compensation, here taken
to be the base of the lithosphere, gives the potential energy
per unit area and equivalently the force per unit length that
the two columns of mass apply to one another [e.g., Molnar
and Lyon‐Caen, 1988]. Thus, thickening of crust or removal
of mantle lithosphere, both of which lead to a rise in surface
elevation, creates potential energy per unit area and leads
to an increase in the force per unit length that the two col-
umns apply to one another. Moreover, the increase in potential
energy per unit area is greater if mantle lithosphere is removed
from beneath thicker than thinner crust.
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Uyeda, 1975; Frank, 1972; McKenzie, 1972b], and the latter
is somewhat greater. Obviously, these estimates of DPE or
force per unit length are uncertain because of uncertainties
in the various parameters, but changes in potential energy
and the force balance associated with removal of mantle
lithosphere will be greater for thick than for thin crust by
an amount that varies linearly with its thickness. Suppose
these arguments are correct: that first, mantle lithosphere
was removed from both plateaus and second, thicker crust
beneath Tibet sufficed to cause a much different response to
the Tibetan Plateau than to the Iranian Plateau. Then, the
arguably small difference in the changes in force per unit
length, ∼1 × 1012 N/m, which is only a fraction of “ridge
push,” suggests that deformation in continental regions is in
a delicate state of balance, where such changes can have
markedly different responses in different settings.
[94] If, in accounting for isostatic compensation of the

elevation of the Iranian Plateau, one allows for modest
crustal thickening beneath the Iranian Plateau, of, say, 6 km,
which is permissible given our ignorance of both the
present‐day crustal thickness and its initial value, the
change in potential energy per unit area for that region
would be yet smaller. For this case, ∼1000 m of the present‐
day mean elevation of ∼1500 m would be due to crustal
thickening, and only 500 m would be due to removal of
mantle lithosphere. From (1), the change in potential energy
per unit area would be proportionally smaller, or only 1.3 ×
1012 N/m, and the difference between that change and the
one for Tibet would be ∼4 × 1012 N/m, more than the effect
of “ridge push.” Given our ignorance of all of the requisite
quantities, we cannot determine the changes in potential
energy per unit length for Tibet and Iran well enough to
quantify their differences, but surely, that for Tibet is larger
and quite likely much larger.

5.3. Rigid Blocks in a Deforming Continuum
[95] The word “block” arises often in discussions of

large‐scale tectonics, but usages differ with context and
often with some confusion. On the one hand, essentially
rigid blocks lie within deforming Asia, with the Lut Block
in Iran and the Tarim Basin in China standing out as
prominent examples. Both seem to have separated from
Gondwana as parts of essentially rigid plates, when accreted
to Eurasia they remained intact, and they undergo little
deformation today. Much of the accretion of material that
now comprises both Iran and its surroundings and eastern
Asia is also often described in terms of blocks, though
unlike the Lut Block or Tarim, most such regions have
undergone deformation. In this context, the word “block”
implies an entity with the same stratigraphy without regard
to its strength. In recent terminology, however, the word is
commonly used to define regions undergoing strain that is
too small to be measured.
[96] The rapid accumulation of GPS data in and around

Tibet has led to a number of attempts to subdivide that
region into such blocks, regions undergoing negligible
strain, except on their margins where elastic strain accu-
mulates between earthquakes. Whereas Calais et al. [2006]

and Shen et al. [2005] found little evidence for rigid or
elastic blocks within Tibet, Meade [2007] and Thatcher
[2007] argued that a division of Tibet into elastic blocks
can describe well the velocity field of Tibet, regardless of
the facts that their boundaries of blocks differ from one
another [Flesch and Bendick, 2008] and that the slip rates
that they calculated for some major faults do not match
those measured [e.g., Zhang et al., 2007]. Thus, the issue of
whether blocks describe well the wide deforming Tibet
remains controversial.
[97] Attempts to subdivide Iran into blocks have not

progressed to the level of disagreement that prevails for
Tibet, but GPS data do seem to be sufficient to define one
region of central Iran where deformation is slow and where
seismicity is low [Vernant et al., 2004]. Given the absence
of unusually thick crust and the presence of apparently
hot uppermost mantle beneath the Iranian Plateau, the
GPS measurements present a peculiarity that might seem
puzzling. Much of central Iran seems to behave as a rigid
block, for distances between GPS control points in this area
show no resolvable changes, and hence, the region under-
goes no measurable strain; yet the presence of a rigid block
might seem unlikely for a region apparently underlain by
a weak uppermost mantle. The rate of deformation of
a region, however, scales with the ratio of the deviatoric
stress acting on it to some measure of its average viscosity.
Although a weak region, one with low viscosity, will obvi-
ously deform more rapidly than a stronger one with the
same imposed stress, if deviatoric stresses (or forces per
unit length) are small, rates of deformation can also be
small. We infer this to be the case in central Iran. As such,
it is a reminder that even if parts of Tibet do prove to be
amenable to treatments in terms of blocks that are not
deforming, such blocks need not be strong, let alone rigid.

5.4. Crustal Budgets, Transformation to Eclogite,
and Channel Flow
[98] Finally, we note, without discussing either in detail,

two controversies surrounding the structure of the Himalaya.
They might also apply to the Zagros.
[99] First, estimates of budgets of crust in eastern Asia

leave open the possibility that crust has not been conserved
during India’s collision and penetration into Eurasia.
England and Houseman [1986] showed that if all present‐
day elevations were compensated isostatically by a crustal
root that formed since India collided with Eurasia, crustal
thickening could account for present‐day elevations if the
collision occurred near 45 Ma and if no material were dis-
placed eastward out of India’s northward path into Eurasia.
We now know that some isostatic compensation occurs
because of hot upper mantle, we suspect that some regions
were high before collision, and both very long baseline
interferometry and GPS data show that southern China moves
eastward at approximately 10 mm/yr [e.g., Heki et al., 1995;
Molnar and Gipson, 1996; Simons et al., 2007]. Thus, some
additional process must account for part of the crustal
budget involved in India’s penetration into Eurasia. Two
possibilities exist: lateral transport of material [e.g., Le
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Pichon et al., 1992; Molnar and Tapponnier, 1975; Peltzer
and Tapponnier, 1988; Tapponnier et al., 1982, 1986]
(called “extrusion” or “tectonic escape” by some) and con-
version of subducted crust to eclogite [e.g., Le Pichon et al.,
1992].
[100] Much recent attention has been given to the possi-

bility that lower crust beneath the Himalaya has converted to
eclogite facies [Cattin et al., 2001; Henry et al., 1997;
Hetényi et al., 2007; Le Pichon et al., 1997; Monsalve et al.,
2008; Nábělek et al., 2009; Sapin and Hirn, 1997; Schulte‐
Pelkum et al., 2005; Wittlinger et al., 2009]. If the lower
crust in such regions has transformed to eclogite, it should
have become dense, and seismic wave speeds should
resemble those of mantle material. Thus, eclogitization
provides a mechanism for hiding subducted crust. Similarly,
plate reconstructions call for 500–800 km of convergence
between Arabia and Eurasia since collision (Figure 4), but
as discussed in section 3.1, crustal shortening within the
Zagros seems capable of accounting for less than a third
of this amount. Eclogitization, if it occurred beneath the
Zagros or the Iranian Plateau, might hide crustal material
there and lead to an underestimate of the extent to which
the Arabian platform has underthrust the southwestern edge
of the Iranian Plateau.
[101] Given the uncertainties in estimating the amount of

continental crust underthrust in collision zones, especially
for the Himalaya, it is perhaps risky to draw any conclusion
from the difference between the budgets for the Himalaya
and the Zagros, but let us note another possibility: that early
in the collision process, much material was transported
laterally out the path of the converging continents, presum-
ably at a higher rate than southern China currently moves
eastward relative to Eurasia. Some have argued that mate-
rial that now comprises much of Indochina lay in southern
Tibet, and shortly after India collided with Eurasia, it moved
eastward out of India’s path [e.g., Akciz et al., 2008; Peltzer
and Tapponnier, 1988; Replumaz and Tapponnier, 2003;
Royden et al., 2008; Tapponnier et al., 1982, 1986, 1990,
2001]. Rapid lateral transport of material occurs in this
region now, as shown best by GPS measurements (Figure 6)
[e.g., Gan et al., 2007; King et al., 1997; Zhang et al.,
2004]. Rapid present‐day westward transport of material
also occurs across Turkey (Figure 6), but the total offset of
only ∼85 km for the North Anatolian fault [e.g., Armijo
et al., 1999; Hubert‐Ferrari et al., 2002; Şengör, 1979b;
Şengör et al., 2005], which accommodates virtually all of
that movement relative to Eurasia, makes large magnitudes
of lateral transport in this region appear unlikely. It may
seem more likely that crustal material would flow around
the southeast end of the Zagros, where a relatively free
boundary along the Makran coast might allow southward
flow of material analogous to that at the eastern end of the
Himalaya, but at present, GPS velocities give no indication
of such movement (Figure 6). To our knowledge, geologic
evidence for large horizontal movement of material in this
region has not been found.
[102] A second controversy surrounding the Himalaya is

the possible role played by flow of lower crust, “channel

flow,” such that rock cropping out in the Greater Hima-
laya today has flowed southward many tens to perhaps
hundreds of kilometers with respect to both India and the
upper crust of southern Tibet [e.g., Beaumont et al., 2001,
2004; Grujic et al., 1996, 2002; Hodges et al., 2001;
Hollister and Grujic, 2006; Jamieson et al., 2004; Law et
al., 2006]. This view is controversial, and many reject it
[e.g., Bollinger et al., 2006; Kirstein et al., 2006; Kohn,
2008; Murphy, 2007; Robinson et al., 2006; Webb et al.,
2007]. The profiles of receiver functions across the Zagros
(Figure 11) do not lend themselves to an interpretation in
terms of channel flow. The dipping interfaces and zones of
low‐speed material beneath them, especially that on the
northwestern profile, pass from very shallow depths to the
Moho without obvious distortion. If flow of lower crust
from beneath central Iran to beneath the Zagros had
occurred in a channel within the lower crust, these inter-
faces and low‐speed zones should have been distorted by
that flow and not show a linear cross section. The absence
of evidence for such distortion, and hence for such a pro-
cess, in the Zagros might weigh against the general concept
of channel flow in such a setting, though obviously, these
data do not bear on flow parallel to the Zagros and per-
pendicular to the cross sections. Alternatively, many who
advocate such channel flow see the need for rapid erosion
of the Greater Himalaya as a necessary participant in such
flow [e.g., Beaumont et al., 2001, 2004; Hodges et al.,
2001]. Thus, its absence in the Zagros might merely result
from the absence of rapid erosion and might simply be the
result of the Zagros being at a stage too early for such a
process to develop or the absence of climatic conditions that
lead to rapid erosion.

6. CONCLUSIONS

[103] The principal differences between the Zagros and
Himalaya and between the Iranian and Tibetan plateaus
seem to reflect different degrees of development of a similar
set of processes, which result from a greater penetration of
India than Arabia into Eurasia (Figures 3 and 4). These
include both different amounts of underthrusting of India
as compared to Arabia beneath Eurasia and different degrees
of crustal thickening beneath Tibet as compared to Iran.
[104] The construction of the Zagros has occurred in large

part by folding and thickening of the sedimentary cover on
the edge of the Arabian platform as Arabia plunged beneath
central Iran perhaps as much as 100 km but apparently less
(Figures 5 and 11). The Himalaya, however, has been built
largely by the stacking of thrust sheets consisting of slices of
India’s crystalline basement as deeper portions of India’s
lithosphere slid hundreds of kilometers beneath southern
Eurasia (Figures 5, 8, and 11). The folding of sedimentary
rock that built the Zagros also occurred within the Himalaya
but ended before 20 Ma and perhaps much earlier. We see
the current seismicity, fault plane solutions of earthquakes,
and distribution of deformation within the Zagros measured
with GPS (Figure 8) to be consistent with the possibility that
a major intracontinental thrust fault, similar to the Main
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Central Thrust of the Himalaya, is in the process of forming
beneath the Zagros as a seismically active reverse fault in
the upper crust but as a nearly horizontal ductile shear zone
within deforming middle to lower crust (Figure 14).
[105] Crust has thickened beneath virtually all of Tibet

and has started to thicken beneath the mountain belts
flanking the Iranian Plateau (Figure 12). Both plateaus
undergo deformation that includes strike slip, but whereas
Tibet undergoes normal faulting and crustal thinning, the
Iranian Plateau undergoes minor crustal shortening and
thickening (Figure 11). As high plateaus cannot be built by
normal faulting and crustal thinning, at least not without
positing a conspiracy of processes that seem unlikely to
occur together, some change in the balance of forces must
have occurred beneath Tibet. Because both plateaus seem to
be underlain, at least in part, by relatively warm upper
mantle, as implied by low P and S wave speeds and high
attenuation of seismic waves (Figure 13a), we presume that
some mantle lithosphere has been removed from beneath
each plateau (Figure 15), but readers should realize that this
interpretation is speculative. In any case, the warmer mate-
rial beneath the plateaus than beneath normal mantle litho-
sphere contributes to the isostatic balance of the plateaus.
Because of Tibet’s greater crustal thickness, removal of
mantle lithosphere beneath it should lead to greater change
in the balance of forces between the plateau and its sur-
roundings (Figure 16). The greater change in convergence
rate between India and Eurasia than between Arabia and
Eurasia accords with a bigger change in the balance of
forces for Tibet than Iran.
[106] Whereas Tibet undergoes widespread deformation

that includes crustal thinning, the Iranian Plateau in central
Iran seems not to be deforming by internal strain, despite its
relatively thin mantle lithosphere. This difference in ongo-
ing deformation suggests that Tibet stands higher than it
must in order to balance the forces (per unit length) that it
and its surroundings apply to one another, but the Iranian
Plateau is more closely in balance with the forces it applies
to its surroundings (Figure 16). The absence of ongoing
deformation in central Iran, therefore, derives not from
strength but from a state of low deviatoric stress. The same
state may have characterized Tibet before ∼15 Ma when a
change occurred, which we ascribe to removal of mantle
lithosphere (Figure 15), that led to widespread deformation
on the surroundings of the Tibetan Plateau.
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