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[1] We investigate how aftershocks are spatially distributed relative to the mainshock.
Compared to previous studies, ours focuses on earthquakes causally related to the
mainshock rather than on aftershocks of previous aftershocks. We show that this
distinction can be made objectively but becomes uncertain at long time scales and large
distances. Analyzing a regional earthquake data set, it is found that, at time t following a
mainshock of magnitude m, the probability of finding an aftershock at distance r relative to
the mainshock fault decays as r−g, where g is typically between 1.7 and 2.1 for 3 ≤ m < 6
and is independent of m, for r less than 10 to 20 km and t less than 1 day. Uncertainties on
this probability at larger r and t do not allow for a correct estimation of this spatial decay.
We further show that a static stress model coupled with a rate‐and‐state friction model
predicts a similar decay, with an exponent g = 2.2, in the same space and time intervals.
This suggests that static stress changes could explain the repartition of aftershocks around
the mainshock even at distances larger than 10 times the rupture length.

Citation: Marsan, D., and O. Lengliné (2010), A new estimation of the decay of aftershock density with distance to the
mainshock, J. Geophys. Res., 115, B09302, doi:10.1029/2009JB007119.

1. Introduction

[2] The aim of this study was to measure the spatial
clustering of mainshock‐aftershock pairs. This clustering is
different from the one characterizing any two, possibly
unrelated, earthquakes, that is typically quantified by statis-
tical correlation [Reasenberg, 1985]. The spatial distribution
of aftershocks relative to their mainshock is a signature of the
triggering process and could therefore help us discriminating
between potential candidates for this mechanism. In order to
effectively measure this causal clustering, we first must iso-
late mainshock‐aftershock pairs. This has traditionally been
done using space‐time window techniques, similar to de-
clustering methods [Gardner and Knopoff, 1974; Molchan
and Dmitrieva, 1992]. These methods, although very sim-
ple to implement, are known to depend on relatively arbitrary
parameters. For example, Felzer et al. [2004], Helmstetter et
al. [2005], and Felzer and Brodsky [2006] all used a selection
criterion to first select mainshocks, based on their relative
isolation from previous, close‐by, large earthquakes, and then
defined aftershocks as earthquakes occurring within a main-
shock magnitude‐dependent space‐time window from the
considered mainshock (or from previous aftershocks of this
mainshock, as in Reasenberg [1985] and Helmstetter et al.
[2005]). In recent work, K. Richards‐Dinger, R. S. Stein,
and S. Toda (Test of the hyphothesis that all aftershocks are

triggered by dynamic stress, in preparation; henceforth
referred to as Richards‐Dinger et al., unpublished) have
found, in the case of the analysis conducted by Felzer and
Brodsky [2006], this method does not discriminate effi-
ciently the aftershocks from other, unrelated earthquakes, and
can therefore lead to biases in both the results and their
interpretation.
[3] In order to avoid these shortcomings, we have

developed a different method for isolating mainshock‐
aftershock pairs, building on Marsan and Lengliné [2008].
With this method, like previous ones also based on sto-
chastic modeling [Kagan and Knopoff, 1976; Zhuang et al.,
2002, 2004], the relationship between any two earthquakes
A and B is measured by the estimated probability wAB that B
is an aftershock of A. This is different from usual declus-
tering, for which wAB can only assume the two values: 0
(not an aftershock) or 1 (aftershock). This probability is
inverted using a model of earthquake occurrence that relies
only on a linearity and a mean field hypotheses, and that is
therefore much less sensitive to arbitrary parameterization as
compared to other declustering methods.
[4] The distribution of mainshock‐aftershock distances

can be compared to the distribution of distances that char-
acterize unrelated earthquakes, or the so‐called background
distribution. This comparison is important for understanding
earthquake interactions because the mainshock locally raises
the seismicity relative to this background level. Recently, P.M.
Powers and T. H. Jordan (Distribution of seismicity across
strike‐slip faults in California, manuscript in preparation)
have studied the distribution of (declustered) earthquake
distance to strike‐slip fault planes in California, which can be
viewed as characterizing the background distribution. For all
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their fault segments, the probability density function of r is
well modeled by (r2 + d2)−a/2 where d is typically of the order
of 200 m to 10 km and is interpreted as the width of the
damage zone, while the exponent a typically ranges between
1.0 and 2.5 and could be related to the geometrical roughness
of the fault. In section 5, we will reproduce the distribution of
mainshock‐aftershock distances observed in section 4 with a
model that account for the background seismicity, the latter
being characterized by a probability distribution very similar
to the one of Powers and Jordan.

2. Method

[5] We here detail the method used for finding the trig-
gering probabilities linking each pair of earthquakes. This
thorough description of the algorithm develops on the initial
results discussed in the study ofMarsan and Lengliné [2008].

2.1. Relationships Between Earthquakes

2.1.1. Direct Aftershocks
[6] In the stochastic framework pertaining to this method,

every earthquake can potentially be an aftershock of all the
previous earthquakes. Similarly to the study of Zhuang et al.
[2002, 2004], we define wij as the probability that earth-
quake j was triggered by earthquake i, or, equivalently,
that j is a direct aftershock of i. Causality imposes that
wij = 0 if tj < ti + propagation time. In the following
analysis, we will simplify this condition to tj < ti, i.e., we
will neglect the seismic wave propagation time.
[7] Using the weights wij, one can draw random realiza-

tions of a causal chain. In such a chain, each earthquake is
the direct aftershock of only one mainshock. This main-
shock is drawn randomly, using the weights wij, i.e., if
wij = 0.1 then j has a 10% chance of being a direct aftershock
of i for any given chain.

2.1.2. Indirect Aftershocks
[8] If, for a given causal chain, i is the mainshock of j, and

j is the mainshock of k, then k is said to be an indirect
aftershock of i, i.e., it is the aftershock of a previous after-
shock of i. If this happens 10 times out of 1000 realizations
of the causal chain, then the probability wik′ that k is an
indirect aftershock of i is estimated to 1%. Practically, the
probabilities w′ related to indirect aftershocks can thus be
computed by a Monte‐Carlo method (or stochastic recon-
struction [cf. Zhuang et al., 2002, 2004]).
[9] It is important to stress that wij and w′ij are two distinct

probabilities, with two very different meanings: wij measures
the probability that i directly triggered j, via a physical
mechanism (e.g., stress transfer), while w′ij is the probability
that j is an aftershock of a previous aftershock of i, and
therefore does not imply any direct triggering between i
and j.
[10] We further define the probability that j is conditioned

on i as the sum wij + w′ij. Its negation 1 − wij − w′ij is the
probability that j is unconditioned on i and corresponds to
the probability that j would have existed had i not occurred.
This is different from correlation: for two earthquakes to be
correlated, they need a common ancestor (i.e., they both are
direct or indirect aftershocks of at least one given earth-
quake), which does not necessarily require that one is a
direct or indirect aftershock of the other.
[11] In Figure 1, we show a simple illustrative example

that is not meant to represent a realistic sequence: it involves
5 earthquakes for which we can easily calculate these
probabilities w′ij. All probabilities wij are supposed to be
known a priori, with values as given in Figure 1. For the
four earthquakes B, C, D, and E, the probability of being
conditioned on A is 1, as A initiated this sequence. We can
draw causal chains based on the probabilities wij; for

Figure 1. Example of the relations between five earthquakes A, B, C, D, and E occurring in that order.
The numbers attached to the arrows refer to the probabilities wij that the second earthquake ( j) is a direct
aftershock of the first (i). Note that, for all j except A,

Pj�1
i¼1 wij = 1, i.e., there is a 100% probability that its

mainshock is listed in this sequence (it is either A, or B, …).
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example, the causal chain A→B→C→D→E, where →
denotes triggering, occurs on average wABwBCwCDwDE =
15% of times. In contrast, the chain {A→B, A→C, A→D,
A→E} is less frequent, occurring on average
wABwACwADwAE = 0.5% of times. In the first case, C, D, and
E are indirect aftershocks of A, while in the second case,
they are all direct aftershocks of A. The probability that C is
an indirect aftershock of A is w′AC = wABwBC = 0.5, which is
also equal to 1 − wAC since in this example, C has a 100%
probability of being conditioned on A. For earthquake D, we
have w′AD = wABwBD + wABwBCwCD + wACwCD = 1 − wAD =
0.87, and so on. In general, for large numbers of earth-
quakes, the computation of w′ij involves listing all the causal
chains such that there exists a path leading from i to j. This
quickly becomes extremely tedious. For example, comput-
ing w′ij this way when 100 earthquakes occurred between i
and j implies considering 1.26 × 1030 paths. This becomes
untractable when studying much larger datasets, as will be
done in section 4 with a catalog of more than 70,000
earthquakes. The Monte‐Carlo method described above thus
provides a practical alternative, although it only yields an
approximate value (sample average).

2.2. An Illustration of How the Algorithm Works

[12] We have seen that the probabilities of triggering wij

are the key ingredient in this type of stochastic analysis. We
now explain how these probabilities can be computed with
the iterative algorithm of Marsan and Lengliné [2008]. We
start by giving a simple example, with the goal of providing
an intuitive understanding of how the method works. We
study the case of the five earthquakes of Figure 1. For
simplicity, we will assume they all have the same magni-
tude. We model this sequence by assuming that each

earthquake can contribute to the triggering of the subsequent
earthquake, according to an intensity l that can take two
possible values l1 or l2 depending on the time delay
between the two earthquakes. Value l1 corresponds to
triggering at short time scales (duration equal to, e.g., 1 time
unit), which is true for pairs AB, CD, CE, and DE, while l2
is for long‐term triggering (duration equal to, e.g., 3 time
units), hence, pairs AC, AD, AE, BC, BD, and BE. We start
with the a priori democratic choice l1 = l2 = 1. We will
later show that this choice has no importance, i.e., other a
priori choices would yield the same final results, which
make this algorithm very powerful.
[13] The first step is to deduce the probabilities (or weights)

w from l. Consider, for example, earthquake D: it receives
contributions from A, B, and C, with intensities l2, l2, and
l1, respectively. The total intensity for D is thus l1 +
2l2 = 3, and the weights for D are therefore wAD = �2

�1þ2�2
= 1

3,
and similarly wBD = wCD = 1/3.
[14] Knowing all the weights wij, we now update l1 and

l2. For example, l1 is the mean number of directly triggered
aftershocks during the time interval covered by short‐term
triggering, here of duration 1. It is therefore equal to
l1 = 1

5
!ABþ!CDþ!CEþ!DE

1 , the normalizing prefactor 15 being due
to the fact that 5 earthquakes (A–E) can a priori trigger other
earthquakes at short time scale, and the normalizing 1 being
the duration of the short time triggering interval. This gives
l1 = 0.367. Similarly, we obtain l2 = 0.144.
[15] These two steps are then iterated: with the updated l1

and l2 values, the new weights wij are computed, which in
turn allows to again update l1 and l2, and so on. After nine
iterations, both l1 and l2 become stable with a precision of
10−4 (see Figure 2). A convergence criterion can be used to

Figure 2. Values of l1 (top curves) and l2 (bottom curves) for the example of Figure 1. The three sets of
curves correspond to different starting values, as indicated on the graph. All starting values converge after
a few iterations to the same solution.
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automatically stop the iterations. We finally obtain that l1 =
0.515 and l2 = 0.095. Note that these are numbers of
earthquakes per unit time, hence, rates. The corresponding
weights are those indicated on Figure 1.
[16] This result is independent of the initial values of l1

and l2, as long as they are nonzeros (see Figure 2). This
makes the algorithm powerful, since it always converges to
the same solution whatever the arbitrarily chosen starting
values. The convergence is fast even for large sets of earth-
quakes (e.g., several minutes on a normal desktop PC for
several thousands of earthquakes). The only dependence is
on the discretization of the time axis and, in the full version of
the algorithm, of the magnitude and distance axes as well.
[17] We now detail and properly define the algorithm in

the general case. A complete summary of the method is
given in Appendix A.

2.3. Stochastic Models of Earthquake Occurrence

[18] Seismicity is modeled as a point process in time and
magnitude. Distance rij between earthquakes i and j is
computed as the distance from the fault of i to the hypo-
center of j. The data thus consist in a set {ti, mi} of earth-
quakes that occur at times ti and with magnitudes mi and that
are separated by distances rij. This set results from a Poisson
process in space and time, with expectation L ([x, x + dx],
[t, t + dt]) =

R xþ�x
x dx′

R tþ�t
t dt′ l(x′, t′), where l(x, t) is the

(positive) rate density, or intensity, at position x and time t.
Magnitudes are assumed to be independent of time and
position, and to follow an exponential (Gutenberg‐Richter)
law above threshold magnitude mc, P(m > M) = e−b(M−mc)

if M > mc, P(m > M) = 1 otherwise.
[19] Statistical models of seismicity aim at finding a

pertinent representation of the intensity l and its depen-
dence on time and position. Our understanding of earth-
quake interactions, i.e., the fact that earthquakes can trigger
one another, has prompted the construction of models in
which the intensity is conditioned by past earthquakes:
earthquake occurrence influence the subsequent seismic
activity, generally by increasing it locally for some period
of time (aftershocks). A generic linear model is then
l(x, t) = l0 +

P
i=ti<t

li(x, t), where l0 is a term modeling the

« background » forcing, which does not depend on past
earthquakes, and li(x, t) is the contribution of earthquake i on
the rate density at (subsequent) time t and position x. This
contribution is known as the « triggering kernel », i.e., the
intensity of triggering due to a past earthquake.
[20] Specific parameterized expressions of li(x, t) have

been proposed, typically of the form li(x, t) = l(ri(x), t − ti,
mi) where ri(x) is the distance of x to earthquake i. In gen-
eral, this distance is simply taken as the distance to the
epicenter or hypocenter of i, but here it will represent the
actual distance to the fault of i, i.e., the closest distance from
the fault of earthquake i to the hypocenter of j. This choice
has direct implications on the resulting statistics [cf. Marsan
and Lengliné, 2008, and Hainzl et al., 2008], as will be
discussed in section 5.1. Several studies have tested various
forms of li(x, t) that are decoupled in space and time, for
example, li(x, t) = Aeami (t + c − ti)

−p si (x), where A, a, c,
and p are parameters, and si is a parameterized spatial kernel
typically depending on magnitude mi [Zhuang et al., 2002,

2004; Console et al., 2003; Helmstetter et al., 2005]. While
the temporal dependence takes the traditional and ubiquitous
form of the Omori‐Utsu’s law, the main issue with such a
formulation comes from the spatial dependence, which is far
from being well known, to say the least. The possible
dependence of this spatial kernel on time is also generally
ignored in these models. It is therefore important to leave the
triggering kernel free, i.e., not to impose any a priori model.
This is central to the present study. Since we aim to study
how the distances between mainshocks and aftershocks are
distributed, it is essential not to impose any a priori model
for this distribution.

2.4. Model‐Independent Stochastic Declustering as an
Expectation‐Maximization (EM) Algorithm

[21] In the model‐independent stochastic declustering
(MISD) algorithm of Marsan and Lengliné [2008], seis-
micity is described as the following: an earthquake of
magnitude m in the magnitude interval m 2 [mi, mi+1]
triggers aftershocks with conditional intensity li(x, t) =P
j

P
k

lijk�(t 2 [tj, tj+1]) �(ri(x) 2 [rk, rk+1]), where lijk are

the unknowns (the triple indices denote magnitude i, time j,
and distance k), �(P) = 1 if proposition P is true, �(P) = 0
otherwise, and [tj, tj+1] and [rk, rk+1] are the discretization
intervals in time and distance. This formulation is equivalent
to a simple piecewise constant kernel. Background earth-
quakes occur with constant and uniform rate density l0.
MISD first requires to define the discretization intervals in
magnitude, time, and distance and then amounts to finding
the « best » rate densities lijk given the data. We here show
that this algorithm is in effect an EM algorithm [Dempster et
al., 1977]. The use of EM algorithms for inverting epidemic‐
type aftershock sequence (ETAS) parameters is described in
the study of Veen and Schoenberg [2008].
[22] The algorithm works by iterating the two steps in

sections 2.4.1 and 2.4.2.
2.4.1. E‐step
[23] Given a priori intensities lijk and l0, then, for all

earthquakes j, compute the probabilities (or weights) wij and
w0j that earthquake j is triggered by earthquake i or is a
background event, respectively. These probabilities are
defined as

!ij ¼
�i rij; tj
� �

�0 þ
P
k<j

�k rkj; tk
� �

and

!0j ¼ �0

�0 þ
P
k<j

�k rkj; tk
� �

and sum up to 1:

!0j þ
X
i<j

!ij ¼ 1:

2.4.2. M‐step
[24] Using these weights !, find the best set of lijk and l0.

This maximization step corresponds to finding the maxi-
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mum likelihood estimator (MLE) given the weights. The
log‐likelihood function unconditioned on the weights is

‘ ¼ �
Z

V

dx

Z

T

dt� x; tð Þ þ
X
i

ln� xi; tið Þ

and becomes, knowing the weights:

‘ !
� �

¼ �
X
ijk

ni�ijk�tj�Vk � �0T Vþ
X
ijk

nijk ln �ijk þ n0 ln�0

ð1Þ

(cf. Veen and Schoenberg [2008] for a derivation of this
result in the framework of ETAS models), where ni is the
number of earthquakes with magnitude in the interval [mi,
mi+1], n0 is the « number » of background earthquakes, nijk
is the « number » of earthquakes triggered by a magnitude i
earthquake that occurred t 2 [tj, tj+1] before it and at a dis-
tance r 2 [rk, rk+1], dtj = tj+1 − tj is the duration of time
interval j, dVk is the volume of the shell related to the dis-
tance interval k, and T and V are the total duration and
volume of the data set, respectively.
[25] The weights are here used to compute the « numbers »

nijk ¼
X

a2 mi ;miþ1½ �

X
b>a

!ab� tb � ta 2 tj; tjþ1

� �� �
� rab 2 rk ; rkþ1½ �ð Þ

ð2Þ

and n0 =
P
i
w0i. The MLE is simply given by

@�ijk ‘ !
� �

¼ 0 ) �ni�tj�Vik þ nijk
�ijk

¼ 0 ) �ijk ¼ nijk
ni�tj�Vik

ð3Þ

and

@�0‘ !
� �

¼ 0 ) �T V þ n0
�0

¼ 0 ) �0 ¼ n0
T V

: ð4Þ

Since we use distances to the fault (cf. Appendix B for the
computation of these distances) rather than hypocentral dis-
tances, dVk is not equal to 4

3p(rk+1
3 − rk

3). We will show in
section 3 that the algorithm effectively depends on the values
of dVk. We will explore two alternative ways: (1) dVk is
defined as the geometrical volume of the shell with distance
rk < r < rk+1 to the fault, averaged over all mainshocks in the
same magnitude bin. We limit these volumes to z = 0
(surface) and z = 20 km (base of the schizosphere). (2) dVk

is the number of unconditioned earthquakes in the
corresponding shell, averaged over all mainshocks. This
second way of defining dVk requires more explanations (see
section 3). At this stage, we only need to point out that dVk

depends in both cases on the magnitude bin [mi, mi+1], and
is therefore denoted as dVik hereinafter.

2.5. Advantage of an EM‐Approach to Estimating the
Conditional Intensity Values

[26] This EM algorithm allows for much simpler compu-
tations than with a classical MLE method, which is known to
suffer from practical drawbacks, at least in the case of ETAS
models [Veen and Schoenberg, 2008]. In particular, the
maximization step is computationally simple: the estimator of

equation (3) only requires summing up triggering weights, by
using equation (2). In contrast, a direct ML estimation would
use the log‐likelihood function of equation (1), which is here:
‘ = −

P
ijk

nilijkdtjdVk − l0TV +
P
a
ln(l0 +

P
ijk

nijk
(a)lijk), where the

second sum is on all earthquakes a, and nijk
(a) is the number

of earthquakes preceding a such that their conditional
intensity on a is lijk. Searching for this minimum involves

solving ∂lijk
‘ = 0 ⇒ −nidtjdVik +

P
a

n að Þ
ijk

�0þ
P
i0 j0k0

nðaÞ
i0 j0k0�i0 j0k0

= 0,

which effectively corresponds to a set of nonlinear equations,
a nontrivial task by any means.

3. Analysis

3.1. Data

[27] We analyze the earthquake catalog of Shearer et al.
[2005], either keeping all n = 72,367 magnitude m ≥ 2
earthquakes or only the n = 6190 earthquakes with m ≥ 3,
depending on the analysis. The algorithm requires to define
a n × n matrix ! for the interaction weights. A parallelized C
program was thus written for this analysis and run on 32
processors. Distances between earthquakes are computed as
the shortest distance from the fault of the first earthquake to
the hypocenter of the second earthquake (see Appendix B).
A correction factor is introduced to account for transients in
completeness magnitude (see Appendix C). The complete-
ness magnitude is mc = 2.3 for this data set, when considered
as a whole, and is therefore slightly greater than the mini-
mum magnitude of 2.0 used in some of the analyses. The
correction implemented in Appendix C however allows to
keep this minimum magnitude of 2.0 rather than cutting at
mc = 2.3. A convergence criterion of 1% is used for stopping
the EM algorithm.

3.2. Sensitivity on the Choice of Background Model

[28] It can be shown that the MISD algorithm with a
homogeneous background model (i.e., spatially constant
background rate l0) is ill defined: the inversion of the
triggering kernel and probabilities depend on the total vol-
ume V (see equation 4) of the analyzed region, which
is largely arbitrary (e.g., what is the volume of southern
California?). The homogeneity property must therefore be
relaxed. A simple approach is to assume the background to
depend on position but to be smooth at a (possibly spatially
variable) wavelength, as for example, proposed by Zhuang
et al. [2002, 2004]. Unfortunately, it can be shown that
the resulting inversion then depends on the smoothing scale,
which cannot be a priori and nonarbitrarily fixed. Another
alternative was investigated by Marsan and Lengliné
[2008], at the cost of a significantly more complex algo-
rithm. We here prefer to keep the algorithm at its simplest.
The modeling of the background seismicity is a delicate
issue, which will be examined in details in a further article.
[29] In order to measure the impact of the background

seismicity on the distribution of distances between main-
shocks and aftershocks, we run two versions of the method:
(1) by imposing a zero background l0 = 0 at all time and
position and (2) by imposing a homogeneous background
rate density of l0 = 10−3 earthquake per day per km3. The
probability of being a background earthquake is on average
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equal to 53% in the latter case, which can be considered as
an overestimation of the actual probability according to
previous studies [Helmstetter et al., 2005; Sornette and
Werner, 2005; Hainzl et al., 2006]. We therefore consider
that these two versions provide conservative lower and
upper bounds regarding to the influence of the background
term on the distance statistics. Kernel values that are the same
for the two runs are therefore insensitive to the background
model and will be considered as reliable.

3.3. Shell Volumes

[30] As already explained in section 2, the values of dVik

are particularly important in this method. They are used to
normalize the rate densities in equation (3) and thus directly
impact the results. We define rij, the distance from earth-
quake i to earthquake j, as the distance from the fault of i to
the hypocenter of j. We use two distinct sets of shell vo-
lumes in the following calculations.
[31] The first set simply corresponds to the mean geo-

metrical (Euclidean) volumes of the shells surrounding the
faults of mi ≤ m < mi+1 earthquakes. They increase with
magnitude since the faults then become bigger. We limit the
depth of the shells to 20 km, corresponding to the base of
the schizosphere. Table 1 details these volumes.
[32] The second set of dVik values is dictated by the fact

that the damage zone and fault distribution surrounding the
mainshock faults are not densely populating the shell vo-
lumes. In fact, a fractal distribution would imply that dVik

should grow with distance interval [rk, rk+1] more slowly
than (rk+1

3 − rk
3). The potential for a mainshock to trigger

aftershocks in such a distance interval is thus not directly
proportional to the geometrical volume of this shell but
rather to the number of faults that are located in it. In order
to « count » this number, we use the probabilities of being
unconditioned to the mainshock: the number of faults within
distance [rk, rk+1] on which earthquake i can act upon is
equal to the sum of the earthquakes within this shell that are
unconditioned to the occurrence of i. We thus define this
second set of dVik values in the following way: (1) for all ni
earthquakes (with index a) in the magnitude bin [mi, mi+1],
we search for the earthquakes located within rk and rk+1
of the fault. (2) We then sum up their probabilities of
being unconditioned on earthquakes a; for any earthquake
b, this corresponds to 1 − wab − w′ab (see section 1).
(3) These probabilities are then averaged over all ni
earthquakes a, and this final number is used as dVik: dVik =
1
ni

P
a=ma2 mi;miþ1½ �

P
b=rab2 rk ;rkþ1½ �

1 − wab − w′ab. Note that dVik is

defined up to an arbitrary multiplicative constant.
[33] To compute dVik this way, we first need to know the

probabilities wij, which themselves require the knowledge of

dVik. We thus proceed by initializing dVik to nonzero values,
run the algorithm until convergence is reached, and use the
obtained wij to update the values of dVik. This is reiterated
until these values do not change any longer. We have tested
several initial conditions for dVik: (1) the values of Table 1,
(2) the spherical shell volumes dVik = 4

3p(rk+1
3 − rk

3), and (3)
dVik = 1. We end up in each case with the same final values
of dVik , as shown in Figure 3 and in Table 2. The dVik values
computed this way are relatively similar to the values that
would be obtained by counting the preceding, rather than
unconditioned, earthquakes. The preceding earthquakes are
of course unconditioned.

3.4. Example of the Landers Earthquake

[34] We illustrate the results of this analysis by examining
the relationship of m ≥ 3 earthquakes to the 1992, Mw7.3
Landers earthquake. The dVik values are those estimated by
counting unconditioned earthquakes. A zero background is
assumed: l0 = 0. Figure 4a shows the time evolution of the
direct aftershocks, of all (i.e., direct and indirect) after-
shocks, and of the earthquakes unconditioned to Landers
(i.e., earthquakes that are neither direct nor indirect after-
shocks). The cumulative numbers are obtained by adding
the probabilities wL, j (for direct aftershocks) and w′L, j (for
indirect aftershocks), where L refers to Landers. The black
line (unconditioned earthquakes) therefore corresponds to
the seismicity “declustered” from the influence of Landers.
It is observed to undergo a slow down at about ∼2000
days, hence, ∼3 years prior to Landers, and then to keep a
relatively stationary trend. We obtain

P
j

wL, j = 569.48

direct aftershocks, which are spatially distributed as shown
in Figure 4b, and

P
j

wL, j + w′L, j = 2677.89 direct and

indirect aftershocks, as shown in Figure 4c. The direct
aftershocks only last for about a year: 94% of them occur
during the first year. They are concentrated along the main
rupture and extend very little outside this zone, except
toward the North, which suggests dynamic triggering [Kilb
et al., 2000; Gomberg et al., 2003]. In comparison, the
indirect aftershocks last much longer: the sequence is not
over yet by the end of the data set, more than 10 years
after the mainshock. They also act to extend the influence
of the mainshock, up to a much larger zone, in agreement
with similar findings by Ziv [2006]. For example, the
earthquakes located in the rupture zones of the Big Bear
and Hector Mine earthquakes are significantly conditioned
on Landers (with an average probability greater than 95%
for Big Bear and between 40% and 60% for Hector Mine).
Landers promoted these two large shocks, and their after-
shocks are therefore likely to be aftershocks of previous
aftershocks of Landers. This is extremely likely for the Big

Table 1. Volumes of the Shells, Function of the Magnitude, and Outer Radiusa

1 km 2 km 4 km 8 km 16 km 32 km 64 km 128 km 256 km 512 km

2 ≤ m < 3 5.22 31.5 233 1.67e+03 1.05e+04 4.82e+04 1.93e+05 7.73e+05 3.09e+06 1.24e+07
3 ≤ m < 4 9.16 40.8 263 1.74e+03 1.05e+04 4.84e+04 1.94e+05 7.74e+05 3.09e+06 1.24e+07
4 ≤ m < 5 38.1 93.4 429 2.25e+03 1.17e+04 5.01e+04 1.97e+05 7.80e+05 3.10e+06 1.24e+07
5 ≤ m < 6 225 337 1.06e+03 3.87e+03 1.48e+04 5.46e+04 2.06e+05 7.97e+05 3.14e+06 1.24e+07
26 ≤ m < 7 7.71e+02 1.49e+03 3.13e+03 8.04e+03 2.31e+04 7.03e+04 2.37e+05 8.60e+05 3.26e+06 1.27e+07
m ≥ 7 1.49e+03 2.84e+03 5.41e+03 1.25e+04 3.13e+04 8.61e+04 2.70e+05 9.27e+05 3.40e+06 1.27e+07

aVolumes dVik (in km3) of the shells [rk, rk+1], function of the magnitude m, and outer radius rk+1. The first shell is from 0 to 1 km, the second from
1 to 2 km, and so on.
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Bear aftershocks, as could be naturally expected. The
probability of being conditioned on Landers is lower for
the Hector Mine aftershocks but is far from negligible: this
sequence is therefore possibly promoted by the Landers
mainshock and/or its aftershocks, as already hypothesized
by Felzer et al. [2002] and Ziv [2006].

4. Distances From Main Fault to Direct
Aftershocks

4.1. Estimating the Linear Density

[35] The kernel values lijk give the rate densities of
direct aftershocks following mainshocks of magnitude mi ≤
m < mi+1, after a delay tj ≤ t < tj+1, and at a distance rk ≤ r <
rk+1. To compare our results to those of Felzer and Brodsky
[2006] and Richards‐Dinger et al. (unpublished), we com-

pute the linear density, still for the same intervals of main-
shock magnitude and time delays, as fij(rk ≤ r < rk+1) =
lijk �Vik

rkþ1�rk
. This is done for the four runs of our MISD

algorithm, corresponding to the four combinations of (1) dVik

computed as geometrical Euclidean shell volumes, or as
the number of unconditioned earthquakes in these volumes,
and (2) l0 = 0 or 10−3 per km3 and day, which for both dVik

sets gives a 53% proportion of background earthquakes (see
section 3). For each fij(rk ≤ r < rk+1) density value, we
compute from these four values the mean and the standard
deviation, and only consider as robust estimates the mean
values greater than the corresponding standard deviation,
hence, with less than 100% relative uncertainty. Power law
best fits are then estimated, only using the robust values. We
also only display the robust values on the corresponding
graphs (Figures 5 and 6). This implies that the power law

Table 2. Values of the Shells, Function of the Magnitude, and Outer Radiusa

1 km 2 km 4 km 8 km 16 km 32 km 64 km 128 km 256 km 512 km

2 ≤ m < 3 17.6 45.8 161 493 1.04e+03 2.93e+03 7.75e+03 7.85e+03 7.80e+03 7.91e+03
3 ≤ m < 4 16.6 46.2 163 503 1.08e+03 2.85e+03 7.35e+03 1.30e+04 3.11e+04 1.59e+04
4 ≤ m < 5 64.9 84.6 221 608 1.20e+03 3.30e+03 8.18e+03 1.31e+04 3.15e+04 1.35e+04
5 ≤ m < 6 144 141 312 645 1.32e+03 2.96e+03 7.54e+03 1.08e+04 3.46e+04 1.22e+04
26 ≤ m < 7 243 383 466 631 816 4.30e+03 7.85e+03 1.23e+04 2.78e+04 8.25e+03
m ≥ 7 155 107 169 237 900 7.36e+03 8.53e+03 9.69e+03 2.19e+04 1.81e+03

aValues dVik (in number of unconditioned earthquakes) of the shells[rk, rk+1], function of the magnitude m, and outer radius rk+1.

Figure 3. Cumulative shell volumes dV, for the two sets as explained in the text. Only the two most
extreme magnitude bins for the initial earthquake are shown: 2 ≤ m < 3 (triangles) and m ≥ 7 (squares).
Dashed lines denotes Euclidean geometrical volumes. Continuous lines denotes counting the number of
uncorrelated earthquakes in the shell.
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Figure 4. (top) Time series of the direct and of all (direct and indirect) m ≥ 3 aftershocks of Landers,
which occurs on day 3101 (vertical black line). (center) map showing the probability wL, j of being a direct
aftershock of Landers. (bottom) same as center graph but for the probability wL, j + w′L, j of being condi-
tioned on Landers. The color corresponds to the probability, as given by the color scale bar.
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trends could possibly extend to greater distances, althoughwe
cannot validate this.
[36] Figures 5 and 6 show the linear density for 3 ≤ m < 4

and 5 ≤ m < 6, respectively, and for two time intervals (first
15 min, and 12–24 h after the mainshock). Robust estimates
are found for distances up to 16 or 32 km, which is more than
20 times the rupture length of 3 ≤ m < 4 earthquakes, and a
few times this of 5 ≤ m < 6 earthquakes. The dispersion in the
four runs is, by far, mostly caused by changing the back-
ground term l0. This dispersion increases with distance to the
main fault, as linking aftershocks to mainshocks become more
and more sensitive to the parameterization of the algorithm.
[37] In order to explore a greater range of mainshock

magnitudes, we also compute the linear density for the
Landers earthquake (m = 7.3), for the 0–100 days interval
(see Figure 7). The linear density for the direct aftershocks is
compared to the linear density of all the earthquakes fol-
lowing Landers in the first 100 days. Clearly, and as ex-
pected, the direct aftershocks are more clustered close to the

main fault. We obtain g = 1.66 ± 0.08, when fitting over
1–100 km. At distances greater than 10 km, roughly 10%
only of the earthquakes occurring in the first 100 days can be
considered as direct aftershocks of Landers, the remaining
90% being mostly aftershocks of previous aftershocks, i.e.,
indirect aftershocks. The importance of multiple interactions
at even larger distances was already advocated by Ziv [2006].

4.2. Comparison With the Analysis of Felzer and
Brodsky [2006]

[38] In this analysis, the uncertainty on the linear density
is estimated by exploring several different ways for com-
puting the triggering kernels. Similarly, we test and compare
the results of Felzer and Brodsky [2006] to ours by
performing their analysis with different sets of (declustering)
parameters. We recall that, with their approach, an earth-
quake is not considered as a mainshock if there exists a
larger earthquake within a radius L that occurred less than T1
before or T2 after it. For each of the two time intervals

Figure 5. Linear density for 3 ≤ m < 4 mainshocks and m ≥ 2 aftershocks, for two time intervals as indi-
cated on the graphs. Thick crosses indicate our method. Thin circles indicate using the approach modified
from the study of Felzer and Brodsky [2006]. The plotted values and the error bars are the means and
standard deviations of the logarithm of the linear density values. We offset the circles for visual purposes.
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(0–15 min and 12–24 h after the mainshock), we define 5 sets
of {L, T1, T2} parameters (see Table 3), paying attention to
the requirement that T1 ≫ T2 > 15 min or 24 h. For each of
these sets, we count the number n of earthquakes occurring
within the considered time window (i.e., first 15 min, and
12–24 h after the mainshock) and sort them by distance
intervals. We further modify the analysis of Felzer and
Brodsky [2006] by accounting for background seismicity:
we count the number of earthquakes occurring in time
intervals with similar durations (15 min or 12 h) but taken
at random, excluding the 100 days before and 100 days
after the mainshock. We then estimate the rate change dl
corresponding to the rate of aftershocks as the mean of the
positively defined random variable X with probability

density fX(x) = A
R1
0

dm f0 (m) f (m + x), where f0(m) is the

probability density of the background rate m, f (m + x) is
the probability density of the rate of posterior earthquakes,
equal to the background rate m plus the aftershock rate x,

and A is a normalizing constant such that
R1
0

dx fX(x) = 1.

[39] The densities f0 and f are constructed using a Poisson
law [Marsan and Nalbant, 2005]. The linear density for the
distance interval rk ≤ r < rk+1 is then estimated as X /(rk+1 −
rk). The computation of the background density is per-
formed independently for each {L, T1, T2} set. We finally
compute the mean and the standard deviation from the five
estimates and plot them on Figures 5 and 6. As previously,
we only use those values for which the standard deviation is
less than the mean (relative error on the true value, not its
logarithm, less than 100%).
[40] For the first time window (less than 15 min after the

mainshock), the two methods give similar results (see
Figure 5, top graph). This means that the two methods
agree on which pairs can be considered as mainshock/
aftershock. At this short time scale, the causal relationship is
relatively obvious.We find that the linear density can be fitted
with a power law r−g with exponent g = 1.76 ± 0.35 (our
method, fitted over 0–16 km) and g = 1.62 ± 0.17 (method
modified from Felzer and Brodsky [2006], fitted over 0–
32 km). We will however show in section 5.2 that this decay

Figure 6. Same as in Figure 5 but for 5 ≤ m < 6 mainshocks. The error bar for the first distance interval
(0–1 km) is under estimated: the distance to a 5 ≤ m < 6 rupture is likely to be badly resolved in this
interval.
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can be reproduced by a static stress model, in opposition to
the dynamic stress model of Felzer and Brodsky [2006].
[41] Looking further ahead in time (12–24 h after the

mainshock), the two methods give distinct results, and the
uncertainties increase significantly (Figure 5, bottom graph).
The method modified from Felzer and Brodsky [2006]
overestimates the linear density at large distances, as com-
pared to our method: too many mainshock‐aftershock pairs
are found at long time intervals and large distances to themain
fault. A similar conclusion regarding to this overestimation
has been reached by Richards‐Dinger et al. (unpublished). It
can be either due to two effects: (1) “mainshock” A and
“aftershock” B are actually both aftershocks of a common,
previous mainshock C, i.e., C→A and C→B; or (2) “after-
shock” B is actually triggered by a previous aftershock C of
mainshock A, i.e., A→C→B. Our method accounts for
these two possibilities and, hence, results in a lower esti-
mate. We find that g = 1.97 ± 1.11 (fitted over 0–16 km),
while g = 1.43 ± 0.33 as given using the method modified
from the study of Felzer and Brodsky [2006], fitted over
0–32 km. The large uncertainty (caused by the large error
bars on the linear density) shows that deciphering the causal
chain of triggering is not straightforward at these time and
spatial scales.
[42] Similar conclusions are reached when analyzing

larger mainshocks, as shown in Figure 6 for 5 ≤ m < 6
mainshocks. The agreement between our method and the
analysis modified from the study of Felzer and Brodsky
[2006] is good at short time scales (first 15 min) when
there is a greater chance to find a causal connection between
the two earthquakes. We obtain g = 1.94 ± 0.31 with our

method, while the second analysis gives g = 1.67 ± 0.04,
both fitted over 0–32 km.
[43] For these mainshocks also, the two methods disagree

at longer times (12–24 h), the second method again over-
estimating the number of aftershocks. We obtain g = 1.87 ±
0.61 with our method, fitted over 0–16 km, while the second
analysis gives g = 1.61 ± 0.06, fitted over 0–32 km.

5. Discussion

5.1. Limits of the Method and Uncertainties

[44] The use of a stochastic model and inversion to esti-
mate the probability that an earthquake is an aftershock of
another earthquake is required to avoid arbitrary selection
rules, which will always impact the results. The method
proposed here is, so far, the less prone to arbitrary choices; it
is thus an improvement of previous studies on mainshock‐
aftershock distances distribution. However, two thorny issues
can still be identified.

Figure 7. Linear densities of the direct aftershocks of the Landers earthquake and all earthquakes in the
first 100 days after Landers. The dashed line gives a power law exponent of −1.66, when fitted in the 1–
100 km range.

Table 3. Parameters Used for Selecting Mainshocks, Following
the Treatment of Felzer and Brodsky [2006]

Aftershocks Within 0–15 min Aftershocks Within 12–24 h

L (km) T1 (days) T2 (days) L (km) T1 (days) T2 (days)

100 3 0.5 100 30 2
200 6 1 200 60 4
50 1.5 0.25 50 15 1
200 60 1 200 200 6
500 6 1 500 30 2
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[45] First, it is important to use distances to the fault rather
than hypocentral distances when optimizing stochastic
models of seismicity [Hainzl et al., 2008]. In particular,
Marsan and Lengliné [2008] showed that the triggering
caused by large mainshocks is underestimated if considering
hypocentral distances. Indeed, the distances between main-
shock and aftershocks can only increase if using hypocentral
distances instead of distances to the rupture; more im-
portantly, the stronger this effect for large mainshocks,
hence, a 30% decrease in the productivity exponent for
direct triggering, as evidenced by Marsan and Lengliné
[2008] using the same data set as in the present study.
[46] As a result, we face the problem of defining the shell

volumes (dV, see section 3). Using geometrical Euclidean
volumes implies that the biggest shocks have relatively little
impact on the seismicity dynamics, to an extent that seems
unrealistic. We have therefore proposed an alternative way
of computing the dV values that gives seemingly acceptable
results in terms of the triggering kernels. We emphasize that
this issue is not strictly related to our method: the inversion
of ETAS model parameters would also suffer the same
problem if using distance to faults. This is therefore an issue
that is general to all stochastic declustering methods.
[47] Second, the choice of a background model also

strongly impacts the inversion. The smoothing method by
Zhuang et al. [2002, 2004] depends on two arbitrary para-
meters, which possibly can be reduced to just one
(smoothing wavelength). However, the latter is still arbi-
trary. A simple argument would be to set it to the location
error estimate. However, this is not a robust choice: if, in the
future, a better localized earthquake catalogue is analyzed,
then this wavelength would need to be made shorter, auto-
matically resulting in a greater proportion of background
events. Alternative solutions must then be thought of, that
would reduce this lack of robustness to an acceptable level.
Being aware of this problem, we have here adopted the
strategy of upper and lower bounding our statistics by run-
ning two versions of the algorithm, which overestimates and
underestimates the importance of background seismicity.
[48] As evidenced by the error bars in Figures 5 and 6, this

strategy leads to large uncertainties. In this analysis, the
number of earthquakes is very large (>70,000), and the
uncertainties are therefore not due to limited sampling but
rather to the limits discussed above. Despite the recent
development of new methods, we are still struggling with
this difficult inverse problem.

5.2. Mainshock‐Aftershock Distances are Coherent
With Static Stress Changes

[49] The decay of the distribution with distance is rela-
tively steep (compare Figures 5 and 6). The exponent g as
estimated by our method typically ranges from 1.70 to 2.10,
accounting for the large uncertainties. The estimates using
the method modified from the study of Felzer and Brodsky
[2006], i.e., after removing the background earthquakes,
yield a more restricted interval of about 1.60–1.70. As
already explained, the difference between the two methods
is likely to be due to an overestimation in the latter analysis
of the number of aftershocks, some of them actually being
indirect aftershocks, especially when looking at long time
scales. The null hypothesis that the exponent g is indepen-

dent of the magnitude of the mainshock cannot be rejected
given our results.
[50] We model the triggering of aftershocks with a static

stress model coupled with rate and state friction. We focus
on the case of a generic m = 3 earthquake, in order to
compare the results of the model with the estimated density
shown in Figure 5. The rupture is a square dislocation of
length L = 400 m, and u = 1 cm slip. The stress tensor is
computed using the Fortran program of Gomberg and Ellis
[1994], that uses the equations by Okada [1992]. The
rupture is modeled at great depth, in order to suppress the
effects due to the free surface. Young’s modulus is equal
to 70 GPa, Poisson’s coefficient is 0.25, and the static
friction coefficient is 0.4. We compute the Coulomb static
stress distribution for target faults located at distance R1 <
r < R2 from the rupture, keeping their focal mechanisms
identical to the one of the mainshock (same strike, dip, and
rake angles). We show in Figure 8 the resulting means and
standard deviations of this stress change, versus distance. The
variability of the stress values within a given shell is very
high; the standard deviation is typically 7 times the absolute
value of the mean, on average. This is due to the random
locations of the target faults within the shell. The near‐
field (r < 400 m) corresponds to a stress shadow (i.e., the
stress change is negative on average), as expected since the
target faults are parallel to the causative fault. However,
since the stress is very heterogeneous, concentrations of
positive stress changes will control the evolution of seis-
micity at short time scales, resulting in strong aftershock
triggering in this stress shadow [Helmstetter and Shaw,
2006; Marsan, 2006], at least for the time windows we
are interested in (typically less than 1 day). The stress
change decaying as r−3, it becomes quickly very small, i.e.,
less than 100 Pa for r > 3 km. However, as we will see,
even this very small stress change, because it affects large
volumes, can trigger aftershocks, in coherence with what
we observe in our analysis.
[51] The rate‐and‐state friction model [Dieterich, 1994]

is then used to translate the stress changes into aftershock
density. To do so, we compute for a given shell R1 < r <
R2 the mean number of aftershock occurrences in a time
interval of duration t after the mainshock, as ntrig = m(R1,
R2) × ta [ln(et/ta + e−t/As − 1) + t/As − t/ta], where m(R1,
R2) is the background rate for this shell, ta is a parameter
related to the nucleation cycle duration, t are the stress
changes for this shell, and As a parameter typically in the
range of 0.01–0.1 MPa. Since only the t/ta ratio matters,
we take t/ta = 10−5, which, for, e.g., ta = 10 years, cor-
responds to t ∼ 1 h. As already discussed in section 3.3,
we use for the background rate the rate of unconditioned
earthquakes (compare Table 2). This rate grows as r1.65 at
short distances, for 3 ≤ m < 4 mainshocks. We therefore
take m(R1, R2) proportional to R2

1.65 − R1
1.65. The density for

R1 < r < R2 is then computed as the averaged ntrig, nor-
malized by R2 − R1 (linear density); it is defined up to a
multiplicative factor, which does not depend on distance.
Therefore, only its relative change with distance is inves-
tigated. Figure 9 displays this linear density, for 3 values
ofAs in the 0.01–0.1MPa interval. In the far field (0.7–15 km
away from the fault), a r−2.2 power law decay is observed.
This distance interval is similar to the one of Figure 5a. Its
lower cutoff is conditioned by the rupture length (400m). The
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exponent predicted by the model is slightly greater than the
g = 1.76 ± 0.35 value of Figure 5a, although it is not far
off the 1.70–2.10 interval typically observed using our
method. The choice of As influences this exponent, which
is therefore not well constrained by the model, at least in
the near‐field (r < 0.7 km).
[52] We conclude that static stress triggering, even at dis-

tances equal to several times the rupture length of a 3 ≤
m < 4 mainshock, can explain the observed triggering. On
the basis of a similar model, the same conclusion is reached
by Hainzl et al. [2009, 2010], in the particular case of the
Landers earthquake (also studied by Richards‐Dinger et al.,
unpublished): the distance distribution for the direct after-
shocks of Landers is well fitted by a static stress and rate‐and‐
state friction model, assuming that the receiver faults have, at
any location, all possible orientations [Hainzl et al., 2010].
[53] The question remains as whether tiny stress changes

(<100 Pa) can produce a noticeable change in seismicity at
distances greater than ∼3 km. In comparison, tidal stress
changes are larger but do not act permanently as their
periodicity implies both loading and unloading of faults. It is
therefore difficult to compare these two phenomena. Ana-
lyzing a small set of intermediate‐sized shocks, Ziv and
Rubin [2000] argued that static stress changes less than
1 kPa could affect the occurrence of earthquakes. Unfortu-
nately, similar conclusions cannot be met when studying
aftershock sequences [e.g., Hardebeck et al., 1998], mainly
owing to the difficulty of separating aftershocks from
background seismicity. Our study however suggests that this
separation can be done objectively and that the power law
decay of earthquake triggering with distance does not have

any apparent cutoff scale. Therefore, static stress triggering
could indeed exist even for very small stress changes, the
very large volumes affected by these changes partly coun-
terbalancing their weakness.

6. Conclusions

[54] The spatial pattern of aftershock locations relative to
the main fault is likely to yield important information
regarding to the processes involved in earthquake triggering.
One way of studying this spatial pattern is by analyzing the
distribution of distances between mainshocks and after-
shocks and to investigate which triggering model is able to
reproduce this distribution. However, this requires to select
only actual aftershocks rather than indirect aftershocks or
even uncorrelated earthquakes.
[55] In the last few years, new methods have been pro-

posed that can statistically estimate the relationships
between any two earthquakes A and B, in particular, by
computing the probability that A could have triggered B.
Alternatively, this probability can be seen as the influence
that A had on the occurrence of B, assuming that B results
from the whole seismicity history rather than just one single
triggering earthquake.
[56] These methods rely on various hypotheses (linearity,

in particular), which, given our present knowledge on earth-
quake processes, are difficult to validate or refute. The MISD
algorithm described here is based on a minimal set of such
hypotheses. Despite this minimal a priori belief, we show that
its results significantly depend on the choice of normalizing
shell volumes. Testing several reasonable choices for these

Figure 8. Mean and standard deviation of the Coulomb static stress change distribution for shell vo-
lumes R1 < r < R2 away from a m = 3 mainshock. The vertical lines show the [R1, R2] intervals. We dis-
tinguish between the positive (square) and the negative (inverted triangle) mean stress changes.
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volume values, as well as different estimates for the back-
ground seismicity, we end up with uncertainties that are
significant at large distances (typically greater than 20 km
away from the main fault) and long time scales (typically
greater than 1 day past the mainshock occurrence) for small to
intermediate mainshocks, forcing us to only investigate small
temporal and spatial scales.
[57] We find that the distance distribution decays ac-

cording to a power law of the distance, with an exponent
that typically lies in the 1.70–2.10 interval. This is true for
small (3 ≤ m < 4) and intermediate (5 ≤ m < 6) mainshocks.
For the specific case of the m = 7.3 Landers earthquake, we
obtain a decay best described by an exponent of 1.66 ± 0.08
for the 0–100 days time interval, hence, coherent with this
1.70–2.10 range (see Figure 8). These results suggest that
the mainshock magnitude has little influence on the dis-
tribution, as long as distances to the main fault rather than
hypocenter or epicenter distances are considered.
[58] Although the observed triggering is significant even

at many (up to more than 10, for small mainshocks) rupture
lengths, a static stress and rate‐and‐state friction model
yields a linear density that is coherent with the observation.
Triggering by static stress cannot therefore be discounted on
the basis of these observations: the distribution of main-
shock‐aftershock distances cannot help discriminating

between static and dynamic stress triggering, at least with
our present know‐how concerning the distinction between
direct and indirect aftershocks.

Appendix A: The MISD Algorithm

[59] We recap in this Appendix how the MISD algorithm
works. We analyze a set of n earthquakes, with occurrence
times ti, magnitudes mi, and hypocenter positions xi. The
relative distance rij between two earthquakes i and j needs
not to be the hypocentral distance. It can for example be the
distance of the second earthquake hypocenter to the fault of
the first earthquake. The total duration of the data set is T,
and it covers a volume V.

A1. Discretization

[60] Prior to the analysis, a set of discrete intervals in time
[tj, tj+1] (duration dtj = tj+1 − tj), distance [rk, rk+1] and
magnitude [mi, mi+1] must be defined. The distance bins are
related to shell volumes dVik (see section 3.3). A trade‐off
must be found between too few intervals, hence, too great a
smoothing of the kernel values, and too many intervals,
hence, too few data points falling in these intervals, resulting
in too large an error on the kernel estimates.

Figure 9. Aftershock linear density following a m = 3 mainshock, inferred from the stress distribution of
Figure 8, using the rate‐and‐state friction model and a time interval of about 1 h after the mainshock. The
density is defined up to an arbitrary multiplicative factor. Three values for the As parameter were tested.
The straight line shows a r−2.2 decay.
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A2. Algorithm

[61] 1. Define a probability n × n matrix ! such that
wij ≥ 0 for all i < j, wij = 0 for i ≥ j, as well as a
background probability vector w0j ≥ 0 for all j, such that
they sum up to 1: w0j +

P
i<j

wij = 1, for all j. The

starting values can be arbitrary, as long as the choice is not
cumbersome (e.g., filled with too many zeros). In this
work, we chose wij(i < j) = w0j = 1

N þ j�1.

[62] 2. In the M‐step, compute nijk =
P

a2½mi;miþ1�

P
b>a

wab� (tb −

ta 2 [tj, tj+1]) � (rab 2 [rk, rk+1]), ni =
P
a
� (ma 2 [mi, mi+1]) the

number of earthquakes with magnitude in magnitude interval
[mi, mi+1], and n0 =

P
j
w0j. Then, compute lijk =

nijk
ni�tj�Vik

and

l0 = n0
T V the kernel and background MLE given the proba-

bilities wij and w0j.
[63] 3. In the E‐step, recompute the probabilities using the

kernel values just estimated in step 2, with wij =
�iðrij;tjÞ

�0þ
P
k<j

�kðrkj;tkÞ and w0j =
�0

�0þ
P
k<j

�k ðrkj;tk Þ, and normalize them so

that w0j +
P
i<j
wij = 1 for all j. The kernel values li(rij, tj)

entering the above equations correspond to labc of step 2,
with a as the magnitude interval corresponding to mi, b as
the time interval corresponding to tj − ti, and c as the dis-
tance interval corresponding to rij.
[64] 4. Iterate steps 2 and 3 until convergence is reached.

A convergence criterion must be defined. In this study, we
stop the algorithm when an iteration of steps 2 and 3 does
not modify any of the logarithm of the kernel values by
more than a given threshold, taken to be either 1% or 0.1%
depending on the run.
[65] In the present study, we specifically imposed the

background rate density l0, which is therefore not updated
in step 2.

Appendix B: Computing Closest Distances
to the Fault

[66] The distance rij between earthquake i and earthquake
j is taken to be the shortest distance from the fault plane of
earthquake i to the hypocenter of earthquake j, or equal to
the interhypocentral distance if the latter is shorter than the
former. For all m ≥ 6 earthquakes (8 earthquakes), the fault
plane geometry is taken from rupture models deduced from
inversion of seismic and geodetic data. All source models
are provided by Martin Mai’s finite source rupture model
database (www.seismo.ethz.ch/srcmod). We assumed the
same fault plane for the Hector Mine mainshock and its
biggest (m = 6.7) recorded aftershock. For 4 ≤ m < 6
earthquakes, the fault plane is computed in two different
ways depending on the existence of an available focal
mechanism:
[67] 1. We test whether a focal mechanism is available in

the earthquake focal mechanisms database available at the
Southern California Earthquake Center [Hardebeck and
Shearer, 2003]. If the considered mainshock has a reported
mechanism in the database, we first selected earthquakes
occurring within 100 days following the mainshock and with
hypocentral distances less than twice the length d = 100.5(m−4)

in kilometers. The fault plane is then defined as the nodal

plane passing through the mainshock and minimizing the
distances, in the least square sense, to all the selected earth-
quakes. Because rupture on the fault plane can be unilateral or
bilateral, the center of the fault plane is chosen as the mean
position of all the selected earthquakes, instead of the hypo-
center of the mainshock. The size of the (square) fault plane
is defined by its half‐length d as defined above.
[68] 2. If no mechanism exists for the considered main-

shock, we repeat the procedure described above but instead
of testing only two planes (the two nodal planes), we test all
possible planes discretized every 1° in dip and azimuth.
[69] For all the other earthquakes (m < 4), we simply used

hypocentral distances as the fault plane length becomes
small compared to the first distance bin used.

Appendix C: Correcting Transient Changes
in Completeness Magnitude

[70] It is well known that the completeness magnitude mc

systematically goes up by several units immediately after a
very large mainshock. This is due to the mainshock rupture
itself, its coda waves, and the very high rate of aftershocks
in the minutes to hours after the end of the coda, which all
swamp the seismic signal and mask intermediate‐size
aftershocks that would normally have been detected by the
network. In order to account and correct for this effect,
which will mostly affect the triggering kernel for large‐
magnitude mainshocks and at short time scales, we adopt
the approach of Peng et al. [2007]: (1) a completeness
magnitude mc and b value b are estimated globally for the
whole catalogue; (2) assuming that the b value stays con-
stant through time, the transients fluctuations mc(t) of mc can
be computed by mc(t) = m(t) − (1/b ln 10), where m(t) is the
mean magnitude computed over the Ne earthquakes closest
to time t; (3) an earthquake that occurs at time t thus « sees »
the completeness magnitude mc(t) and, therefore, counts as
n(t) = 10b[mc(t)−mc] earthquakes instead of just 1. Practically,
this means that the kernel MLE computed during the M step
uses the revised « numbers » nijk =

P
a2½mi;miþ1�

P
b>a

wab n(tb) �(tb −

ta 2 [tj, tj+1]) � (rab 2 [rk, rk+1]) and n0 =
P
j
w0j n(tj).

[71] This method unfortunately depends on the smoothing
parameter Ne. In this study, we used Ne = 10. Larger values
(up to 100) of this parameter were tested but resulted in a
greater truncation of the kernel at large magnitude and short
time scales.
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