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S U M M A R Y
The microtremor seismic method using spatial autocorrelation (SPAC) processing is a useful
tool for estimating the structure of subsurface layers and the shear wave velocities of sediments.
This paper improves upon the well-known ‘Modified SPAC’ (MSPAC) method, which extends
the SPAC formulae for discrete and nearly continuous circular arrays to handle arrays with
regular and irregular azimuthal spacing. For finite circular arrays, extended MSPAC (EMSPAC)
also takes into account the discrete character of the array, which has been inspired by the works
of Okada. Also a new SPAC coefficient is proposed for a nearly continuous array. EMSPAC is
applied to real data collected using a seven-station array, and its averaged SPAC coefficients
and dispersion curves are compared to those obtained using MSPAC.

Key words: Spatial analysis; Surface waves and free oscillations; Site effects.

1 I N T RO D U C T I O N

Array measurements of seismic microtremors or ambient noise are
currently employed as an easy and low-cost procedure for soil pro-
filing (e.g. Okada 2003; Apostolidis et al. 2004; Morikawa et al.
2004). These methods determine the physical properties and struc-
ture of the crust by timing the propagation of natural vibrations.
Furthermore, array measurements are less expensive than invasive
methods such as boreholes and standard penetration tests (SPT)
(Garcı́a-Jerez et al. 2008).

The two most popular microtremor processing techniques are
frequency–wavenumber (F–K, Capon 1969; Lacoss et al. 1969) and
spatial autocorrelation (SPAC, Aki 1957; Asten 1976). The SPAC
method, which generally employs a circular array of stations and
one central station, permits an in-depth understanding of the tem-
poral and spatial spectra of seismic waves. Nowadays, it is widely
used to estimate the structure of subsurface layers and the shear
wave velocities of sediments (Okada et al. 1990; Matsuoka et al.
1996; Kudo et al. 2002; Okada 2003). In the SPAC method, the dis-
persion curves (phase velocity versus frequency) of surface waves
are deduced by analysing the normalized correlations between mi-
crotremors recorded at different stations. The dispersion curves are
then used to characterize the structure of the medium. The method
is based on a statistical analysis of the observed signal, which is
assumed to be stationary and ergodic in time and space (see Bettig
et al. 2001).

The original mathematical model proposed by Aki (1957) and
Asten (1976) posits an infinite number of stations along the circum-
ference of a circle, and one station in the centre. Many subsequent

studies are based on their fundamental theory (e.g. Okada et al.
1990; Matsuoka et al. 1996; Kudo et al. 2002; Okada 2003), but
use a finite number of stations. In addition, some authors have
modified and extended the traditional SPAC technique. Bettig et al.
(2001) revised the SPAC technique to deal with irregular arrays,
naming the result modified spatial autocorrelation (MSPAC). They
paid special attention to the distribution of station azimuths while
considering the correlations between each pair of received signals in
the circumferential stations. Ohori et al. (2002) introduced a SPAC
procedure suitable for more complex arrays, which employs higher
modes of the Rayleigh waves. In more recent works, both Cho et al.
(2006) and Garcı́a-Jerez et al. (2006, 2008) have proposed similar
methods for calculating Rayleigh- and Love-wave dispersion curves
based on the horizontal components of microtremors recorded by
a double circular array. Chávez-Garcı́a et al. (2005) showed that
averaging the correlation of a single station pair over many time
windows is equivalent to azimuthal averaging over a circular array
(see also Morikawa et al. 2004; Chávez-Garcı́a & Luzón 2005).

Recently, Okada (2006) modified the conventional SPAC method
(Aki 1957) for a finite number of stations to include correlations
between the circumferential stations and the central station. The
SPAC coefficients in this version require calculation of a zero-order
Bessel function of the first kind, and its higher even orders.

This paper reviews three methods of obtaining SPAC coefficients
from a circular array: (1) the conventional, nearly continuous model
(Aki 1957); (2) the discrete model for M stations (Okada 2006) and
(3) the MSPAC method based on vertical microtremor components
(Bettig et al. 2001). We then propose a new model to calculate SPAC
coefficients, named the extended MSPAC (EMSPAC) method. We
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apply EMSPAC to the cases of discrete and nearly continuous cir-
cular arrays, with both uniform and non-uniform distributions. The
resulting coefficients are compared with MSPAC coefficients. Fi-
nally, using real data from array measurements from a site in south-
ern Tehran, we compare Rayleigh-wave dispersion curves calculated
using the EMSPAC method and the MSPAC method.

2 M AT H E M AT I C A L OV E RV I E W O F
M E T H O D S F O R O B TA I N I N G
AV E R A G E D S PA C C O E F F I C I E N T S

The ambient noise source is assumed to be far from the stations.
We may therefore use the following representation for the vertical
polarized signal at each station, in polar coordinates (r , θ ) at time t
(Okada 2003):

X (t, r, θ ) =
∫ +∞

−∞

∫ 2π

0
exp {iωt + ikr cos (θ − ϕ)} dζ (ω, ϕ), (1)

where k = k(ω) is the wavenumber. The differential amplitude
dζ (ω, ϕ) is a complex random variable, related to frequency dω and
propagation direction dϕ as shown in the following equation.

dζ (ω, ϕ) = ζ (ω + dω, ϕ + dϕ) − ζ (ω, ϕ). (2)

The SPAC function between two signals observed at a circumferen-
tial station (r , θ ) and the central station (0, θ ) is (Okada 2003)

S(r, θ ) = E [X (t, r, θ ) X∗(t, 0, θ )] , (3)

where E[.] is the statistical expectation and ∗ is the complex con-
jugate symbol. Assuming that no coupling takes place between
Rayleigh waves with different frequencies and propagation direc-
tions, the orthogonality condition implies that

E [dζ (ω, ϕ) dζ ∗(ω′, ϕ′)]

= h (ω, ϕ) δ (ω − ω′) δ (ϕ − ϕ′) dωdϕdω′dϕ′, (4)

where δ(ω − ω′) is Dirac’s delta function (zero when ω �= ω′). The
factor h(ω, ϕ) is the directional power spectral density (PSD) of the
Rayleigh wave (Henstridge 1979), so h(ω, ϕ) dωdϕ represents the
average contribution to the total power received from waves with
directions between ϕ and ϕ + dϕ and having angular frequencies
between ω and ω + dω. The microtremors are assumed to be wide
sense stationary (WSS) and ergodic random processes, so the SPAC
function is independent of the time t . Substituting (1) into (3) using
(4) results in

S(r, θ ) =
∫ +∞

−∞

∫ 2π

0
exp{ikr cos(θ − ϕ)}h (ω, ϕ) dωdϕ. (5)

In the following subsections, we discuss two cases: nearly continu-
ous circular arrays and M-station circular arrays.

2.1 Averaged SPAC coefficient for a nearly continuous
circular array

Taking the continuous azimuthal average of eq. (5) over all circum-
ferential stations, S(r ) = 1

2π

∫ 2π

0 S(r, θ )dθ, we find

S(r ) =
∫ ∞

−∞
J0 (kr ) h0 (ω) dω

�=
∫ ∞

−∞
S(r, ω)dω, (6)

where J0(kr ) = 1
2π

∫ 2π

0 exp (ikr cosθ ) dθ is the zero-order Bessel

function of the first kind and h0(ω) = ∫ 2π

0 h(ω, ϕ)dϕ is the PSD
integrated over all propagation directions.

For each frequency ω, normalizing eq. (6) results in the averaged
SPAC coefficient (Aki 1957).

ρ (ω; r ) = S(r, ω)/S(0, ω) = J0 (kr ) . (7)

Once the averaged SPAC coefficient has been calculated, the phase
velocities of the Rayleigh waves c(ω) = ω/k(ω) can be found by
inverting eq. (7). This quantity is independently calculated for each
frequency f = ω/2π after narrow-band filtering of the signals. This
model is based on an imaginary circular array with a station at every
possible angle, so the averaged SPAC coefficient of eq. (7) can be
replaced with a more suitable one for finite arrays.

2.2 Averaged SPAC coefficient for an M-station circular
array

The averaged SPAC coefficient for a uniform circular array of radius
r with M circumferential stations and one station in the centre can
be calculated exactly as follows (Okada 2006):

ρM (ω; r ) = J0 (kr ) + 2
∞∑

l=1

(−1)νl M al J2νl M (kr ) , (8)

where al = 1
h0(ω)

∫ 2π

0 cos(2νl Mϕ)h(ω, ϕ)dϕ, ν = 1 for odd M, and
ν = 1/2 for even M . Generally, the distribution h(ω, ϕ) is unknown
in each propagation direction ϕ, so a closed form for al does not
exist. However, it is evident that −1 ≤ al ≤ 1, and setting al = 1 in
(8) leads to an upper bound for the averaged SPAC coefficient.

2.3 The MSPAC coefficient

Bettig et al. (2001) considered the correlations between all possible
pairs of stations. They organize the pairs into a ‘co-array’ of sev-
eral concentric rings, one ring for each interstation distance. Their
method is named modified averaged SPAC (MSPAC). The MSPAC
coefficient in each ring is (Bettig et al. 2001)

ρ(ω; rn1, rn2) = 2

r 2
n2 − r 2

n1

∫ rn2

rn1

r J0(kr )dr

= 2

r 2
n2 − r 2

n1

1

k
[rn2 J1(krn2) − rn1 J1 (krn1)] , (9)

where rn1 and rn2(rn1 < rn2) are the radii of the nth ring. They
showed that by increasing the aperture of the array, the part of
the dispersion curve that is well resolved and provides high-
quality estimates of phase velocities shifts to a lower frequency
band.

In the next section, we apply the idea proposed by Okada (2006)
for calculating averaged SPAC coefficients to improve the MSPAC
method for an M-station circular array. Then we will show that in a
nearly continuous circular array, the MSPAC coefficient (9) requires
correction; a different weighting function is needed to combine the
co-array rings in this case.

3 E M S PA C C O E F F I C I E N T S F O R T H E
C I RC U L A R A R R AY

3.1 Uniform discrete model

In this section, we calculate the MSPAC coefficient for each pair
of stations in a finite, uniform circular array. In an M-station array,
the number of unique pairs, not including the central station, is
M(M − 1)/2. Each possible interstation distance is mapped to a
circle of equivalent radius, and the set of such circles is called the
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Extended MSPAC method 1433

co-array. For odd M , the number of stations on each circle of the
co-array is equal to M . For even M , each circle except for the
outermost has M stations and the outermost has M/2 stations. The
total number of circles in the co-array is (M − 1)/2 for odd M and
M/2 for even M . Thus, the number of circles in the co-array can
be written as �M/2	, meaning the biggest integer smaller than or
equal to M/2. One can readily see that the radius of each circle in
the co-array is r j = 2r sin( jπ

M ), j = 1, 2, . . . , �M/2	. Hence, using
eq. (8), the EMSPAC coefficient for the j th circle is

ρM (ω; r, j) = J0

(
2kr sin

(
jπ

M

))
+ 2

∞∑
l=1

(−1)νl M j

× al J2νl M j

(
2kr sin

(
jπ

M

))
,

j = 1, 2, . . . , �M/2	 , (10)

where Mj is the number of stations on the jth circle.
The EMSPAC coefficient in eq. (10) is comparable to the MSPAC

coefficient in eq. (9) when rn2 → rn1, for each n. On the other hand,
if rn2 → rn1 in (9), it is easy to show that limrn2→rn1 ρ(ω; rn1, rn2) =
J0 (krn1), which is exactly the same as the conventional averaged
SPAC coefficient. Therefore, in the case �rn = rn2 − rn1 = 0, the
MSPAC method is equivalent to the conventional SPAC method.

In a uniform circular M-station array, the only difference between
the SPAC coefficients calculated in eqs. (10) and (9) is the second
term on the right-hand side of eq. (10). Fig. 1 depicts the two SPAC
coefficients for M = 5 and j = 1, 2. In the region of interest (below
the aliasing limit) the models fit well, which is also visible in the
real data results in Fig. 7. It is obvious that the error introduced by
using the nearly continuous model (a zero-order Bessel function of
the first kind) increases for larger rings.

On the other hand, the spatial sampling of an M-station circular
array determines the Nyquist wavenumber for that array, which
in SPAC processing is the maximum wavenumber beyond which
aliasing error occurs. For a circle array, increasing M decreases
the aliasing error. For fixed M , increasing the radius of the array
increases the aliasing effect.

3.2 Non-uniform discrete model

In a non-uniform, M-station circular array, stations may be placed
at any position on the circumference. Therefore, relation (8) cannot
be used. Instead, we use the Jacobi–Anger expansion (Arfken &
Weber 2001).

exp{ikr cos(θ − ϕ)} = J0(kr )

+ 2
∞∑

n=1

i n Jn(kr )cos {n (θ − ϕ)} . (11)

Substituting this form into eq. (5), we obtain

S(r, θ ) =
∫ +∞

−∞

(
J0(kr )h0(ω)

+ 2
∞∑

n=1

i n Jn(kr )
∫ 2π

0
cos {n(θ − ϕ)} h(ω, ϕ)dϕ

)
dω. (12)

The azimuthal average is then defined as S(r ) =
1

2π

∑M
l=1 S(r, θl )�θl , where �θ l is the azimuthal difference

between stations l and (l + 1); �θ l = θ l+1 − θ l, l = 1, 2, 3, . . ., M

Figure 1. Comparing EMSPAC and MSPAC coefficients for M = 5 for two
different circles in the co-array, M is the number of stations and j is the
number of the circle in the co-array. (a) Comparing the coefficients in the
first circle, j = 1. (b) Comparing the coefficients in the second circle, j = 2.

and θ 1 = 0. Therefore,

S(r ) =
∫ +∞

−∞

(
J0 (kr ) h0 (ω) + 2

∞∑
n=1

i n Jn(kr )

×
∫ 2π

0

[
M∑

l=1

cos {n(θl − ϕ)} �θl

]
h(ω, ϕ)dϕ

)
dω

�=
∞∫

−∞

S(r, ω)dω. (13)
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Figure 2. Comparing EMSPAC coefficients from relation (21) with MSPAC
coefficients from relation J1(2kr )/kr for nearly continuous circular array.

Finally, the averaged SPAC coefficient for a non-uniform M-station
circular array is obtained by normalizing (13). The result is

ρM (ω; r )
�= S(r, ω)/S(0, ω) = J0(kr ) + 2

h0 (ω)

∞∑
n=1

(−1)n J2n (kr )

×
∫ 2π

0

[
M∑

l=1

cos {2n (θl − ϕ)} �θl

]
h (ω, ϕ) dϕ. (14)

Here n has been replaced by 2n to make the averaged SPAC coeffi-
cient a real quantity. This relation reduces to eq. (8) for a uniform
circular array if �θl = 2π

M , according to definition al and the equal-

ity
∑M

l=1 cos {2n (θl − ϕ)} = Mcos {2νpM(θ1 − ϕ)} δn,νpM , where
p = 1, 2, 3, . . . Note that ν = 1 for odd M , and ν = 1/2 for even
M . We can also use eq. (14) to deduce the EMSPAC coefficient for
the j th circle with radius rj.

ρM (ω; r j ) = J0(kr j ) + 2

h0(ω)

∞∑
n=1

(−1)n J2n(kr j )

×
∫ 2π

0

⎡
⎣ M j∑

l=1

cos {2n (θl − ϕ)}�θl

⎤
⎦h(ω, ϕ)dϕ,

(15)

where Mj is the number of stations on the j th circle.
Eq. 15 takes into account non-uniform discrete arrays, but as the

propagation direction must be known, it can only be used in practice
when there is, for example, one dominant propagation direction
known for instance from F–K analysis.

3.3 Nearly continuous model

It is clear that increasing the number of circumferential stations
makes the circles in the co-array closer together. Hence, for a nearly
continuous array, the radii of the circles in the co-array cover the
entire interval from zero to 2r . In this case, the SPAC coefficient is

ρ (ω; r ) = 2

π

∫ π/2

0
J0 (2kr sinα) dα. (16)

To arrive at eq. (16), first we calculate the MSPAC coefficient for
an arbitrary ring whose radius is between x and x + dx . The con-
tribution of this thin ring to the MSPAC coefficient is represented
by a weighting function w(x). The MSPAC coefficient is obtained

Figure 3. (a) Array configuration of the field experiment in southern Tehran.
(b) Location of the array in the map of Tehran.

by summing the influence of all such rings between 0 and 2r .

ρ (ω; r ) =
∫ 2r

0
J0 (kx) w(x)dx . (17)

The following approach is used to find w(x). In a discrete model,
the radius of the j th circle of the co-array is r j = 2r sin( jπ

M ). The
formula j = M

π
sin−1(

r j

2r ) therefore gives the label of each circle. To
derive the nearly continuous model from the discrete model, define
the number of circles between x and x + dx as

F (x) dx = M

π
sin−1

(
x + dx

2r

)
− M

π
sin−1

( x

2r

)
. (18)

Approximating the terms on the right-hand side by linear Taylor
series in dx , we find

F (x) dx = M

π

dx√
1 − (x/2r )2

. (19)
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Extended MSPAC method 1435

Figure 4. Near one hour simultaneous microtremor records on the vertical
components at seven stations placed on a circumference with radius of 10 m,
and one in the centre.

Thus, w(x) dx is just the normalized form of F(x) dx .

w (x) = 1

πr

1√
1 − (x/2r )2

. (20)

Substituting (20) into (17) yields

ρ (ω; r ) = 1

π r

∫ 2r

0

J0 (kx)√
1 − (x/2r )2

dx . (21)

If x is replaced with 2r sin α, (21) is equal to (16). There is no
closed form solution for integrals (16) or (21).

Letting rn1 → 0 and rn2 → 2r , the right-hand side of eq. (9)
changes to ρ(ω; 0, 2r ) = J1 (2kr ) /kr . This result is different from
that obtained by setting r to the same values in eq. (21). The extent
of the difference is depicted in Fig. 2. In fact, the major difference
between these two models is the weighting density function w(x)
introduced in eq. (20).

We now introduce an important inequality; in Figs 1 and 2 it can
be seen that

x |ρ(x)=a < x |J0(x)=a, for min
x :ρ′(x)=0

ρ(x) ≤ a ≤ 1. (22)

Relation (22) indicates that the coefficients obtained by the

EMSPAC method are shifted to lower wavenumbers (i.e. longer
wavelengths at fixed r ) compared to the conventional MSPAC
model.

4 R E A L DATA

We conducted measurements using a uniform circular array of seven
stations and one station in the centre. The array was composed of
Guralp CMG6TD seismic stations (Fig. 3a), and its aperture was
near 20 metres. Ambient noise measurements were performed in
2007 at a site in the south of Tehran (Fig. 3b). Fig. 4 illustrates the
data with a sample of simultaneous microtremor records (vertical
components) taken at the seven stations.

After applying a bandpass filter to the records, we calculated the
averaged SPAC coefficients of the vertical wavefield. The SPAC co-
efficients are computed for pairs with similar interstation distances
by limiting the data to a narrow frequency band and ‘ring radius’.
Fig. 5 plots the azimuths and interstation distances for the array;
each dot represents one pair of stations. Fig. 6 shows the averaged
SPAC coefficient calculated in each ring of the co-array.

The averaged SPAC coefficients deduced in each ring are then
used in eqs (9) and (10) to deduce the dispersion curves. Fig. 7
compares the dispersion curves of all rings calculated using the real
data field in the EMSPAC and MSPAC methods.

5 D I S C U S S I O N A N D C O N C LU S I O N

This paper has presented an extension of the MSPAC technique for
discrete and nearly continuous circular arrays. The proposed model
considers all possible station pairs in the array by defining a co-array
consisting of concentric virtual arrays representing pairs of stations
separated by equal distances (or similar distances in the case of
non-uniform arrays).

The EMSPAC coefficients obtained for discrete and nearly con-
tinuous arrays are displayed theoretically in Figs 1 and 2, and
compared with those obtained by the MSPAC method. Compared
to MSPAC, for the nearly continuous case the peak resolution of
the EMSPAC method occurs at lower wavenumbers (longer wave-
lengths) since the slope of its averaged SPAC coefficient with respect
to wavenumber is steeper. We also demonstrated that the averaged
conventional SPAC coefficient is a special case of our proposed

Figure 5. Azimuth–interdistance plot for the array; each dot represents one couple of stations, all dots are divided in four rings.
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1436 E. Shabani et al.

Figure 6. Averaged SPAC coefficients obtained in four rings using real field data.

Figure 7. Comparing deduced dispersion curves in MSPAC and EMSPAC
methods using real field data in four rings with radii 8.6 m, 10 m, 15.6 m
and 19.5 m.

model. The major difference between the MSPAC and EMSPAC
models is the weighting density function w(x) used to integrate
rings in the co-array. This difference prevents our model from being
considered a special case of the MSPAC model.

The discrete EMSPAC and MSPAC formulae are also tested
against real data obtained by a 7-station circular array, which results
in four averaged SPAC coefficients for the four rings in the co-array.
Substituting the averaged SPAC coefficients for each frequency into
the left-hand side of relation (10), we obtained Rayleigh-wave dis-
persion curves for both methods. Where, considering only the first
term in the right-hand side of relation (10), J0(2kr sin( jπ

M )), holds
for MSPAC method and taking into account all terms it holds for
EMSPAC method. The results are compared in Fig. 7 for all rings.
For each frequency, the Rayleigh-wave phase velocities deduced in
MSPAC and EMSPAC methods are very similar. This is also obvi-
ous when looking at Fig. 1, for the selected frequency bandwidths
that avoid the aliasing effects. It seems that the small differences be-
tween deduced dispersion curves in Fig. 7 are due to the resolution
in the inversion process.
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